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1 Introduction

Research into new markers for disease diagnosis, screening, and prognosis has ex-

ploded in recent years. In each of these settings, the primary question is of classi-

fication accuracy: How well does the marker distinguish between the two groups of

individuals, the “cases” and the “controls”?

The ROC curve plays a central role in evaluating classification accuracy (Baker,

2003; Pepe et al., 2001). It displays the tradeoff between false-positive and false

negative error rates associated with classification rules based on the marker, Y . Let

D denote the binary group variable, “disease status”, and YD and YD̄ case and control

observations with survivor functions SD(y) = P [YD > y] and SD̄ = P [YD̄ > y]. The

ROC curve is a plot of the true-positive fraction (TPF) (sensitivity) versus the false-

positive fraction (FPF) (1 - specificity) for the rules which classify an individual

as “test-positive” if Y > c, where the threshold c varies over all possible values.

Equivalently, at a FPF = t, ROC(t) = P [YD > S−1
D̄

(t)] = SD(S−1
D̄

(t)) (Pepe, 2003).

There are commonly factors which affect test accuracy. Understanding these ef-

fects helps to determine how the test should be used in practice. It may be that the

definition of testing positive on the basis of the marker should depend on covariates,

or it may be that the accuracy of the test is less than optimal in certain settings

(Pepe, 2003 [p. 48-49]). Patient characteristics, such as age, gender, or race, often

impact marker measurements. For example, younger women have more dense breasts,

which leads to more false positive errors when using a mammogram. Factors which

affect the test itself, such as the expertise of the test operator, or variations in how

the test is performed, may also affect test accuracy. The manner in which a biological
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specimen is collected, processed, or stored can greatly affect the assay. Storage time

may be an important factor. Characteristics of disease also commonly affect accu-

racy. More advanced disease is often easier to detect in cases, and controls may have

related conditions that increase the likelihood of false positive errors.

While the concept of covariate adjustment has been well studied in epidemiological

and clinical research, as well as in statistics more broadly, it has not been developed

in the classification context. In this paper, we propose a covariate-adjusted summary

measure of classification accuracy. We begin by motivating covariate adjustment in

the classification setting. In Section 3, we define and give several interpretations

for the covariate-adjusted ROC curve. Section 4 proposes and provides distribution

theory for two novel estimators. Their small-sample performance is evaluated in

Section 5. In section 6, we illustrate these methods using data from the Physicians’

Health Study.

2 Background and Motivation

2.1 Covariate Effects on Classification Accuracy

There are two dimensions to the ROC curve, and hence two ways in which a covari-

ate can impact test accuracy (Pepe, 2003 [pp. 131 – 132]). Consider the traditional

“pooled” ROC curve, which ignores covariates by combining all case observations

together, regardless of covariate value, and all control observations together, regard-

less of covariate value. The pooled ROC describes the accuracy of rules that use a

common threshold to define test-positive. That is, the same threshold is used for all
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marker observations, regardless of their covariate values. If a covariate is associated

with marker observations among controls, then the use of a common threshold will

yield varying FPF’s across covariate groups. Hence, varying the covariate value has

the effect of moving horizontally along the ROC curve. This is illustrated in Figure

1, adapted from Janes and Pepe (unpublished manuscript), which shows data for a

hypothetical marker, Y , and binary covariate, Z. The two points on the common

covariate-specific ROC curve are the operating characteristics of the positivity cri-

terion ‘Y > 2.5’ in the Z = 0 and Z = 1 populations. But the covariate may also

affect the inherent discriminatory accuracy of the marker, i.e., the separation between

the YD and YD̄ distributions (the ROC curve) may vary with covariate value. This

is analogous to effect modification in the association setting. We initially focus on

covariates with only the first type of covariate effect. That is, we assume that the

separation between the YD and YD̄ distributions is the same in different covariate

populations, as in Figure 1(a). For example, in a multi-center study, variations in

equipment or testing procedures may affect marker levels equally in cases and con-

trols so that marker performance is similar across the study sites. More generally, any

covariate that causes a monotone transformation of Y that is independent of disease

status will not affect ROC performance.

2.2 What is Covariate Adjustment for ROC Curves?

In therapeutic research, the covariate-adjusted treatment effect is the effect of treat-

ment within a population with fixed covariate value. Similarly, in classic etiologic

epidemiology, the covariate-adjusted odds ratio is the odds associated with an expo-
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sure (or risk factor) among subjects with the same covariate values. In the absence of

effect modification by covariates, the covariate-adjusted effect of treatment or expo-

sure is defined to be the effect that is common across covariate strata. Conceptually,

we stratify. In practice, covariate adjustment may be achieved by stratification, when

covariates are discrete, or using regression methods.

We define covariate adjustment for ROC curves using an analogous approach.

The covariate-adjusted ROC curve for Y is the covariate-stratified ROC curve. In

other words, it is the ROC curve which characterizes the separation between YD and

YD̄ distributions in a population with fixed covariate value. In Figure 1, this is the

common covariate-specific ROC curve (solid line).

We emphasize that covariate adjustment is different from other roles for covariates

in marker evaluation, such as: 1) the performance of the covariate-adjusted risk score

for Y ; 2) the incremental value of Y over Z; 3) the performance of Y in a study where

controls are matched to cases with respect to Z; and 4) ROC regression which allows

the performance of Y to vary with Z.

Consider first the covariate-adjusted risk score for Y , P [D = 1|Y, Z]. For example,

a logistic regression model for Y with adjustment for Z yields a linear predictor

β1Y + β2Z. The ROC curve for the linear predictor is not the ROC curve for Y

adjusted for Z, but rather it captures the ability of the combination of marker and

covariates to discriminate between cases and controls. Observe that this combination

may perform well even if Y is a poor classifier if Z discriminates well. Figure 2

shows two examples where (Y, Z) is bivariate normal with mean (0, 0) and variance-

covariance matrix

⎛
⎜⎜⎝1 ρ

ρ 1

⎞
⎟⎟⎠ in controls, and mean (µY , µZ) and the same variance-

5

http://biostats.bepress.com/uwbiostat/paper283



covariance in cases. Under this model, the risk score, the optimal combination of Y

and Z for discrimination (McIntosh and Pepe, 2002), is (a monotone function of) a

linear combination of Y and Z. In Figure 2(a), Z is a good classifier (µZ = 1.5) but

Y is not (µY = 0.5), and the two are relatively uncorrelated (ρ = 0.1). The linear

predictor performs well, but the covariate-adjusted ROC curve for Y , i.e. the ROC

curve for Y stratified by Z, is low because it relates to the discriminatory accuracy

of Y . In Figure 2(b), both Y and Z are good classifiers (µY = µZ = 1.5), but are

highly correlated (ρ = 0.9). The linear predictor performs well, as expected since it

should be at least as good as either marker on its own. However, after adjustment

for Z the ROC curve for Y is low because within a population where Z is fixed, Y

is not a good discriminator. Most of its marginal discrimination is explained by Z,

with which it is highly correlated.

Consider the incremental value of the marker over the covariates. This is quantified

by comparing the ROC curve for the (Y, Z) combination to the ROC curve for Z alone.

This answers yet another question: How much does discriminatory accuracy improve

with the addition of Y to Z? It is easy to find examples in which the incremental

value of Y is low, but the covariate-adjusted performance of Y is good, and where

the incremental value is large, but the covariate-adjusted performance of Y is poor

(Janes and Pepe, unpublished manuscript).

Matching of controls to cases is a design strategy commonly used to account for

covariate effects on classification accuracy. But the performance of Y in a study

matched on Z does not reflect its covariate-adjusted performance either. It is widely

appreciated in epidemiologic research that the analysis in a matched study must ad-

just for the matching covariates in order to appropriately estimate exposure or risk
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factor effects. Analyses that do not adjust for matching covariates produce biased

estimates. A similar result was recently shown to hold for evaluation of classification

accuracy from matched studies (Janes and Pepe, unpublished manuscript): the un-

adjusted ROC curve is biased downwards. Matching does not in and of itself adjust

for covariates. Rather, the analysis must also make these adjustments.

Finally, we note that ROC regression (Tosteson and Begg, 1988; Toledano and

Gatsonis, 1995; Pepe, 1998; Faraggi, 2003; Schisterman et al., 2004; Le, 1997; Pepe,

2000; Alonzo and Pepe, 2002; Cai and Pepe, 2002) is a methodology that investigates

if and how the discriminatory accuracy of the marker (the ROC curve) depends on co-

variates. This is analogous to effect modification in epidemiologic research and is not

the same as covariate adjustment. Figure 1 demonstrates that covariate adjustment

may be necessary even when the ROC curve does not vary with covariates.

2.3 Why Adjust for Covariates?

The pooled or unadjusted ROC curve has a number of drawbacks when there are

covariate effects on test accuracy. Observe that the pooled ROC describes the per-

formance of the marker, including the portion of performance that is due to the

covariates. This is illustrated in Figure 1, scenario 1, wherein the pooled ROC lies

above the common covariate-specific ROC curve. For a real data example, consider

prostate-specific antigen (PSA), prostate cancer screening biomarker. The pooled

ROC curve for PSA is overly optimistic because it includes the portion of discrimi-

natory accuracy due to age: cases tend to be older than controls, and older subjects

tend to have higher PSA levels (Oesterling et al. 1993; Baillargeon et al., 2005). The
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performance of PSA conditional on age is of much more interest.

The use of a common threshold to define test-positive is another undesirable at-

tribute of the pooled ROC. For example, in the PSA setting, the use of a common

threshold will yield much higher FPF’s in older populations than in younger popula-

tions. This suggests that age-specific thresholds should be used to control the FPF

across age groups, as has been suggested in the literature (Oesterling et al. 1993).

In certain settings, failing to adjust for covariates will attenuate the ROC curve.

In particular, if the covariate affects the marker in the same way in cases and controls

and is independent of disease status, the pooled ROC curve will lie below the common,

covariate-specific ROC curve (Pepe, 2003 [p. 133–134]). This is illustrated in Figure

1, scenario 2. In the radiology literature, attenuation of the ROC curve associated

with pooling data from multiple readers who use the rating scales differently is well

known (Swets and Pickett, 1982 [p. 65]; Hanley, 1989; Rutter and Gatsonis, 2001).

Recently this phenomenon has been highlighted as a general issue in matched case-

control studies (Janes and Pepe, unpublished manuscript).

3 The AROC

Consider a continuous marker, Y , and continuous covariate, Z. Let ZD and ZD̄

denote case and control covariate observations with cumulative distribution functions

(CDF) PZD
and PZD̄

. Denote by SDZ(y) = P [YD > y|Z] and SD̄Z = P [YD̄ > y|Z] the

continuous survivor functions for Y conditional on Z, fDZ and fD̄Z the corresponding

densities, and ROC(t) = SDZ(S−1
D̄Z

(t)) the common covariate-specific ROC curve. Our

methods generalize naturally to a discrete covariate or multiple covariates.
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3.1 Definition and Interpretations

The covariate-adjusted ROC curve is defined as the common covariate-specific ROC

curve for Y , and denoted by AROC = SDZ(S−1
D̄Z

(t)) to emphasize its adjusted or

stratified nature. Mathematically,

AROC(t) = P [YD > S−1
D̄ZD

(t)], (1)

where the covariate-specific thresholds, S−1
D̄Z

(t), yield FPF = t among controls with

covariate value Z. In other words, the AROC is a plot of the TPF versus the FPF

for the set of rules that classify a subject with covariate value Z as positive if Y > cZ ,

where cZ = S−1
D̄Z

(t) is the Z-specific threshold associated with a FPF of t. Using these

rules, the marginal FPF is also equal to t.

Several other interpretations can be provided for the covariate-adjusted ROC

curve. We write the AROC as

AROC(t) = P [SD̄ZD
(YD) ≤ t]. (2)

This reveals that the AROC is the CDF of SD̄ZD
(YD), the placement of a case

observation relative to a reference distribution of controls with the same covari-

ate value as the case. Contrast this with the unadjusted or pooled ROC curve,

ROC(t) = P [SD̄(YD) ≤ t], which is the CDF of a case observation standardized

relative to the general control distribution (Pepe and Cai, 2002).

Another interpretation for the AROC follows from marker standardization. Let

Y ∗ = 1−SD̄Z(Y ) be the percentile for Y in the control population with the appropriate

covariate value. Such standardization is used, for example, to standardize children’s

weights relative to height and gender (Hammill et al., 1977). The AROC is simply

the pooled ROC curve for Y ∗ (this follows because 1 − SD̄ZD̄
(YD̄) ∼ Uniform[0, 1]).
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The AROC has some attractive mathematical properties. It is invariant with

respect to monotone increasing transformations of Y and/or Z. It is also unaffected

by control covariate-dependent sampling (e.g., matching). This follows because such

a design samples controls randomly conditional on Z, and cases are a simple random

sample from the case population.

Exploring the ordering of the pooled and adjusted ROC curves is useful for iden-

tifying scenarios in which failing to adjust for covariates leads to bias, and for de-

termining the direction and magnitude of the bias. The mathematical relationship

between the two ROC curves is complex. In one trivial case, they are the same: if

the distribution of YD̄ is independent of Z, the Z-specific thresholds associated with

a fixed FPF do not vary. If, on the other hand, Z is independent of D and does

not affect the discriminatory capacity of Y , the pooled ROC curve will lie below the

AROC (Pepe, 2003 [p. 135]). More generally, the ordering of the two ROC curves

depends on the distributions of Y and Z and the associations between them and of

each with disease status. In a classical distributional case (the binormal model), the

ordering is somewhat intuitive (Janes and Pepe, 2006). The pooled ROC will lie

above the AROC if the association between Z and D is stronger than the association

between Y and D, since it includes the portion of discriminatory accuracy due to

Z. However, the AROC rule will yield gains in accuracy if the association between

Y and D is stronger than the association between Z and D, and if in addition the

correlation between YD̄ and ZD̄ is large. Larger correlation between YD and ZD will

further improve the AROC relative to the pooled ROC.
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3.2 When Covariates Affect Discrimination

When Z affects discrimination, covariate-specific ROC curves, ROCZ(t) = SDZ(S−1
D̄Z

(t)),

are of interest. A wide variety of methods for estimating covariate-specific ROC curves

have been proposed (see, e.g., Tosteson and Begg, 1988; Toledano and Gatsonis, 1995;

Pepe, 1998; Faraggi, 2003; Schisterman et al., 2004; Le, 1997; Pepe, 2000; Alonzo and

Pepe, 2002; Cai and Pepe, 2002). These methods allow for covariate effects on both

the FPF’s (or thresholds) and on the ROC curve itself.

Interestingly, the AROC is a simple summary of covariate-specific ROC curves:

AROC(t) =

∫
P [YD > S−1

D̄ZD
(t) | ZD = Z] dPZD

(Z)

=

∫
ROCZ(t) dPZD

(Z). (3)

Equivalently, AROC(t) = EZD
[ROCZD(t)]. The AROC reports a weighted average

of covariate-specific TPF’s, holding the covariate-specific FPF’s constant. This is a

useful summary of covariate-adjusted accuracy, particularly for small studies where

covariate-specific ROC curves cannot be estimated with precision. It also provides a

single summary of covariate-adjusted accuracy with which to compare markers.

4 Estimation of the AROC

4.1 Estimators

We propose two estimators for AROC(t) = P [YD > S−1
D̄ZD

(t)] using nD and nD̄ case

and control observations, where nDZ and nD̄Z are the numbers of each with covariate

value Z. In both instances, we estimate the outside probability empirically. The re-

maining task is estimation of the control quantiles, S−1
D̄Z

(t). With the non-parametric
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estimator, valid for a discrete covariate (Z = 1, . . . , K), we use empirical quantiles

in each stratum. With the semi-parametric estimator, the quantiles are estimated

based on a model for the distribution of YD̄ as a function of ZD̄. Here we lay out the

general framework for the AROC estimator, of which the non-parametric estimator

is a special case.

Suppose we assume the quantile model, YD̄ = f(ZD̄, ε; θ), where ε is random

error and θ are parameters. With the semi-parametric AROC estimator, this model

may be parametric, such as a normal linear model, or semi-parametric (see, e.g.,

Heagerty and Pepe, 1999). The model induces a form for the control quantiles. Let

qZ(t; θ) = S−1
D̄Z

(t; θ) be the function which extracts the 1 − t quantile from the set of

control quantiles with covariate value Z, where qZ(t; θ̂) = S−1
D̄Z

(t; θ̂) is the estimated

quantile. We write

̂AROCθ̂(t) =
1

nD

nD∑
i=1

I
[
YDi > qZDi

(t; θ̂)
]
.

With the non-parametric estimator, θ =
(
S−1

D̄Z=1
(t), . . . , S−1

D̄Z=K
(t)

)T
are the quantiles

themselves, ŜD̄Z(y) = n−1
D̄Z

∑nD̄Z

i=1 I
[
YD̄Zi

> y
]
, and qZ(t; θ̂) = Ŝ−1

D̄Z
(t) =

inf
s∈[0,1]

{
ŜD̄Z(s) ≥ t

}
. This estimator depends only on the ranks of the data, and thus

is invariant with respect to monotone transformations.

4.2 Asymptotic Distribution Theory

We assume the following conditions in establishing asymptotic distribution theory.

Recall that the distribution of YD is not a function of θ.

C(1) Random sampling conditional on D, nD + nD̄ → ∞, and nD

nD̄
→ λ ∈ (0, 1).

C(2)
√

nD̄ (θ̂ − θ)
d−→ N(θ, Σθ) as nD̄ → ∞.
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C(3) AROCθ(t) is differentiable, and hence continuous, in θ.

C(4) lim
nD̄→∞P [AROCθ̂(t) /∈{0, 1}] = 1, where AROCθ̂(t) = P [YD > qZD

(t; θ̂) | θ̂] is

the AROC based on estimated quantiles.

C(5) t /∈ {0, 1}.

We note in relation to C(1) that covariate-dependent sampling can also be accom-

modated (see Section 4.4). A wide variety of quantile models satisfy C(2), including

parametric (Cole, 1990; Cole and Green, 1992; Pepe, 2003 [p. 140]), semi-parametric

(Heagerty and Pepe 1999; Zheng 2002), empirical (proven in appendix A.2), and

any θ̂ based on unbiased estimating equations satisfying standard regularity condi-

tions. C(3) is also valid for a diversity of quantile and ROC models, such as the

location-scale quantile model (Heagerty and Pepe, 1999) with bounded ∂
∂t

ROCZ(t)

and E(ZD) < ∞ (Janes and Pepe, 2006). C(4) is violated if the support of the

case distribution is entirely above or below the estimated quantile of interest. This

will not occur as long as the support of the YD distribution includes the support of

the YD̄ distribution, or if the support of the YD distribution is unbounded (e.g.,the

normal distribution). We also require that t /∈ {0, 1}, but by definition AROC(0) = 0

and AROC(1) = 1. Finally, imposing continuity of SDZ(y) and SD̄Z(y) implies that

ROCZ(t) = SDZ(S−1
D̄Z

(t)) and AROC(t) = EZD
[ROCZD(t)] are continuous in t.

Theorem 1 Under C(1)-C(5),
√

nD ( ̂AROCθ̂(t)−AROCθ(t))
d−→ N(0, V (t)) as

nD, nD̄ → ∞, where

V (t) = AROCθ(t) (1 −AROCθ(t)) + λ · ∂

∂θ
AROCθ(t) Σθ

∂

∂θ
AROCθ(t)

T (4)
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(proven in appendix A.1).

The form of V (t) is quite intuitive. The second component comes from estimat-

ing the Z-specific quantiles, while the first is a binomial variance associated with

estimating the TPF, given the quantiles.

For the non-parametric AROC estimator, C(2) and C(3) are satisfied when

C(6) fD̄Z(y) is continuous and positive in a neighborhood of S−1
D̄Z

(t) ∀Z,

and V (t) reduces to

V (t) = AROCθ(t) (1 −AROCθ(t)) + λ ·
K∑

Z=1

p2
ZD

(Z)

pZD̄
(Z)

· fDZ(S−1
D̄Z

(t))2

fD̄Z(S−1
D̄Z

(t))2
· t(1 − t), (5)

where pZD
(Z) and pZD̄

(Z) are the probability mass functions for ZD and ZD̄ (proven

in appendix A.2).

4.3 Consistent Variance Estimation

We propose two variance estimators. The first can be used to estimate the vari-

ance of the semi-parametric AROC estimator, (4). The semi-parametric estimator

is consistent by Theorem 1. We assume that a consistent estimator of Σθ exists

(e.g., if θ̂ is based on a set of unbiased estimating equations, a sandwich-type vari-

ance estimator can be used). The jth component of ∂
∂θ
AROCθ(t) is estimated by

̂AROCθ̂+hj(n)(t) − ̂AROCθ̂−hj(n)(t)

2h(n)
, where h(n) is o(n

−1/3
D ), and θ̂ + hj(n) (θ̂−hj(n))

denotes the vector θ̂ with h(n) added to (subtracted from) the jth component only.

The composite variance estimator is shown to be consistent in appendix A.3, under

C(1)-C(5), and

C(7) lim
nD̄→∞P [ ̂AROCθ̂+hj(n)(t) /∈{0, 1}] = lim

nD̄→∞P [ ̂AROCθ̂−hj(n)(t) /∈{0, 1}] = 1, ∀j.

14
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With small sample sizes, the ∂
∂θj

AROCθ(t) estimate may be sensitive to the choice

of bandwidth, h(n). We have used h(n) = 0.04 in applications and simulations; in

one example this ensured
AROCθ+hj(n)(t) −AROCθ−hj(n)(t)

2h(n)
≈ ∂

∂θj

AROCθ(t). This

value has worked well. We leave exploration of the optimal choice of h(n) for future

research.

Our second variance estimator can be used to estimate the variance of the non-

parametric AROC estimator, (5). Here, AROCθ(t) is estimated using the non-

parametric estimator, pZD
(Z) and pZD̄

(Z) using binomial proportions, S−1
D̄Z

(t) em-

pirically, and fDZ(y) and fD̄Z(y) with uniformly consistent kernel density estimates

(Silverman 1986 [Section 3.7]). In appendix A.4, we prove that the composite function

is consistent under C(1)-C(6), and

C(8) fDZ(y) and fD̄Z(y) are continuous density functions ∀Z.

Bootstrap variance estimation is a simple alternative which accommodates clus-

tered sampling and performs well in practice and in small sample simulations (see

Section 5).

4.4 Sampling Based on Covariates

In many situations, sampling may depend on both D and Z. Two simple examples

are matching, in which controls are sampled to have the same Z distribution as the

cases, and sampling subjects in a specified Z range, say conditional on Z > z0. With

such designs, our results continue to hold, but all population distributions should be

replaced with sampling distributions in the asymptotic distributions of the estimators.

For example, if sampling is conditional on D and Z > z0, SD(y) and SD̄(y) should be
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replaced with P [YD > y | Z > z0] and P [YD̄ > y | Z > z0], respectively.

4.5 Estimation of the AROC using ROC-GLM

The AROC can also be estimated using ROC-GLM, a method originally proposed

for estimating covariate-specific ROC curves (Pepe, 2000; Alonzo and Pepe, 2002).

ROC-GLM requires estimating the covariate-specific control quantiles using any of the

existing approaches, and specifying and fitting a model for the ROC curve, typically

as a function of covariates:

g(ROCZ(t)) = g
(
P [SD̄ZD

(YD) ≤ t | ZD = Z]
)

= h0(t) + βZ,

where g and h0 are monotone functions on (0,1). A model for the AROC is obtained

by including Z in the quantile calculations, while omitting Z from the ROC model,

g(AROC(t)) =h0(t). An example is the binormal model, AROC(t) = Φ(α+βΦ−1(t)),

where Φ is the standard normal CDF. This approach assumes a parametric form for

the AROC, but the marker distributions remain unspecified. A smooth estimate of

the AROC results. The version of ROC-GLM in which h0(t) is estimated empirically

(Cai and Pepe, 2002) reduces to our semi-parametric estimator of the AROC.

5 Small Sample Performance of Proposed Estima-

tors

In this section, we evaluate the finite sample properties of the AROC estimators using

simulations. We first evaluate the non-parametric estimator and its variance, which

can be used for discrete Z. We assume Y is normally distributed conditional on a

16
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binary covariate, Z = 0, 1, where YD̄ | Z = 0 ∼ N(0, 1), YD̄ | Z = 1 ∼ N(µD̄1
, 1),

YD | Z = 0 ∼ N(µD0
, 1), and YD | Z = 1 ∼ N(µD1

, 1). The induced AROC is

AROCθ(t) = P [ZD = 0] Φ(µD0
+ Φ−1(t)) + P [ZD = 1] Φ(µD1

− µD̄1
+ Φ−1(t)), (6)

and the asymptotic variance of the non-parametric estimator is

V (t)

nD

=
AROCθ(t) (1 −AROCθ(t))

nD

+
P [ZD = 0]2

P [ZD̄ = 0]

(
φ(µD0

+ Φ−1(t))

φ(Φ−1(t))

)2

· t(1 − t)

nD̄

+
P [ZD = 1]2

P [ZD̄ = 1]

(
φ(µD1

− µD̄1
+ Φ−1(t))

φ(Φ−1(t))

)2

· t(1 − t)

nD̄

, (7)

where φ is the standard normal density function. Due to the invariance of the AROC

with respect to monotone transformations, this model simply assumes that there

exists a monotone increasing transformation which makes Y normal in cases and

controls, conditional on Z. All of the assumptions laid out in Section 4 are satisfied

under this model. We set µD̄1
= 0.2, µD0

= 0.9, µD1
= 0.9, P [ZD̄ = 1] = 0.7, and

P [ZD = 1] = 0.3 and consider estimation at t = 0.05, 0.10, 0.20, 0.50. The AROC

values are 0.21, 0.33, 0.50, 0.80 and the two components of asymptotic variance are

n−1
D (0.33, 0.44, 0.50, 0.32) and n−1

D̄
(1.41, 1.40, 1.14, 0.40).

We simulated 5,000 datasets, where nD = nD̄ varies between 100 and 1,000 (see Ta-

ble 1). Note that, with nD = nD̄ = 100 and P [ZD = 1] = 0.3, there are approximately

30 cases with Z = 1. In terms of percent bias, defined as
avg( ̂AROCθ̂(t)) −AROCθ(t)

AROCθ(t)
,

where avg( ̂AROCθ̂(t)) is the average AROC estimate, the AROC estimator performs

very well, except for some modest bias when both t and nD = nD̄ are small. The

percent bias in the non-parametric variance estimate (using rectangular kernel den-

sity estimates) is defined as
median ( ˆV (t)) − V̂ ar( ̂AROCθ̂(t))

V̂ ar( ̂AROCθ̂(t))
, where the median

variance estimate is calculated because of the skewed distribution of the variance es-

timates, and V̂ ar( ̂AROCθ̂(t)) is the sample variance in the AROC estimates. The
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variance estimator tends to underestimate the true variance, and most of this bias

comes from estimating the second component of variance. There is substantial bias

when t is small, but this disappears for larger t. The percent difference between the

asymptotic and sample variances of the AROC estimates,
V (t) − V̂ ar( ̂AROCθ̂(t))

V̂ ar( ̂AROCθ̂(t))
,

shows that they tend to be close, with differences only when both t and nD = nD̄ are

small. Coverage probabilities based on non-parametric variance estimates are pro-

vided. Coverage based on logit transformations, which have been shown to improve

coverage for the pooled ROC when t is close to 0 or 1 (Pepe, 2003 [p. 102]), are also

shown. Only logit-based coverage is shown when both t and nD = nD̄ are small, since

AROC estimates are frequently close to zero. We find that coverage can be low with

small t, but is very good for moderate t.

We also evaluate the performance of bootstrap variance estimates. Data is resam-

pled 100 times conditional on D, and the sample variance of the AROC estimates is

calculated. The percent bias in the bootstrap variance estimate, defined as with the

non-parametric variance estimates, shows substantially less bias. Bootstrap coverage

also tends to be better; coverage is good except when both t and nD = nD̄ are small.

We compare non-parametric AROC estimates with semi-parametric estimates,

based on a normal linear quantile model. Table 2 displays the percent difference

in the estimates, defined as avg
(

̂AROCθ̂;semi(t) − ̂AROCθ̂(t)
)

/AROCθ(t), where

̂AROCθ̂(t) is the non-parametric estimate, ̂AROCθ̂;semi(t) is the semi-parametric es-

timate, and the average is taken over 5,000 simulations. The estimates agree quite

well. The estimated relative efficiency of the two estimators,
V̂ ar( ̂AROCθ̂;semi(t))

V̂ ar( ̂AROCθ̂(t))
,

where the variance is estimated over the 5,000 simulations, is also shown. The semi-

parametric estimator yields substantial gains in efficiency, with larger gains for smaller
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t and larger nD = nD̄.

We explore the performance of the semi-parametric AROC estimator and its vari-

ance under the double binormal model (Lin and Jeon, 2003),⎛
⎜⎜⎝YD̄

ZD̄

⎞
⎟⎟⎠ ∼ BV N

⎛
⎜⎜⎝

⎛
⎜⎜⎝µYD̄

µZD̄

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝ σ2

YD̄
σYD̄

σZD̄
ρD̄

σYD̄
σZD̄

ρD̄ σ2
ZD̄

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎛
⎜⎜⎝YD

ZD

⎞
⎟⎟⎠ ∼ BV N

⎛
⎜⎜⎝

⎛
⎜⎜⎝µYD

µZD

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝ σ2

YD
σYD

σZD
ρD

σYD
σZD

ρD σ2
ZD

⎞
⎟⎟⎠

⎞
⎟⎟⎠ . (8)

This is an extension of the classic binormal model for the pooled ROC curve (Swets,

1986; Hanley, 1988, 1996). The induced AROC is a binormal ROC curve with in-

tercept and slope parameters
µYD

−µY
D̄

s·σZD

− ρD̄σY
D̄

(µZD
−µZ

D̄
)

s·σZ
D̄

σZD

and

σY
D̄

σZD

√
1−ρ2

D̄

s
, where

s =

√
σ2

YD

σ2

ZD

(1 − ρ2
D) +

(
ρD̄

σY
D̄

σZ
D̄

− ρD
σYD

σZD

)2

(Janes and Pepe, 2006). Again, this model

is more general than it first appears; it stipulates that there exists a monotone, in-

creasing function which transforms (Y, Z) to bivariate normality in cases and controls

(Janes and Pepe, 2006). All of the assumptions laid out in Section 4 are satisfied

under this model. We apply the semi-parametric AROC estimator using a normal

linear quantile model; this is the true model for YD̄ given ZD̄. We set µYD̄
= µZD̄

= 0,

σYD̄
= σYD

= 1, σZD̄
= σZD

= 1.5, ρD = 0.6, ρD̄ = 0.2, µYD
= 0.7, and µZD

= 0.5. The

AROC values at t = 0.05, 0.10, 0.20, 0.50 are 0.16, 0.25, 0.39, 0.67. The two compo-

nents of asymptotic variance are n−1
D (0.24, 0.37, 0.49, 0.36) and n−1

D̄
(0.35, 0.53, 0.56, 0.23).

We simulated 5,000 datasets, where nD = nD̄ varies between 100 and 1,000. The

AROC estimator performs very well, except for some modest small sample bias for

very small nD = nD̄ and t (see Table 3). The semi-parametric variance estimator

exhibits moderate small sample bias for the smallest sample sizes; the variance is

consistently overestimated. This is primarily due to bias in the second component of

19

http://biostats.bepress.com/uwbiostat/paper283



variance, which involves ∂
∂θ
AROCθ(t). Yet, coverage is reasonable. The asymptotic

and sample variances agree quite well, except for some minor differences with the

smallest sample sizes. Bootstrap variance estimates are good alternatives: they tend

to exibit less bias, and have excellent coverage.

In summary, using quite general simulation models, we have found that the AROC

estimators perform reasonably well in small samples. Varying parameter choices have

produced similar or improved performance.

6 Illustration

We illustrate our methods using data from the Physicians’ Health Study (PHS) (Gann

et al., 2002). The PHS was a randomized, placebo-controlled study of aspirin and

β-carotene among 22,071 US male physicians ages 40 to 84 years in 1982. A blood

sample taken at enrollment was stored. For 429 men diagnosed with prostate cancer

up to 12 years after enrollment (most before PSA was widely used for screening), and

for 1,287 controls not diagnosed with prostate cancer during 12 years of follow-up,

the serum was assayed for PSA. Controls were matched to cases with respect to age;

for each case, three controls were selected who were within one year of age (Gann et

al., 2002; Etzioni et al., 2004).

The goal of this sub-study is to determine how well PSA discriminates between

men who did and did not go on to develop prostate cancer. The pooled ROC

curve in the matched data is not of practical interest (Janes and Pepe, unpublished

manuscript). It describes the ability of PSA to distinguish between cases and age-

matched controls, an artificially constructed control group. More importantly, this
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ROC curve is attenuated by matching on age in the design. We use the AROC to

summarize the age-adjusted discriminatory accuracy of PSA.

Age-specific ROC curves for PSA, estimated using a binormal ROC-GLM model

(Alonzo and Pepe, 2002), with quantiles based on a linear location-scale model (Hea-

gerty and Pepe, 1999), are shown in Figure 3(a). Observe that there is very little

variation in discrimination due to age. Hence, the AROC represents the common,

age-specific ROC curve for PSA, and is a good summary of PSA performance.

The AROC for PSA is shown in Figure 3(b), estimated both using the semi-

parametric estimator and using a binormal ROC-GLM model, where the control

quantiles are estimated using a linear location-scale model (Heagerty and Pepe, 1999)

for both methods. Bootstrapping is used for inference, and logit-based confidence

intervals are overlaid at t = 0.025 and t = 0.05. The AROC describes the ability of

PSA to discriminate between cases and controls of the same age. Using ROC-GLM,

we estimate that 18% of cases can be detected (95% CI: 14% to 23%) when the age-

specific FPF is held at 0.025, and 27% cases can be detected (95% CI: 23% to 32%)

when the common FPF is increased to 0.05.

7 Discussion

We have proposed the AROC as a measure of covariate-adjusted discriminatory accu-

racy. This is the common covariate-specific ROC curve when the covariate does not

affect discrimination, and a weighted average of covariate-specific ROC curves when

the covariate does affect discrimination. Asymptotic distribution theory was devel-

oped for our non-parametric and semi-parametric AROC estimators, which perform
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reasonably well in small samples. The consistent variance estimators also have good

small sample performance, but bootstrap variance estimation is easier to implement

and provides improved coverage. We have used the asymptotic variance expressions

to investigate efficient study design (Janes and Pepe, unpublished manuscript). An

intriguing result is that matching of controls to cases is optimal when covariates affect

the marker but not discrimination. The optimal case-control ratio also follows from

the variance expressions.

Covariate adjustment is important for covariates which affect marker observations

but not discrimination. Their effects must be adjusted for to avoid bias in ROC

estimation. However, covariates which are markers in their own right might be better

combined with the marker in the risk score in order to examine the value of the

combination or the incremental value of the marker over the covariates. Covariates

which affect discrimination should be used to estimate covariate-specific ROC curves.

The AROC can be used in such situations to summarize the covariate-specific ROC

curves. This may be particularly useful for comparing the performance of markers.

Methods to compare covariate-adjusted ROC curves are under development.

The AROC is a simple vertical average of covariate-specific ROC curves. This is

just one of many possible ways of summarizing covariate-specific ROC curves. Our

approach is appealing because it results in a true ROC curve, i.e., a plot of the TPF

versus FPF for a set of classification rules. Many potential summary measures are

not true ROC curves. The AROC also makes sense in applications where controlling

the FPF across covariate groups is desirable (e.g., cancer screening). There are ap-

plications, however, where controlling the covariate-specific false negative fractions is

more appropriate; this suggests averaging horizontally. The vertical and horizontal
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ROC averages are exactly the same when the covariates do not affect discrimination,

but differ more generally. The horizontal version, a simple extension of our methods,

describes the accuracy of rules which classify using covariate-specific thresholds that

control the covariate-specific false negative fractions.

The area under the AROC, the A-AUC, can be interpreted as the probability

of correctly ordering a randomly chosen case and control observation with the same

covariate value, A-AUC = P [YD > YD̄ZD
]. This statistical summary deserves further

development and might serve as the basis of tests to compare covariate-adjusted ROC

curves for different markers.
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Appendix

A.1 Proof of Theorem 1 We write

√
nD ( ̂AROCθ̂(t) −AROCθ(t)) =

√
nD

(
̂AROCθ̂(t) −AROCθ̂(t)

)
+
√

nD (AROCθ̂(t) −AROCθ(t))

=
1√
nD

nD∑
i=1

I
[
YDi

> qZDi
(t; θ̂)

]
− P [YD > qZD

(t; θ̂) | θ̂]

+
√

nD

(
P [YD > qZD

(t; θ̂) | θ̂] − P [YD > qZD
(t; θ)]

)
≡ An + Bn.

Note that Bn =
√

nD (g(θ̂) − g(θ)), and by C(1)-C(3), the delta method (Ferguson

1996 [p. 45]) and Slutsky’s Theorem, Bn
d−→ N(0, σ2

b ) as nD, nD̄ → ∞, where

σ2
b = λ ∂

∂θ
AROCθ(t) Σθ

∂
∂θ
AROCθ(t)

T . Now, we write An = 1√
nD

∑nD

i=1 Ani
and find

its asymptotic distribution conditional on θ̂, using the Lindeberg-Feller Central Limit

Theorem (LFCLT). First, note that E[Ani
| θ̂ ] = 0 and V ar[Ani

| θ̂ ] = AROCθ̂(t) (1−
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AROCθ̂(t)). Convergence under the LFCLT requires that

1

nD AROCθ̂(t) (1 −AROCθ̂(t))

nD∑
i=1

E[A2
ni

I [|Ani
| ≥ ε nDAROCθ̂(t) (1 −AROCθ̂(t))]]

(1 a)

converges to zero as nD → ∞ for all ε > 0. But A2
ni

I[| Ani
| ≥ ε · nD AROCθ̂(t)

(1 −AROCθ̂(t))] takes the value (1 −AROCθ̂(t))
2 · I

[
1

AROCθ̂(t)
≥ εnD

]
with prob-

ability AROCθ̂(t), and AROCθ̂(t)
2 · I

[
1

1 −AROCθ̂(t)
≥ εnD

]
, with probability 1

−AROCθ̂(t). Hence,(1a) becomes (1 −AROCθ̂(t)) · I
[

1

AROCθ̂(t)
≥ εnD

]
+ AROCθ̂(t)·

I

[
1

1 −AROCθ̂(t)
≥ εnD

]
. C(4) and C(5) ensure that this converges to zero. Thus,

conditional on θ̂,
An√AROCθ̂(t) (1 −AROCθ̂(t))

d−→ N(0, 1) as nD → ∞. Finally,

the asymptotic distribution of
An√AROCθ̂(t) (1 −AROCθ̂(t))

conditional on θ̂ is the

same as that of
An√AROCθ̂(t) (1 −AROCθ̂(t))

conditional on Bn, since it is func-

tionally independent of θ̂ and Bn =
√

nD (g(θ̂) − g(θ)). By C(2) and C(3),

AROCθ̂(t) (1 −AROCθ̂(t))
P−→ AROCθ(t) (1 −AROCθ(t)) as nD̄ → ∞. By Slut-

sky’s Theorem,

⎛
⎜⎜⎜⎝

An√
AROCθ(t) (1 −AROCθ(t))

Bn

⎞
⎟⎟⎟⎠ d−→ BV N

⎛
⎜⎜⎝

⎛
⎜⎜⎝0

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝1 0

0 σ2
b

⎞
⎟⎟⎠

⎞
⎟⎟⎠ as

nD, nD̄ → ∞. The continuous mapping theorem then yields the desired result.

A.2 Non-Parametric Estimation of the AROC We prove that C(2) and C(3)

are satisfied with empirical quantile estimates. Under C(6), by standard empirical

process theory,(Ferguson 1996 [p. 91]), for a fixed stratum Z and conditional on nD̄Z ,

√
nD̄Z

(
Ŝ−1

D̄Z
(t) − S−1

D̄Z
(t)

)
d−→ N(0, σ2

Z) as nD̄Z → ∞, where σ2
Z = t(1−t)

f2

D̄Z
(S−1

D̄Z
(t))

. By
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C(1), nD̄Z

nD̄

P−→ pZD̄
(Z) as nD̄ → ∞. Hence, for all ε, there exists N such that

P [
√

nD̄Z

(
Ŝ−1

D̄Z
(t) − S−1

D̄Z
(t)

)
≤ y] = E[P [

√
nD̄Z

(
Ŝ−1

D̄Z
(t) − S−1

D̄Z
(t)

)
≤ y | nD̄Z ]]

= E[P [
√

nD̄Z

(
Ŝ−1

D̄Z
(t) − S−1

D̄Z
(t)

)
≤ y | nD̄Z ] I [nD̄Z > N ]]

+ E[P [
√

nD̄Z

(
Ŝ−1

D̄Z
(t) − S−1

D̄Z
(t)

)
≤ y | nD̄Z ] I [nD̄Z ≤ N ]]

< (Φ(y/σZ) + ε) · P [nD̄Z > N ]

+ E[P [
√

nD̄Z

(
Ŝ−1

D̄Z
(t) − S−1

D̄Z
(t)

)
≤ y | nD̄Z ] I [nD̄Z ≤ N ]].

Since nD̄Z → ∞, the second term can be made arbitrarily small, and P [nD̄Z > N ] ar-

bitrarily close to 1, by choosing N large enough. Thus,
√

nD̄Z(Ŝ−1
D̄Z

(t)−S−1
D̄Z

(t))
d−→

N(0, σ2
Z), and by Slutsky’s Theorem,

√
nD̄(Ŝ−1

D̄Z
(t) − S−1

D̄Z
(t))

d−→ N(0,
σ2

Z

pZ
D̄

(Z)
) as

nD̄ → ∞. Because observations in different strata are independent, marginal con-

vergence implies joint asymptotic normality, with variance-covariance matrix Σθ =

diag
(

σ2

Z

pZ
D̄

(Z)

)
. We also calculate the form of ∂

∂θ
AROCθ(t). We have

∂

∂θZ

AROCθ(t) =
∂

∂S−1
D̄Z

(t)
EZD

[P [YD > S−1
D̄ZD

(t) | ZD]]

= −EZD
[fDZD

(S−1
D̄ZD

(t)) · ∂

∂S−1
D̄Z

(t)
S−1

D̄ZD
(t)]

= −fDZ

(
S−1

D̄Z
(t)

) · pZD
(Z),

and V (t) reduces to (5).

A.3 We prove consistency of the estimated asymptotic variance of the semi-parametric

AROC estimator. We write the estimate of ∂
∂θj

AROCθ(t) as

̂AROCθ̂+hj(n)(t) −AROCθ+hj(n)(t)

2h(n)
+

AROCθ+hj(n)(t) −AROCθ−hj(n)(t)

2h(n)

−
̂AROCθ̂−hj(n)(t) −AROCθ−hj(n)(t)

2h(n)
. (2 a)
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Consider the first component. We claim that
√

nD( ̂AROCθ̂+hj(n)(t)−AROCθ+hj(n)(t))

d−→ N(0, V (t)). The proof of this fact is very similar to the proof that
√

nD( ̂AROCθ̂(t)−

AROCθ(t)) is asymptotically normal, and hence Op(1), proven in appendix A.1.

Hence,

√
nD( ̂AROCθ̂+hj(n)(t) −AROCθ+hj(n)(t))

2
√

nDh(n)

P−→ 0, since the denominator con-

verges to ∞. A similar argument can be used to prove that the third term in (2a)

converges to 0. Finally,
AROCθ+hj(n)(t) −AROCθ−hj(n)(t)

2h(n)

P−→ ∂

∂θ
AROCθ(t), by

continuity of AROCθ(t) in θ (assumption C(3)). Hence, our estimate of ∂
∂θj

AROCθ(t)

is consistent. Now, with Σ̂θ
P−→ Σθ, ̂AROCθ̂(t)

P−→ AROCθ(t), and consistency of

the derivative estimator, we have consistency of the composite variance estimator.

A.4 We prove consistency of the estimated asymptotic variance of the non-parametric

AROC estimator. We have p̂ZD
(Z)

P−→ pZD
(Z) and p̂ZD̄

(Z)
P−→ pZD̄

(Z) for all

Z = 1, . . . , K, and by standard empirical process theory, (Ferguson 1996 [p. 91])

under C(6), Ŝ−1
D̄Z

(t)
P−→ S−1

D̄Z
(t) as nD̄ → ∞. We write

| f̂DZ(Ŝ−1
D̄Z

(t)) − fDZ(S−1
D̄Z

(t)) | =

| f̂DZ(Ŝ−1
D̄Z

(t)) − fDZ(Ŝ−1
D̄Z

(t)) + fDZ(Ŝ−1
D̄Z

(t)) − fDZ(S−1
D̄Z

(t)) |

≤ | f̂DZ(Ŝ−1
D̄Z

(t)) − fDZ(Ŝ−1
D̄Z

(t)) | + | fDZ(Ŝ−1
D̄Z

(t)) − fDZ(S−1
D̄Z

(t)) | .

The first term converges in probability to zero by the uniform consistency of f̂DZ ,

while the second term converges in probability to zero by the consistency of Ŝ−1
D̄Z

(t),

C(8), and the continuous mapping theorem. Hence, f̂DZ(Ŝ−1
D̄Z

(t))
P−→ fDZ(S−1

D̄Z
(t)) as

nD, nD̄ → ∞. A similar argument shows f̂D̄Z(Ŝ−1
D̄Z

(t)) is also consistent. The variance

estimator is a continuous function of these components, and under C(6) is consistent.
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Figure 1: Fictitious data for a marker Y and binary covariate Z = 0, 1. Under
scenario 1, P [Z = 1|D = 0] = 0.10 and P [Z = 1|D = 1] = 0.50. Under scenario
2, P [Z = 1|D = 0] = P [Z = 1|D = 1] = 0.50. (a) The densities of Y conditional
on Z = 0, conditional on Z = 1, marginally under scenario 1, and marginally under
scenario 2. The solid line represents the case density, and the dashed line the control
density. A common threshold of 2.5 is indicated. (b) The common covariate-specific
ROC curve (solid line), the pooled ROC curve under scenario 1 (dotted line) and the
pooled ROC curve under scenario 2 (dashed line) The performances of the common
threshold are indicated.
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Figure 2: Two examples to illustrate that the ROC curve for the risk score, R =
P [D = 1|Y, Z] is different from the common covariate-specific ROC curve. In both
examples, (Y, Z) is bivariate normal. The ROC curve for R (dotted line) and the
common covariate-specific ROC curve (solid line) are shown. (a) Z is a good classifier
but Y is not, and the two are relatively uncorrelated. (b) Both Y and Z are good
classifiers, and are highly correlated.
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Figure 3: ROC curves for PSA in the PHS data. (a) Age-specific ROC curves,
estimated using ROC-GLM. (b) The age-adjusted ROC curve, estimated using the
semi-parametric estimator (solid line) and ROC-GLM (dashed line). 95% confidence
intervals, based on bootstrapped variance estimates, are overlaid at t = 0.025 and
t = 0.05.
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