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1 Introduction

Health research often gives rise to data that are positive and highly skewed. Moreover, in many

naturally occurring situations, the data follow lognormal distributions. The assumption can and

should be checked: we recommend the use of quantile plots and the Shapiro-Wilk test for normality.

These should be applied to the log-transformed data, as the natural logarithm of lognormal data

will follow a normal distribution.

Note that while the median is commonly regarded as a desirable summary for skewed data,

it is not always a quantity of scientific interest. Hospital administrators, for instance, may be

interested in characterizing mean health care costs in various patient subgroups. Note that the

mean is intimately related to the total, which is a measure that can be used in this example to

describe the cumulative “burden” patients place on the health care system. In general: if the

scientific question involves inference on averages, totals, or rates, it would be sensible to conduct

inference on population means rather than medians.

Numerous methods are available for estimating a single lognormal mean. These have been

discussed and compared in some detail: see, for example, Reference [1], [2] and [3]. Unfortunately,

methods for the two sample situation are not as well understood. While approaches for these

settings are available, detailed comparisons are lacking. Information regarding methods for the

difference of means is particularly difficult to find. Consequently, it is unclear which (if any) of

the methods are most appropriate. Nor is it clear how the performance of these approaches might

vary – potentially important considerations include the sample sizes, the population means, and

the population variances.

In this paper we explore methods for estimating the ratio or difference of two lognormal means.

Our focus is on confidence intervals, though the methods we discuss here could also be used to

conduct hypothesis tests. The methods are: a traditional maximum likelihood approach, a boot-

strap approach, two methods based on the log-likelihood ratio statistic, and a generalized pivotal

approach. We have performed extensive simulation studies for these approaches, and provide the

results here.

The approaches are summarized in Sections 2 and 3; simulation results are discussed in Sections

5 and 6. We close the paper with an illustrative example (Section 8).

2 Interval estimates for the ratio of means

Suppose we have two populations of interest. Let Wi1, . . . ,Wini denote a random sample from

population i (for i = 1, 2), and let Yij = logWij . Assume that Y1j and Y2j are independently and

normally distributed with means µ1 and µ2 and variances σ2
1 and σ2

2. Equivalently, assume Wij has
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a lognormal distribution with mean mi = exp(µi + (1/2)σ2
i ). The ratio of the means, m1/m2, is:

m1/m2 = exp(µ1 +
1
2
σ2

1 − µ2 −
1
2
σ2

2).

The natural logarithm of the ratio, which we will denote ψ, is:

ψ ≡ log(m1/m2) = µ1 +
1
2
− µ2 −

1
2
σ2

2. (1)

Confidence intervals for m1/m2 may be obtained via various methods. We discuss five such

approaches below. Note that for mathematical simplicity, we will focus on obtaining interval

estimates for ψ. Any one of the confidence intervals for ψ can be exponentiated to obtain a

confidence interval for m1/m2.

2.1 The maximum likelihood approach

Let yi1, . . . , yini denote observed values of the random variables Yi1, . . . , Yini . The maximum likeli-

hood (ML) estimates for µ1, µ2, σ
2
1 and σ2

2 are:

µ̂i =
1
ni

ni∑
j=1

yij (2)

σ̂2
i =

1
ni

ni∑
j=1

(yij − µ̂i)2, i = 1, 2, (3)

and by the invariance property of ML estimation, the maximum likelihood estimate for ψ is:

ψ̂ = µ̂1 − µ̂2 +
1
2
(σ̂2

1 − σ̂2
2). (4)

Let τ denote the standard error of ψ̂, such that τ =
√

Var(ψ̂). An estimate of τ is as follows:

τ̂ =
((

∂ψ

∂θ

)′
Î
−1∂ψ

∂θ

)1/2

, (5)

where I denotes the information matrix and Î denotes its estimate:

Î =


n1/σ̂1 0 0 0

0 n1/(2σ̂2
1) 0 0

0 0 n2/σ̂2 0

0 0 0 n2/(2σ̂2
2)

 . (6)

The partial derivative of ψ with respect to θ is:

∂ψ

∂θ
=
(

1 1/2 −1 −1/2
)′
,
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where θ denotes the vector of parameters (µ1, σ
2
1, µ2, σ

2
2).

The distribution of ψ̂ is asymptotically normal. Thus, a 100(1− α)% confidence interval for ψ

can be given by:

[ψ̂ − zα/2τ̂ , ψ̂ + zα/2τ̂ ] (7)

where zα/2 denotes the 100(α/2) percentile of the standard normal distribution.

Note that the maximum likelihood intervals assume that the parameter estimate has a distrib-

ution that is asymptotically normal; convergence to normality is likely to be poor in small sample

settings.

2.2 A bootstrap approach

Zhou and Tu [4] have suggested a bootstrap approach for estimating ψ. It relies on the use of m

bootstrap samples, where m is a “large” fixed number. The approach can be summarized by the

following algorithm:

Compute, from the samples of interest, µ̂1, σ̂
2
1, µ̂2, σ̂

2
2, ψ̂ and τ̂ as defined in (2), (3), (4),

and (5)

(For j = 1 to m)

Generate n1 samples from N(µ̂1, σ̂
2
1) and n2 samples from N(µ̂2, σ̂

2
2)

Calculate, using the bootstrap sample, the estimates for ψ and τ , as defined in (4) and

(5); denote these ψ̂j and τ̂j
Compute the test statistic Sj = (ψ̂j − ψ̂)/τ̂j
(End loop)

Find the 100α and 100(1 − α) percentiles of S1, . . . , Sm; denote these S(l) and S(u),

respectively.

A 100(1− α)% confidence interval for ψ is:

[ψ̂ + S(l)τ̂ , ψ̂ + S(u)τ̂ ]. (8)

Note that unlike some bootstrap approaches, the above does in fact make parametric assump-

tions. Specifically, it assumes that the data are lognormally distributed. The method does not

however explicitly state or assume the nature of the statistic’s distribution; instead, the distribu-

tion is explored computationally via the use of the bootstrap samples.

2.3 The signed log-likelihood ratio approach

Methods based on the log-likelihood ratio statistic are also possible. Wu and colleagues [5] have

proposed a signed log-likelihood method [6, 7] for ψ. The approach requires use of the log-likelihood

3
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function:

`(θ) = −n1 log
√

2π − n2 log
√

2π − n1 log σ1 − n2 log σ2

− 1
2σ2

1

n1∑
j=1

(y1j − µ1)2 −
1

2σ2
2

n2∑
j=1

(y2j − µ2)2. (9)

It can be rewritten as a function of ψ:

`(ψ,λ) = −n1 log
√

2π − n2 log
√

2π − n1 log σ1 − n2 log σ2

− 1
2σ2

1

n1∑
j=1

(y1j − (ψ − 1
2
σ2

1 + µ2 +
1
2
σ2

2))
2 − 1

2σ2
2

n2∑
j=1

(y2j − µ2)2, (10)

where λ denotes the vector of nuisance parameters (µ2, σ1, σ2).

The signed log-likelihood ratio statistic (SLLR), which we will denote r, is:

r(ψ) = sgn(ψ̂ − ψ)(2{`(ψ̂, λ̂)− `(ψ, λ̂ψ)})1/2, (11)

where ψ̂ and λ̂ = (µ̂2, σ̂1, σ̂2) denote the maximum likelihood estimates. The expression λ̂ψ denotes

“constrained” maximum likelihood estimates: they are the ML estimates of the nuisance parameters

at a given value of ψ. These can be obtained computationally via, for instance, the optim function

in the R programming environment [8].

The distribution of the r statistic approximates the standard normal to the first order (see for

instance, Reference [7]). A 100(1 − α)% confidence interval for ψ is thus given by the boundaries

of the following region:

{ψ;−zα/2 ≤ r(ψ) ≤ zα/2}. (12)

2.4 A modified signed log-likelihood ratio approach

Barndorff-Nielssen [6, 7] has proposed a modified form of the r statistic which better approximates

the standard normal. Wu and colleagues [5] have shown that the statistic can be used to create

confidence intervals for ψ.

The modified r statistic depends on a quantity which we will denote u. Let t denote the

vector of statistics (
∑
y1j ,

∑
y2j ,

∑
y2
1j ,
∑
y2
2j), and let ω denote the reordered vector of parameters

(ψ,λ) = (ψ, µ2, σ1, σ2). The statistic u is:

u(ψ) =
| `;t(ψ̂, λ̂)− `;t(ψ, λ̂ψ) `λ;t(ψ, λ̂ψ) |

|`ω;t(ψ̂, λ̂)|
×

(
|jωω(ψ̂, λ̂)|
|jλλ(ψ, λ̂ψ)|

)1/2

,

where `;t = ∂`/∂t, `λ;t = ∂2`/∂λ∂t and `ω;t = ∂2`/∂ω∂t. The matrices jωω and jλλ can be found

4
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by:

jωω = − ∂2`

∂ω2

jλλ = − ∂2`

∂λ2 .

These quantities depend on ψ and λ; jωω(ψ̂, λ̂) and jλλ(ψ, λ̂ψ) denote the values of the matrices

when evaluated at the appropriate estimates.

Note that jωω is conceptually analogous to I (defined in Section 2.1.1). The difference is that

it uses the reordered vector of parameters ω. An estimate for the determinant of jωω is given

by 4n2
1n

2
2/σ̂

4
1σ̂

4
2. An expression for jλλ (for solving the problem at hand) is provided by Wu and

colleagues [5]; a theoretical discussion is provided by Barndorff-Nielssen [7].

The modified signed log-likelihood ratio statistic (MSLLR), which we will denote r∗, is:

r∗(ψ) = r(ψ) +
1

r(ψ)
log
(
u(ψ)
r(ψ)

)
. (13)

The statistic has a distribution that approximates the standard normal to the third order [7]. A

100(1− α)% confidence interval for ψ is thus given by the boundaries of the following region:

{ψ;−zα/2 ≤ r∗(ψ) ≤ zα/2}. (14)

2.5 The generalized pivotal approach

Finally, we examine a fifth approach. This utilizes Weerahandi’s notion of generalized confidence

intervals and generalized pivotal quantities [9]. Weerahandi defines a generalized pivotal (GP) as

a statistic that has a distribution free of unknown parameters and an observed value that does not

depend on nuisance parameters.

Note that the generalized pivotal is allowed to be a function of nuisance parameters, whereas

conventional pivotal quantities can only be a function of the sample and the parameter of interest.

Weerahandi terms the confidence interval resulting from a GP a generalized confidence interval.

To find a 100γ% generalized confidence interval, it is necessary to find a region Cγ of the

pivotal space such that the probability that the pivotal quantity is in Cγ is equal to the confidence

coefficient, γ. The generalized confidence interval is simply the region of the parameter space

corresponding to Cγ .

Krishnamoorthy and Mathew [1] have proposed a generalized confidence interval approach for

ψ. They use the following generalized pivotal quantity:

TR = T1 − T2, (15)

5
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where

Ti = µ̂i −
Zi

Ui/
√
ni − 1

σ̂i√
ni

+
1
2

σ̂2
i

U2
i /(ni − 1)

, i = 1, 2, (16)

and Zi ∼ N(0, 1) and U2
i ∼ χ2

ni−1.

Note that Ti can be rewritten as follows:

Ti = µ̂i −
Ȳi − µi
Si/

√
ni
σ̂2
i /
√
ni +

1
2
σ2
i

S2
i

σ̂2
i , i = 1, 2.

The above utilizes the substitutions Zi =
√
ni(Ȳi − µi)/σi and U2

i = (ni − 1)S2
i /σ

2
i , where Ȳi and

S2
i are defined as:

Ȳi =
1
ni

ni∑
j=1

Yij S2
i =

1
ni − 1

ni∑
j=1

(Yij − Ȳi)2, i = 1, 2.

From the second expression of Ti it is apparent that the “observed value” of TR, the value of TR
given the sample of interest, is ψ. Thus, a 100(1 − α)% two-sided generalized confidence interval

for ψ is simply the 100(α/2) and 100(1− α/2) percentiles of TR.

In order to find the percentiles, it is necessary to understand the distribution of the statistic.

Note that TR depends only on the sample of interest and the normal and Chi-squared random

variables. Consequently, it is possible to characterize the distribution of the pivotal computationally

by randomly generating m other values of TR, where m is some “large” number.

The approach can be summarized by the following algorithm:

(For j = 1 to m)

Generate values for Z1, Z2, U
2
1 , and U2

2

Calculate TR
(End loop)

Order the m values of TR; find the 100α and 100(1− α) percentiles; denote these TR(l)

and TR(u), respectively.

A 100(1− α)% confidence interval for ψ is simply:

[TR(l), TR(u)]. (17)

Note that while this approach assumes that the data are lognormally distributed, it does not

explicitly state or assume the distribution of the pivotal quantity; rather, the distribution is ap-

proximated computationally.
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3 Interval estimates for the difference of means

Ratios are relative comparisons. In some situations, the scientist may be more interested in absolute

differences, such as the arithmetic difference of the means. For instance, given health care data for

a cohort of senior citizens, we may be interested in determining whether the mean cost for elderly

males exceeds the mean cost for females by more than $5,000.

The difference of two lognormal means, which we will denote δ, is:

δ ≡ m1 −m2 = exp(µ1 +
1
2
σ2

1)− exp(µ2 +
1
2
σ2

2). (18)

We discuss below methods for constructing confidence intervals for δ.

3.1 The maximum likelihood approach

The maximum likelihood estimate for δ is:

δ̂ = exp(µ̂1 +
1
2
σ̂2

1)− exp(µ̂2 +
1
2
σ̂2

2), (19)

where µ̂1, µ̂2, σ̂
2
1, and σ̂2

2 are as defined in (2) and (3).

Let υ denote the standard error of δ̂ , such that υ =
√

Var(δ̂). An estimate for υ is:

υ̂ =
(
h(θ̂)′Î

−1
h(θ̂)

)1/2
, (20)

where θ̂ denotes the MLE of θ and Î is as defined in (6). The function h is defined as the partial

derivative of δ with respect to θ:

h(θ) =
∂δ

∂θ
=
(
m1

1
2m1 −m2 −1

2m2

)′
, (21)

where θ is the vector of parameters (µ1, σ
2
1, µ2, σ

2
2). Note that m1 and m2 depend on θ; h(θ̂)

denotes the value of h evaluated at θ̂.

A 100(1− α)% confidence interval for δ can be given by:

[δ̂ − zα/2υ̂, δ̂ + zα/2υ̂]. (22)

3.2 A bootstrap approach

A bootstrap approach for δ is also possible. It is entirely analagous to the approach described in

Section 2.2, with δ̂ (19) used in place of ψ̂, and υ̂ (20) used in place of τ̂ .

7
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3.3 The signed log-likelihood ratio approach

Wu and colleagues’ SLLR approach [5] for estimating ψ can be modified to obtain confidence

intervals for δ; the method is entirely analogous to that reviewed in Section 2.3. Note that the

log-likelihood function can be rewritten as a function of δ:

`(δ,λ) = − n1 log
√

2π − n2 log
√

2π − n1 log σ1 − n2 log σ2

− 1
2σ2

1

n1∑
j=1

(y1j − (log{δ + exp(µ2 +
1
2
σ2

2)} −
1
2
σ2

1))
2

− 1
2σ2

2

n2∑
j=1

(y2j − µ2)2, (23)

where λ is the vector of nuisance parameters (µ2, σ1, σ2).

3.4 The modified signed log-likelihood approach

The MSLLR approach for ψ can be modified to obtain confidence intervals for δ. Unfortunately,

the mathematical expressions for the quantities needed for this method are quite complex. We

have evaluated the equations via the use of mathematical software, but found that the expressions

involve a very large number of irreducible terms.

3.5 The generalized pivotal approach

Krishnamoorthy and Mathew [1] have proposed a generalized pivotal approach for δ. They use the

following generalized pivotal:

TD = exp(T1)− exp(T2), (24)

where T1 and T2 are as defined in (16). The method is entirely identical to the approach described

in Section 2.5, with TD used in place of TR.

4 Simulation methods

We conducted simulation studies for each of the methods described above (excluding the MSLLR

approach for δ). For our simulations, we used 24 unique sets of parameter values. These include

situations of varying ni, µi, and σi. A complete list is provided in Table 1. The table also includes,

for reference, the skewness coefficient (γi) of each of the lognormal distributions. Note that the

skewness of a lognormal distribution depends only on σ2
i (the variance of the corresponding normal

distribution).

For each simulation design, we randomly generated 10,000 sets of data. From each set of samples

we then constructed a 95% confidence interval for the parameter of interest (the ratio or difference

8

http://biostats.bepress.com/uwbiostat/paper269



of means), using each of the methods above. For the bootstrap methods we used a bootstrap

sample size of m = 500 and for the generalized pivotal computations we used m = 10, 000 pivotal

quantities.

All computer simulations were carried out in the R statistical programming environment [8].

Note that developing computational methods for the log-likelihood ratio methods is a non-trivial

task. First (as discussed above), the methods require a maximization function in order to obtain

the constrained ML estimates. We used the optim function in R. Secondly, some sort of algorithm

is needed to find the appropriate bounds for ψ. For this task, we used the uniroot function in R.

These approaches worked quite well.

Computation speed varied. The simulations for the likelihood ratio and bootstrap methods were

particularly slow, requiring roughly two hours for each set. In comparison, our hardware required

roughly ten minutes to produce 10,000 generalized confidence intervals and only one minute to

produce 10,000 ML intervals.

5 Simulation results for the ratio of means

Results from the simulations for the ratio of means are presented in Table 2. Coverage, presented

in the third column, is simply the percent of confidence intervals that included the true value.

Coverage frequencies within half a percentage point of the nominal value (95%) are marked with

parentheses.

The fifth column represents what one might call left error: the percent of time the confidence

interval was to the left of m1/m2. The sixth column indicates right error: the percent of time the

confidence interval was to the right of m1/m2. Note that left error plus right error is equal to the

coverage error (100 minus the coverage).

Relative bias, presented in the last column, is simply a comparison of the error frequencies, and

is defined as follows:

relative bias =
(right error)− (left error)
(right error) + (left error)

.

Note that this quantity is positive when the right error exceeds left error, and is negative when left

error exceeds right error. The quantity takes on a value of 0 if left error equals right error; it is

undefined when the coverage is equal to 100.

Our primary interest is the coverage frequencies. In this regard, the MSLLR and GP approaches

are clear winners. Both resulted in excellent coverage frequencies, though the MSLLR approach

appears to be more reliably accurate than the GP. In 12 simulations for the MSLLR method,

there was only one setting in which the observed coverage was further than half a percentage

point away from the nominal value (95%). In 12 simulations for the GP method, there were

9
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three settings in which the coverage error exceeded half a percentage point. These occured in

the small sample settings, or settings in which there were fairly small samples from highly skewed

distributions (Designs 1a, 2e, and 2g). Further simulations, not reported here, appear to confirm

these observations.

Coverage frequencies for the maximum likelihood, bootstrap, and SLLR approaches were not

satisfactory. The ML and bootstrap approaches resulted in fairly poor coverage, particularly in

the small sample settings. Further simulations, not reported here, suggest that the coverage is

yet worse when the sample originates from a distribution that is fairly highly skewed. The SLLR

approach resulted in fairly good coverage, but the frequencies were noticeably worse in the small

sample settings.

Neither the GP or MSLLR approach resulted in high bias. The GP approach appears to be

slightly more biased than the MSLLR. The ML and bootstrap methods revealed strong left bias

(bias toward the left) in Designs 1d and 1e, and strong right bias in the variations of Design 2. The

SLLR approach resulted in similar patterns of bias, though the bias in each of those settings was

never as large as that allowed by the ML or bootstrap methods. The implication is that one sided

intervals obtained via the GP and MSLLR methods should result in accurate coverage, whereas

one sided ML, bootstrap, and SLLR intervals may result in over coverage or under coverage.

6 Simulation results for the difference of means

Results from the simulations for δ are presented in Table 4. The results are fairly similar to those

presented and discussed in Section 5; results for the SLLR and GP methods are nearly identical to

those presented in the previous section.

Of the four methods examined in our simulation studies, the GP method clearly provided the

most accurate coverage frequencies. In 9 of 12 simulations for the GP approach, the coverage

error was less than half a percentage point. The ML and bootstrap approaches both revealed

extremely poor coverage frequencies. The SLLR approach resulted in fairly accurate coverage, but

the frequencies were noticeably worse in the small sample settings.

7 Discussion

For interval estimation of the ratio of means, we encourage use of the MSLLR approach. It results in

highly accurate coverage frequencies in nearly all settings. For interval estimation for the difference

of means, we recommend use of the generalized pivotal approach. This approach performs extremely

well in most setting, though does appear to result in slightly worse coverage frequencies in small

sample settings and/or settings when there are small samples from highly skewed distributions. If

10
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then, inference is only needed on relative differences, we recommend using the MSLLR approach

to construct a confidence interval for the ratio of means (rather than the GP approach for the

difference).

In this article, we have provided what we believe to be a fairly thorough and satisfactory com-

parison of the methods available for estimating two lognormal means. Nevertheless, we do not

discourage further research. An important issue is that the methods as given above are inappro-

priate for data that include zero values. One possibility is to model the data as a mixture of a

binomial and lognormal distribution (see, e.g., [4]). Using this approach, we have extended the

methods discussed in this paper for data that also include zeros. The results of this exploration

have been very encouraging.

Finally, we emphasize that statistical models should always be checked, whenever possible.

Parametric approaches are sometimes criticized because they do not perform well when assump-

tions are violated. A recently published article [12] for instance, includes text that dissuades the

use of lognormal approaches (it examines methods for estimating a single lognormal mean). The

authors report the results of a series of simulation studies: these indicate that methods that as-

sume lognormal data do not always perform well when the data in fact originate from a gamma

distribution.

Unfortunately, the authors of that text fail to mention that the parametric methods they ex-

amined performed worst precisely in the settings in which the distribution was highly different

from a lognormal curve. That is, they performed worst in situations in which model checks (such

as the quantile plot and Shapiro-Wilk test) were likely to reveal violations of the distributional

assumption.

It is of our opinion that robustness is only really an issue in situations when the scientist might

incorrectly fail to reject the model assumption. Our own studies indicate that the MSLLR and

GP approaches are both fairly robust in those sorts of settings. Details of this exploration can be

obtained from the authors.

8 Illustrative example

We conclude our discussion by applying the techniques to a real example. We examine medical

costs for patients with type I diabetes and patients being treated for diabetic ketoacidosis (DKA).

The data are similar (but not identical) to those used in a study by Javor and colleagues [11]. For

the present discussion, we are interested in determining whether the mean cost in the first group

is equal to the mean cost in the second group.

First, we examined the data to check whether the data follow lognormal distributions. Quantile

plots of the log-transformed data do not reveal any serious violations (Figure 1): the points fall

11
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fairly close to the quantile lines. We also performed a Shapiro-Wilk test for each of the two groups

(for the log-transformed data). The tests do not provide evidence against lognormality: the p-value

for the first group is 0.294; the p-value for the second group is 0.290. The lognormal model then,

appears to be appropriate.

The mean cost in the first group is $18,850.21; the mean cost in the second group is $18,583.82.

Interval estimates for the ratios and differences of the means are provided in Table 6. Note that

these are presented only for purposes of comparison. We do not encourage using more than one

approach in practice. Each of the intervals for the ratio of means include 1, and each of the intervals

for the difference of means include 0. It appears then that the mean health costs are in fact equal.
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Table 1: Sample sizes and parameter values used in the simulation studies.

design n1 n2 µ1 µ2 σ2
1 σ2

2 γ1 γ2

1a 5 5 0 0 3 3 96.485 96.485

1b 25 25

1c 50 50

1d 5 25

1e 25 50

2a 5 5 0.75 0 0.5 2 2.939 23.732

2b 25 25

2c 50 50

2d 5 25

2e 25 5

2f 25 50

2g 50 25
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Table 2: Results from the simulations for the ratio of means. Each simulation utilizes 10,000 95%

confidence intervals.

design method coverage left error right error relative bias

1a ML 92.82 3.53 3.65 0.02

bootstrap 97.79 1.05 1.16 0.05

SLLR 91.32 4.23 4.45 0.03

MSLLR 94.24 2.81 2.95 0.02

GP 95.55 2.27 2.18 -0.02

1b ML 95.54 2.12 2.34 0.05

bootstrap 97.90 0.95 1.15 0.10

SLLR ( 94.73 ) 2.60 2.67 0.01

MSLLR ( 95.15 ) 2.34 2.51 0.04

GP ( 95.04 ) 2.36 2.60 0.05

1c ML ( 95.04 ) 2.35 2.61 0.05

bootstrap 96.59 1.65 1.76 0.03

SLLR ( 94.68 ) 2.53 2.79 0.05

MSLLR ( 94.59 ) 2.64 2.77 0.02

GP ( 94.50 ) 2.67 2.83 0.03

1d ML 87.18 12.39 0.43 -0.93

bootstrap 88.06 11.78 0.16 -0.97

SLLR 91.57 6.65 1.78 -0.58

MSLLR ( 94.66 ) 3.04 2.30 -0.14

GP ( 94.77 ) 3.14 2.09 -0.20

1e ML ( 94.96 ) 3.84 1.20 -0.52

bootstrap 95.55 4.20 0.25 -0.89

SLLR ( 94.73 ) 3.01 2.26 -0.14

MSLLR ( 95.02 ) 2.49 2.49 0.00

GP ( 94.97 ) 2.66 2.37 -0.06
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Table 3: (continued)

design method coverage left error right error relative bias

2a ML 85.72 0.96 13.32 0.87

bootstrap 88.40 0.14 11.46 0.98

SLLR 91.13 2.42 6.45 0.45

MSLLR ( 94.78 ) 2.31 2.91 0.11

GP ( 95.21 ) 1.74 3.05 0.27

2b ML 93.57 0.68 5.75 0.79

bootstrap 91.97 0.04 7.99 0.99

SLLR ( 94.62 ) 2.08 3.30 0.23

MSLLR ( 95.15 ) 2.39 2.46 0.01

GP ( 94.82 ) 2.31 2.87 0.11

2c ML 93.69 1.05 5.26 0.67

bootstrap 92.37 0.29 7.34 0.92

SLLR ( 94.66 ) 2.08 3.26 0.22

MSLLR ( 94.87 ) 2.29 2.84 0.11

GP ( 94.66 ) 2.28 3.06 0.15

2d ML 93.05 3.09 3.86 0.11

bootstrap 95.85 0.88 3.54 0.60

SLLR 93.51 3.51 2.98 -0.08

MSLLR ( 94.85 ) 2.83 2.32 -0.10

GP ( 95.30 ) 2.02 2.68 0.14

2e ML 82.35 0.54 17.11 0.94

bootstrap 80.44 0.04 19.52 1.00

SLLR 90.90 2.20 6.90 0.52

MSLLR ( 94.75 ) 2.55 2.70 0.03

GP 94.09 2.88 3.03 0.03

2f ML ( 94.74 ) 1.11 4.15 0.58

bootstrap 94.39 0.42 5.19 0.85

SLLR ( 94.96 ) 2.06 2.98 0.18

MSLLR ( 95.30 ) 2.16 2.54 0.08

GP ( 95.11 ) 2.07 2.82 0.15

2g ML 91.95 0.66 7.39 0.84

bootstrap 89.06 0.04 10.90 0.99

SLLR 94.10 2.11 3.79 0.28

MSLLR ( 94.61 ) 2.47 2.92 0.08

GP 94.29 2.40 3.31 0.16

16

http://biostats.bepress.com/uwbiostat/paper269



Table 4: Results from the simulations for the difference of means. Each simulation utilizes 10,000

95% confidence intervals.

design method coverage left error right error relative bias

1a ML 99.01 0.43 0.56 0.13

bootstrap 99.68 0.12 0.20 0.25

SLLR 91.32 4.23 4.45 0.03

GP 95.56 2.26 2.18 -0.02

1b ML 99.93 0.03 0.04 0.14

bootstrap 100.00 0.00 0.00 −
SLLR ( 94.73 ) 2.60 2.67 0.01

GP ( 95.05 ) 2.37 2.58 0.04

1c ML 99.92 0.04 0.04 0.00

bootstrap 100.00 0.00 0.00 −
SLLR ( 94.68 ) 2.53 2.79 0.05

GP ( 94.50 ) 2.67 2.83 0.03

1d ML 98.66 1.26 0.08 -0.88

bootstrap 99.93 0.06 0.01 -0.71

SLLR 91.57 6.65 1.78 -0.58

GP ( 94.77 ) 3.14 2.09 -0.2

1e ML 99.67 0.31 0.02 -0.88

bootstrap 100.00 0.00 0.00 −
SLLR ( 94.73 ) 3.01 2.26 -0.14

GP ( 94.98 ) 2.65 2.37 -0.06
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Table 5: (continued)

design method coverage left error right error relative bias

2a ML 87.15 0.15 12.70 0.98

bootstrap 92.34 0.04 7.62 0.99

SLLR 91.13 2.42 6.45 0.45

GP ( 95.19 ) 1.75 3.06 0.27

2b ML 92.27 0.00 7.73 1.00

bootstrap 85.82 0.00 14.18 1.00

SLLR ( 94.62 ) 2.08 3.30 0.23

GP ( 94.85 ) 2.31 2.84 0.10

2c ML 92.70 0.03 7.27 0.99

bootstrap 87.59 0.00 12.41 1.00

SLLR ( 94.66 ) 2.08 3.26 0.22

GP ( 94.66 ) 2.28 3.06 0.15

2d ML 96.98 0.09 2.93 0.94

bootstrap 97.05 0.00 2.95 1.00

SLLR 93.51 3.51 2.98 -0.08

GP ( 95.30 ) 2.02 2.68 0.14

2e ML 75.96 0.06 23.98 1.00

bootstrap 68.59 0.01 31.40 1.00

SLLR 90.89 2.21 6.90 0.51

GP 94.10 2.88 3.02 0.02

2f ML 95.13 0.07 4.80 0.97

bootstrap 93.60 0.00 6.40 1.00

SLLR ( 94.96 ) 2.06 2.98 0.18

GP ( 95.09 ) 2.07 2.84 0.16

2g ML 88.90 0.00 11.10 1.00

bootstrap 80.00 0.00 20.00 1.00

SLLR 94.10 2.11 3.79 0.28

GP 94.28 2.41 3.31 0.16
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Figure 1: Normal quantile plots for the log-transformed medical data.

Table 6: 95% confidence intervals for the ratio and difference of the mean medical costs.

method ratio difference

ML (0.53, 1.69) (-14101.80, 11686.07)

bootstrap (0.58, 1.70) (-10692.69, 13527.26)

SLLR (0.51, 1.67) (-18429.75, 11360.78)

MSLLR (0.50, 1.67) −−
GP (0.53, 1.58) (-22637.45, 10937.92)
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