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1. Introduction

Alterations in gene sequences, expression levels and protein functions can be used as molecular

markers to signal the onset or progression of disease. With the rapid advances in genomic and

proteomic technologies, the focus on biomarker based disease detection and risk assessment has now

shifted from a single biomarker to a panel of biomarkers (Srivastava & Gopal-Srivastava, 2002). For

example, a 70-gene prognosis profile has been demonstrated to be a stronger prognostic factor for

breast cancer than the standard clinical and histological information (Van de Vijver, He, Van’t Veer

and etal. 2002). As another example, aberrant methylation pattern of 14 tumor suppressor genes

has been proposed to separate different forms of hematological malignancies (Takahashi etal., 2004).

Indeed, compared with a single clinical or genetic marker alone, a panel of multiple biomarkers may

contain a higher level of discriminatory information, particularly across large heterogeneous patient

populations and for complex multistage diseases such as cancer.

Once a molecular profile or a panel of markers for disease is identified, such information can

potentially be used as diagnostic tests for diagnosing disease, monitoring the response to therapy

and the early detection of disease. But prior to the use of these tests in clinical practice, the actual

prognostic values of the markers need to be fully established. Statistical measures have long been

available to evaluate the accuracy of a continuous marker M under the traditional diagnostic setting

where M is measured concurrently with the binary disease status D. Commonly used measures

include sensitivity, specificity and the receiver operating characteristic (ROC) curves (McNeil and

Hanley 1984; Pepe 2003; Zhou, Obuchowski and McClish 2002) motived as follows. Suppose for any

given threshold value c, a subject is classified as test positive if M > c and test negative if M ≤ c.

The accuracy of this classification rule can be characterized by a pair of parameters: sensitivity or

the “true positive rate” (TPR), and 1-specificity or the “false positive rate” (FPR), with

TPR(c) = P [Mi > c|Di = 1], FPR(c) = P [Mi > c|Di = 0].

An ROC curve displays the full spectrum of values for TPR and FPR, by considering all possible
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test threshold values c. The higher the ROC curve, the better capacity of a test for distinguishing

diseased from non-diseased population. The area under an ROC curve (AUC), ranges from .5 to

1, has an interpretation as the probability that the test result from a diseased subject exceeds that

from a non-diseased subject, were the two subjects chosen randomly. It is recognized that ROC

curves are invariant with respect to the measurement scale. This is particularly useful in a study

for novel genetic markers where there is a great interest to demonstrate the incremental prognostic

value of the markers over routine clinical information.

In prospective cohort studies the disease status of a subject often changes during the course of

the study and there is often a time lag between when the marker is measured and the occurences

of disease. To evaluate the accuracy of such marker, one needs to take the time lag into account

since the accuracy may be higher when the markers are measured closer to the onset of disease. To

extend the notion of diagnostic accuracy to incorporate the time domain, Heagerty et al (2000),

Cai et al (2003) proposed various definitions of time dependent sensitivity, specificity and ROC

curve. Among those, a more straightforward definition is the cumulative incidence based ROC

curves where at any given time t, the goal is to discriminate between subjects who will by time

t from those will not. Specifically, let T denote the failure time and M denote the marker value

measured at baseline. Heagerty, Lumley and Pepe (2000) defines cumulative incidence based ROC

curves ROCC
t (·) based on the following time dependent TPR and FPR functions:

TPRC
t (c) = P [M > c|D(t) = 1], FPRC

t (c) = P [M > c|D(t) = 0].

where D(t) = I(T ≤ t) . Using this definition an individual can be a control early in time when

t < T but contributes as a case when t ≥ T . Therefore, the outcome classification is ’dynamic’.

Incorporation of survival time data into ROC analysis has recently been discussed by a number

of authors (Heagerty et al. 2000; Heagerty and Zheng 2005). A non-parametric method that

characterizes the accuracy using disease prevalence for the case definition, Di(t) = 1(Ti ≤ t), is

given by Heagerty et al. (2000).
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When there are multiple markers available to assist in prediction, it is of clinical interest to

construct an optimal prognostic index based on available marker information. In the standard

binary setting, various procedures have been proposed to construct composite scores that offer

optimal ROC curves or AUCs (Baker, 2000; Pepe and Thompson, 2000; McIntosh and Pepe, 2002;

Pepe, Cai and Zhang, 2005). For failure time outcomes, the task of combining a set of markers in a

way that best discriminates between the two populations of interest remains to be solved. Methods

developed for the binary setting are not directly applicable because the disease status at a given

time t is not always ascertainable due to censoring. The most frequently used approach is to fit a

Cox proportional hazards model (Cox, 1972) and use the risk score for prediction. However, it has

not been shown whether the risk score obtained under the Cox model offers optimal accuracy in

discriminating D(t) = 1 from D(t) = 0 over time. In addition, the proportional hazards assumption

may not hold in practice. In this paper, we develop time specific composite scores under a flexible

time varying logistic regression model and demonstrate that the resulting score maximizes the

time specific ROC curves when the model assumption holds. We show how the existing statistical

methods on ROC analysis can be adapted to provide a quantitative basis for this evaluation. In

particular, we focus on statistical rules for combining markers that achieve optimality criterion,

and that accommodate time-varying marker effects.

The paper is organized as follows. In section 2 we consider modified binary regression procedures

to develop optimal prognostic scores. The performances of classification rules from the proposed

procedures are then compared with those from several commonly used failure time regression pro-

cedures via numerical studies. Results are reported in Section 3. We use a gene-expression profile

study as an example to illustrate our methods. We close in section 4 with recommendation for

practice and plans for future development.
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2. Linear combination of markers

We consider linearly combining a panel of markers M = [M1, ..., MP ]T as

sβ(M) =
P∑

p=1

βpMp,

Note that Mp can represent any transformation of the raw marker value, thus the composite score

s(M), although taking a linear form, can be quite flexible. Other approach for combining multiple

resource of information for classification exist for binary disease outcome. For example, one may

use logic rules that focus on and-or combination of markers (Etzioni, Kooperberg, Pepe and Smith,

2003). In this manuscript we restrict our attention to the class of linear predictors.

We first address the question of under what circumstances sβ(M) gives rules that best discrim-

inate between those with D(t) = 1 from those with D(t) = 0. To this end, we define the disease

status at time t as D(t) = I(T ≤ t) and the log-odds function at t as

<C(t,M) = logitP{D(t) = 1 | M} = logitP{D(t) = 1} + log
P{M | D(t) = 1}
P{M | D(t) = 0} .

Thus <C(t,M) is a monotone function of the likelihood ratio P (M | T ≤ t)/P (M | T > t). In the

binary setting, analogous to the context of statistical hypothesis testing, It can be argued with the

Neyman-Pearson lemma (Neyman and Pearson, 1933) that the likelihood ratio function of the P

markers, LR(Mi) = P (Mi | Di = 1)/P (Mi | Di = 0) is optimal. For survival outcome, at any

fixed t, using the same argument as in (McIntosh and Pepe 2002), we can show that <C(t,M) is

the optimal combination of M in distinguishing D(t) = 1 from D(t) = 0. That is, the ROCt(u)

for <C(t,M) is maximized at every false positive rate u. Therefore if we assume that <C(t,M)

is characterized by a linear function α + βββTM, then the rules based sβ(M) = βββTM > c, or

sβ(M) = g(βββTM) > c, with g denotes an arbitrary monotone increasing function, are optimal. We

thus translate the problem of combining markers into seeking estimators that are consistent for

model (2), since under that model sβ(Mi, t) gives the best predictive accuracy at time t. We give

detailed estimating procedures below.

4

http://biostats.bepress.com/uwbiostat/paper250



2.1 Modeling the time-varying effects of markers

Since the predictive accuracy of a marker may be higher when it is measured closer to the time of

disease occurrence, we consider the following time-varying logistic regression model for the event

time:

logitP (T ≤ t | M) = α(t) + βββ(t)TM.

By permitting the coefficients to be time-dependent, the model may be a more realistic represen-

tation of the relationship between biomarker process and the time to an important clinical event.

If the survival status is observable at t for every subject, then we can apply a standard logistic

regression to directly estimate βββ based on the disease status indicator D(t). However, with censored

survival data, the disease status of those subjects who are censored before t is unknown. Assum-

ing a random censorship, we propose an estimator for βββ(t) by adapting the idea of the inverse

probability weighting (IPW) approach (Horvitz and Thompson 1951).

Suppose for the ith subject, we observe Mi, Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci), where C

is the censoring time. To estimate α(t) and βββ(t) in the presence of censoring, we consider the

following reweighted logistic score equation:

UIPW {α(t), βββ(t)} =
n∑

i

Vi(t)
π̂i(t)

(
1

Mi

)
[Di(t) − µi{α(t), βββ(t)}]

where Vi(t) = 0 if Xi < t and δi = 0, and Vi(t) = 1 otherwise, π̂i(t) is a consistent estimator of the

selection probability

πi(t) = P{Vi(t) = 1 | Mi} =
{

P (Ci > Xi | Mi, Xi) if Xi ≤ t, δi = 1
P (Ci > t | Mi) if Xi > t

,

µi{α(t), βββ(t)} = P{Di(t) = 1 | Mi} = F{α(t) + βββ(t)T} and F (x) = exp(x)/{1 + exp(x)}. The

proposed estimator thus uses only those cases with Vi(t) = 1 for the logistic regression model, but

it weighs each observation by the inverse of the selection probability πi(t). In practice, we estimate

πi using the information from the entire sample. In the simplest case where censoring distribution
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does not depend on M, P (C > t | M) = P (C > t) can be estimated using a Kaplan-Meier estimator

based on {Xi, 1− δi}. When the censoring distribution depends on M, we can estimate covariate-

specific censoring probabilities fitting a proportional hazards model to the data {Xi, 1 − δi,Mi}.

In both cases, the estimator for P (C > t | M) is consistent uniformly in M. Under such uniform

consistency assumption, one can easily establish the consistency for the estimated βββ(t) by observing

that

E

{
Vi(t)
πi(t)

∣∣∣∣ Ti,Mi

}
= E

{
I(Xi ≥ t)

P (Ci > t | Mi)
+

I(Xi ≤ t)δi

P (Ci > Xi | Xi,Mi)

∣∣∣∣ Ti,Mi

}
= 1

The weighted logistic estimator has several advantages. The robustness of the time varying

coefficient model makes it broadly applicable in practice. The estimator is easy to implement using

standard software and is theoretical sound. When the model holds, the resulting composite score

is the optimal score. Using the same argument as given in Eguchi and Copas (2002) for the binary

setting, it is not hard to show that when the logistic model is approximately correct, the estimated

composite score minimizes a weighted area between the ROCC
t (·) of the linear score and of the true

optimal score. Thus even if the model is mis-specified, the resulting score remains optimal in a

certain sense.

2.2 Modeling the constant effects of markers

When the effects of markers on T are constant over time, or when there is an interest to obtain a

single classification rule to predict the overall risk, one may wish to instead consider a proportional

odds model:

logitP (T ≤ t | M) = α(t) + βββT (t)M = α(t) + βββTM. (1)

Under this model, the estimator from the time-varying logistic model at any given time t is a

consistent estimator of βββ. However, these estimators do not account for the fact that βββ(t) = βββ and

thus may not be efficient. To estimate βββ under this model, non-parametric maximum likelihood

methods and generalized estimating equation based methods has been proposed (Cheng, Wei and

6

http://biostats.bepress.com/uwbiostat/paper250



Ying, 1995, 1997; Murphy, Rossini and Van der Vaart, 1997). However these methods are either

computationally intensive or not efficient. We propose an alternative approach that is relatively

simple yet efficient. Our proposal is to extend the weighted logistic score estimator proposed by

Newey (2004) for non-censored data to the setting where T is subject to censoring.

Specifically, we partition the time axis into J nonoverlapping intervals with cut-off points

t1, ..., tj, ..., tJ−1 and let Dij = I(tj−1 ≤ Ti < tj), θθθ = (α1 = α(t1), ..., αJ−1 = α(tJ−1), βββT )T ,

α0 = −∞ and αJ = ∞. Newey and Smith (2004) showed that the optimal estimating equation for

θθθ is
J−1∑

j=1

n∑

i=1

∂ log ∇µij(θθθ)

∇µi,j+1(θθθ)

∂θθθ
{Di(tj) − µi(αj , θθθ)} = 0. (2)

where µi(αj , βββ) = F{αj + βββTMi} and ∇µij(θθθ) = E{Dij | Mi, θθθ} = F{αj + βββTMi} − F{αj−1 +

βββTMi}. Here the estimator is optimal in the sense that as J → ∞, its asymptotic variance

approaches the semiparametric bound. To account for censoring, we modify 2 and consider the

following inverse probability reweighted estimating equation:

J−1∑

j=1

n∑

i=1

Vi(tj)
π̂i(tj)

∂ log ∇µij(θθθ)

∇µi,j+1(θθθ)

∂θθθ
{Di(tj) − µi(αj , βββ)} = 0. (3)

To obtain estimates for θθθ in practice, one may solve a set of J − 1 + P estimating equations

simultaneously. For easy implementation, we adapt a two-step estimating procedure to obtain

efficient estimates for θθθ. We first fit separate logistic models at each cut-off points and construct

an initial estimator for θθθ, θ̃θθ. Then we solve (3) with weights ∂ log ∇µij(θθθ)

∇µi,j+1(θθθ)
/∂θθθ evaluated at θ̃θθ.

The resulting two-step estimators are consistent and asymptotically normal, and can be shown to

have equivalent efficiency as the one associated with equation (3). We give the detailed estimating

procedure in Appendix.

In practice, a linear composite score can be generated by any regression model for censored

event time. For example Cox proportional hazards model could be a more common choice (Fan,

Au, Heagerty etal., 2002). We focus on proportional odds model here because of its theoretical
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merits. Similar to its counterpart in the binary setting, it yields optimal linear function when the

log-odds function is indeed linear. When the true log-odds function is unknown, it may still give

good discriminant function in most of the situation as it approximately minimizes the weighted

area between the ROC curve for linear function and for linear score. In contrast, the optimality

properties for other regression models are less clear theoretically, and their performance in practice

should be compared to the models that is known to achieve optimality criterion. We carry out a

number of numerical studies to evaluate the performance of the proposed approaches for optimal

marker combination.

3. Simulation Study

In this section, we evaluate the performance of the composite scores obtained from the proposed

procedures under the time varying logistic model and the proportional odds model. We also compare

these scores to the scores derived from fitting two commonly used survival models: 1) the Cox

proportional hazards model with a maximum partial likelihood estimator; and 2) the Accelerated

Failure Time (AFT) model (Tsiatis, 1990) with a Gehan type estimator.

For all the simulation studies presented below, the censoring time was generated from a normal

with mean µc and unit variance with where µc was chosen to induce about about 30% of censoring.

The censoring distribution was estimated using the Kaplan-Meier estimator. To estimate βββ in the

proportional odds model, the time axis was divided into 10 non-overlapping intervals. For each

simulated dataset, we estimate the regression coefficient βββ under all four models and evaluate the

accuracy of the composite score, ŝ(M) = β̂ββ
T

M, in distinguishing D(t) = 1 from D(t) = 0 for three

time points, t = t1, t2 and t3, chosen as the 25%, 50% and 75% percentile of X . The accuracy

measure we use is the time specific AUC, AUCt =
∫ 1
0 ROCC

t (u)du.

Time Varying Logistic Model We first investigated the performance of various methods under

the time varying logistic regression model. We generate a panel of five marker M = (M1, . . . , M5)T

8
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from the exponentially transformed multivariate normal with zero mean, unit variance and corre-

lation 0.3. The failure time T is generated from

T = 10 exp

{
ε

c0 +
∑5

p cpMp

}

with P (ε ≤ x) = ex

1+ex . Under this configuration, T follows a time-varying logistic model:

logitP{D(t) = 1 | M} = c0 log(t/10) +
5∑

p=1

cp log(t/10)Mp.

In Table 1, we present the average AUCt of the scores derived from all four models for t = t1, t2

and t3 at sample size of n = 200 and n = 1000. For comparison, shown also are the AUCt’s for

the optimal score using the likelihood ratio function of M. Results suggest that across all the time

points, the combined scores based on our weighted logistic regression yield highest AUC values,

on average the same as these from the true model. In contrast, the scores obtained from other

models have lower accuracy. For example, when n = 200 at t1, the average AUCs are .82 for

the logistic estimator, .73 under the Cox model, 0.65 under the AFT model and 0.58 under the

proportional odds model. This is consistent with our theoretical speculation that the time varying

logistic estimator, by modeling directly the likelihood ratio function, is advantageous over the other

regression models.

Proportional Odds Model We now assess the robustness and the relative efficiency of the

four procedures under the proportional odds model. We generate the first two markers from

generated from a (50%, 50%) mixture of M1 ∼ Uniform(0, 2), M2 ∼ Uniform(0, 2) + 5M2
1 , and

M1 ∼ Weibull(1, 0.5), M2 ∼ Weibull(1, 0.5)+5M2
1 ; and the remaining three markers are generated

independently from standard normal. The survival time was generated from a proportional odds

model

h(T ) = −0.8M1 − 0.2M2 + ε,

9
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with P (ε ≤ x) = ex

1+ex and h−1(x) = 10 {2Φ (x/5) − 1}3 +10. Thus, M3, M4 and M5 have no effect

on the survival time. Since the marker effects are constant over time and the risk ratio function is

linear, we expect the proportional odds model to perform well as it is the right model under such

an assumption. The weighted logistic regression still offers consistent estimates, However it can be

less efficient. Our results shown in Table 2 are consistent with what we expect. Although both

consistent, the estimator of βββ from the proportional odds model is indeed more efficient than the

estimator from the time-specific logistic regression model. For example, at sample size of n = 1000,

the efficiency of the time-specific logistic estimator for β1 ranges from 44% to 62% relative to the

estimator from the proportional odds model.

We then assessed the performance of the four methods in terms of the area under the ROC

curves. Table 3 shows the estimated AUCs (top rows) and the corresponding standard errors

(bottom rows). In contrast to the time-specific logistic model and the proportional odds model,

we found that the Cox model and the additive failure time model were biased when estimating the

effects of markers (results not shown). Surprisingly, it appears that the bias in these models does

not translate into meaningful reductions in the performance of the corresponding linear predictors,

as the estimated AUC are essentially the same across almost all situations for the logistic, the

proportional odds and the Cox model. The performance of AFT model again is slightly worse.

In this setting we find the proportional odds model is still advantageous compared to the other

models, as the resulting estimates are considerably less variable, as is evident from the smallest

standard errors.

Mixture Model when the Time Varying Logistic Model Fails We now investigate the

performance of these procedures when the data are generated from a mixture model and thus

none of these four models hold. Specifically, the failure times were derived from a mixture model:

s(βββ,Mi) =
∑3

p=1 βpMip if I = 0 and s(βββ,Mi) =
∑5

p=4 βpMip if I = 1 with I ∼ Bernoulli(0.9).
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Under this configuration, the likelihood ratio function can not be characterized by a simple linear

function βββTMi, and clearly neither of the four models holds in this scenario. Therefore this setting

allows us to evaluate the classification performance under the misspecified models. The results,

shown in Table 1, suggest that although not optimal, the score derived from the time varying

logistic procedure has higher accuracy than the other scores. For example, at t = t2 with a sample

size of n = 1000, the average AUCt is 0.87 from the time varying logistic method, which is higher

than 0.76 from the Cox model, 0.72 from the AFT model and 0.75 from the proportional odds

model. We do not expect the proportional odds model to do well in this setting as it was not

designed to estimate any time-vary effect.

In summary, the simulation studies demonstrate that the operating characteristics of the four

procedures differ in regards to their attained predictive accuracies, and the differences depend on

whether the effects of biomarkers vary with time. When the underlying marker effects vary with

time, and the likelihood ratio function is of a linear function of the markers at each time point, we

found that the time varying logistic regression indeed offers the optimal prognostic score. When the

optimal likelihood ratio score is not a monotone function of βββTM, the time varying logistic regression

still produces a better linear score compared to other procedures. This is again consistent with , as

it seeks to somehow minimize the difference between the ROC curve from the true likelihood ratio

function and that from the logistic model all the way across the curve. Under the setting where the

marker effects are constant over time, we found that the classification performances are somewhat

comparable for the four methods. Nevertheless the proportional odds model is attractive because it

is the most efficient procedure in both estimating the marker effect and predictive accuracy, hence

it is the most powerful especially when sample size is small. Finally, we observed that in general the

Cox proportional hazards model performed better when compared to the AFT model, and in many

cases, particularly under the time-invariant marker model, it even yields linear scores that classify

as accurately as the those from a proportional odds model. This is however not so surprising as
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the two models are not fundamentally different in their operating characteristics within the class of

transformational model, when the effect of markers are indeed proportional in nature (Dabrowska

& Doksum, 1988, Box & Cox, 1982). These results are encouraging.

4. Example

We analyze a publicly available cDNA microarray dataset from a study of breast cancer reported

by Van de Vijver et al. (2002). The gene expression measurement is the logarithm of the intensity

ratios between the red and the green fluorescent dyes, where green dye is used for the reference

pool and red is used for the experimental tissue. The data consists of a previously established

70-gene prognosis profile from 295 breast cancer patients who were diagnosed with breast cancer

between 1984 and 1995. The median survival time is 3.8 years for these patients. By separating the

patients into groups with good and poor-prognosis signature, the authors showed that the prognosis

profile was a strong predictor for disease outcome, providing survival information beyond that of

the standard and histologic criteria. Here we use the data to evaluate the prognostic values of the

gene prognosis profile by applying the time-dependent ROC curve methods. Particularly, we aim

to assess how well the genes selected can distinguish between subjects who die and subjects who do

not in a follow-up interval [0, t], with t chosen to be 2, 5 and 8 years after diagnosis for illustration.

First, are all 70 genes necessary for prognosis prediction? It would be advantageous to decrease

the number of predictor genes for clinical applications. The issues of model selection, particularly

from high-dimensional data, although relevant here, are beyond the scope of the current paper.

We used the data to simply illustrate that different choices of regression models can lead to linear

composite score with different classification performance. We therefore consider a small set of 6

genes that were selected using a forward stepwise procedure. We suppose the expression levels of

the six genes are given, and the goal is to estimate the linear score based on these six genes.

We obtain optimal linear composite scores based on these 6 genes using the aforementioned four

procedures and then assess the capacity these scores have in discriminating between patients would

12
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or would not survive t years after breast cancer diagnosis, for t = 2, 5 and 8. The estimated AUCs

and their 95% confidence intervals for the composite scores obtained through these procedures are

reported in Table 4. To illustrate the benefit from combining the marker panel, we also show

in Table 4 the accuracies of a single gene, which univariately has the highest AUC among all 70

genes. As expected, great improvement in the accuracy was achieved when consider all six genes

together. For example, at t = 5 years, the estimated AUC is 0.75 (95% CI = (0.66, 0.83)) if a single

gene is used. With a panel of six genes, the corresponding accuracy increases to 0.84 (95% CI =

(0.80, 0.89)) based on the linear scores of a logistic regression model. Furthermore, if some clinical

information is available, by comparing ROC curve based on the clinical information only with the

ROC curve using both the clinical and gene profile information, we can decide if the gene profile

provides improved discrimination for cumulative mortality at different follow-up times.

We found that for this study, the linear scores from the four methods yield comparable area

under the curves for distinguishing long term survivors when t = 5 and t = 8. The weighted

logistic regression, however, appeared to be more accurate and more efficient classification rules for

distinguishing short term survivors, in this case, at t = 2 years after diagnosis. For example, at the

second year, when 80% of the surviving women are screened negative, 74% of the women who died

are screen positive based a threshold derived from the logistic regression, whereas with the same

specificity (80%), the associated sensitivity is 68% from that of the Cox model.

Figure 1 compares the ROC curves at different failure times t = 2, t = 5 and t = 8 years for

the logistic regression model (panel (a)) and the Cox model (panel (b)) respectively. Based on

the ROC curves for logistic model, it seems that the operating characteristics of the set of genes

selected may vary over time: they are more sensitive at identifying women that die within the first

few years but their discriminatory power for cumulative mortality decreases when the goal is to

identify long terms survivors. In the contrary, for the Cox model, it is puzzling at a first glance

that the ROC curve at t = 5 dominates the ROC curve at t = 2. This is not too surprising, as
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the estimated AUC from a Cox model at t = 2 was not as efficient as that of a logistic regression,

a finding that is consistent with our simulation results under the time-varying marker effects. We

conclude that the logistic model, adopting different linear functions at different times, appears to

provide better separation for ROC curves at different cut-off times, compared with the Cox model

that assumes a time invariant linear function for marker combination.

5. Discussion

In this paper, we develop new procedures for combining markers to optimally predict future disease

status which may vary over time. These procedures may be used to construct prognostic indices

that can potentially be used for early detection of disease and risk assessment. It seems a natural

step to extend the time-dependent ROC methodology to studies based on multiple biomarkers such

as a gene expression profile for survival prediction (Li and Gui, 2004). Regression models for failure

time data are routinely used in practice as a basis for constructing optimal prognostic scores. In this

manuscript we provide justification for their use by demonstrating that the derived scores achieve

optimal accuracy in the view of time specific ROC curves. We showed that in the limit, the linear

score β̂ββ(t)TM is the achieves optimal accuracy if the logistic model holds and is an optimal linear

combination of M if the model only holds approximately. The robustness property may not hold if

the model is severely mis-specified. In the binary setting, robust optimization procedures through

maximizing AUC has been recently proposed (Pepe, Cai and Zhang, 2005). Further development

on more robust methods for time-dependent ROC curve methodology is warranted. However, we

note that the robustness of our proposed procedures can alternatively be improved by including

quadratic or higher order polynomial functions of the predictors.

Drew in the recent literature for seeking optimal classification rules for binary outcome, we have

showed that a good linear discriminant function can be estimated directly from a time varying

logistic regression procedure by appealing to the Neyman-Pearson lemma. Other failure time

regression models, for example Cox regression models, may provide good approximation of the true
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underlying object function under certain condition, however their theoretical merits in regard to

optimality are difficult to evaluate. Therefore the time varying logistic regression can be used as

a benchmark for assessing the performance of these other models in practice. Another advantage

of the approach is that it is more likely to capture the time-varying nature of the markers, since

it allows different linear functions of the markers for different target times. When the effect of

markers are approximately constant over time, such a model can be used to build more efficient

estimating procedures. The estimating procedures for the proportional odds model we suggested is

easy to implement, and yield predictor and accuracy summaries that are efficient. In our numerical

study we also found that Cox regression model can be quite robust. Thus under the time-vary

effect, one may consider Cox regression model when there is an interest to report just a single

combination rule to achieve good predictive accuracy over time. The implication of these results

are very important in practice.

There are other issues need to be addressed when the source of markers is from recently devel-

oped high-throughput technologies. One issue arises is how to select a small set of markers from

a pool of hundreds or thousands candidate genes. The other issue relates to the fact that the

crude retrospective error rate for classification can be optimistic for assessing the performance of

a classifier in a small sample. the area under the time-dependent ROC curves offers a measure

of the goodness of fit for multiple regression model, and it has been shown that under complex

data structure of nonlinear regression it could be more sensible to the traditional measures of R2

(Heagerty and Zheng, 2005). When the objective of the analysis is to search for markers that

maximize the prognostic accuracy at time t, AUC(t), after being properly adjusted for overfitting,

can be considered as an objective function for both model fitting and selection.
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Appendix A. Two-step estimator for proportional odds model

We note that model (2.1), althrough inefficient, is however consistent under model (1). We therefore

first fit J−1 weighted logistic regression models at t1, ..., tJ−1 respectively and obtain corresponding

α̃j , β̃ββj . Let β̃ββ =
∑J−1

j=1 β̃ββj , then θ̃θθ = (α̃1, ..., α̃J−1, β̃ββ
T
) can be employed as initial values for solving

equation (3).

As an initial step, let

ω1j(Mi, θθθ) =
∂log

∇µj−1(Mi,θθθ)

∇µj(Mi,θθθ)

∂αj
= −ω0i(tj)

f(αj + βββTMi)
F (αj + βββTMi) − F (αj−1 + βββTMi)

ω2j(Mi, θθθ) =
∂log

∇µj(Mi,θθθ)

∇µj+1(Mi,θθθ)

∂αj
=

f(αj + βββTMi){F (αj+1 + βββTMi) − F (αj−1 + βββTMi)}
{F (αj + βββTMi) − F (αj−1 + βββTMi)}{F (αj+1 + βββTMi) − F (αj + βββTMi)}

ω3j(Mi, θθθ) =
∂log

∇µj+1(Mi,θθθ)

∇µj+2(Mi,θθθ)

∂αj
= − f(αj + βββTMi)

F (αj+1 + βββTMi) − F (αj + βββTMi)
,

where f(x) is the derivative of F (x). We have from model (3), for any given βββ, θ̂θθ(βββ) = (α̂(βββ)T , βββT )T

is the solution to

n∑

i

ω0i(tj)
[
ω1j(Mi, θ̃θθ){Di(tj−1) − µi(tj−1, θθθ)} + ω2j(Mi, θ̃θθ){Di(tj)− µi(tj , θθθ)}

+ ω3j(Mi, θ̃θθ){Di(tj+1)− µi(tj+1, θθθ)}
]

= 0,

for j = 1, ..., J − 1. At the second step, we can obtain an efficient β̂ββ as the solution to

J−1∑

j=1

n∑

i=1

W (tj , Mi, θ̃θθ)Mi

{
Di(tj)− µi(tj , θ̂θθ(βββ))

}
= 0,

with

W (tj , Mi, θ̃θθ) = ω0i(tj)

{
f(α̂j + βββTMi) − f(α̂j−1 + βββTMi)
F (α̂j + βββTMi) − F (α̂j−1 + βββTMi)

− f(α̂j+1 + βββTMi)− f(α̂j + βββTMi)
F (α̂j+1 + βββTMi)− F (α̂j + βββTMi)

}
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Table 1: Estimated AUC (standard errors) under time-varying marker effects from weighted logistic
regression, Cox proportional hazards model (Cox), additive failure time model (AFT) and the
proportional odds model. Results are based on 200 simulated datasets for each sample size.

n = 200 n = 1000
t1 t2 t3 t1 t2 t3

Time Varying Logistic Model
True .89 .85 .72 .89 .85 .72

Logistic .91(.03) .89(.04) .75(.05) .88(.03) .85(.03) .71(.02)
Cox .77(.11) .74(.09) .64(.07) .83(.05) .80(.04) .68(.02)
AFT .76(.11) .73(.10) .66(.06) .75(.12) .73(.10) .65 (.06)

Proportional Odds .78 (.12) .74(.07) .73(.11) .75(.10) .72(.06) .65(.06)
Mixture Model

True .93 .92 .85 .93 .92 .85
Logistic .93(.01) .92(.03) .82(.06) .92(.03) .87(.04) .76(.03)

Cox .78 (.13) .76(.12) .70 (.09) .82(.11) .76(.09) .73(.04)
AFT .80 (.11) .76(.11) .68 (.08) .76(.12) .72(.09) .67 (.06)

Proportional Odds .83(.11) .80(.11) .71(.08) .80(.12) .75(.09) .68(.07)

Note: True AUCs are the AUCs estimated using the true parameters for simuation.

Table 2: Sample average (empirical standard error) of the estimated βp under the proportional odds
model when β is estimated from the time specific logistic regression at given t = t1, t2 and t3 and
when β is estimated from the proportional odds model. True βββ are 0.8,0.2,0,0 and 0 respectively.

n = 200 n = 1000
β̂(t1) β̂(t2) β̂(t3) β̂ β̂(t1) β̂(t1) β̂(t1) β̂

M1 1.00(1.43) .87(1.31) .80(1.20) .95(1.05) .79(.60) .80(.55) .76(.51) .79(.40)
M2 .19(.14) .21(.15) .21(.16) .20(.10) .20(.07) .20(.07) .20(.06) .20(.04)
M3 .00(.23) -.01(.18) .00(.18) .00(.14) .00(.10) .00(.08) .00(.07) .00(.06)
M4 .01(.21) .00(.19) -.01(.17) .00(.14) .00(.09) .00(.07) .00(.07) .00(.06)
M5 .00(.23) .00(.18) .00(.18) .00(.15) .00(.10) .00(.08) -.01(.07) .00(.06)
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Table 3: Estimated AUC and their standard errors under time-independent marker effects from
the proportional odds model, weighted logistic regression, Cox proportional hazards model(Cox)
and additive failure time model(AFT).

n = 200 n = 1000
t1 t2 t3 t1 t2 t3

Proportional Odds .86 .80 .76 .86 .80 .77
Logistic .84 .79 .76 .85 .80 .77

Estimates Cox .85 .80 .76 .86 .80 .77
AFT .85 .79 .75 .85 .80 .76

Proportional Odds .39 .66 .83 .06 .12 .16
Logistic .66 .67 .91 .14 .15 .21

Std. Err. ×102
Cox .42 .70 .89 .09 .16 .22
AFT .43 .83 1.09 .18 .36 .50

Table 4: Estimated AUC(95% CI) at 2, 5 and 8 years after diagnosis using a 6-gene classifier with
linear composite scores derived from different regression models. For comparison, shown also are
the estimates of AUC from a single gene with the best predictive accuracy.

t = 2 years t = 5 years t = 8 years
a single gene .75(.56, .87) .75(.66, .83) .68(.59, .76)

Logistic .85(.80, .91) .84(.80, .89) .77(.71, .84)
Cox .78(.62, .87) .84(.78, .88) .77(.71, .84)
AFT .81(.70, .88) .84(.81, .89) .78(.72, .84)

Proportional Odds .78(.59, .87) .83(.68, .88) .77(.65, .84)
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Figure 1: (a) ROC curves at t = 2, t = 5, and t = 8 based on the linear function of 6 genes selected
using the logistic regression model. (b) ROC curves at t = 2, t = 5 and t = 8 based on the linear
function of 6 genes selected using the Cox regression model.

III

http://biostats.bepress.com/uwbiostat/paper250


	4-8-2005
	Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers
	Yingye Zheng
	Tianxi Cai
	Ziding Feng
	Suggested Citation


	optroc.DVI

