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Empirical likelihood intervals for the mean difference of two skewed

populations with additional zero values

W. Zhou 1, X.H. Zhou 2,3

Abstract

We considered the problem of constructing nonparametric confidence intervals for the

difference in the means of two independent skewed populations which contain zero values.

To account for zero values, we used a two-part model to separately estimate the probability

of having any non-zero value and the expected value of positive observations. Under such a

two-part model we developed the empirical likelihood (EL) based interval for the difference in

the two population means. We then derived asymptotic properties of the proposed method.

In a simulation study, we showed that the EL-based interval outperforms the existing normal

approximation method and the bootstrap method. Finally, we illustrated the application of

the proposed method in a study that assessed the relationship between the excess charges

among older patients and the burden of their medical illness.

Key words and Phrases: Empirical Likelihood; Health Economics;

Non-parametric Estimation; Skewed Distributions; Zero Costs

1 Introduction

In health economics, the parameter of interest is often the expected value of one population

or a sub-population. For example, in a prospective payment model, such as capitation,

which has a long history in the financing of private and public sector health care, capitated

payments are set at the expected cost of a patient (Maciejewski et al, 2004). In our real

example of this paper, we are interested in the difference between the expected diagnostic
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charge of patients with depression and patients without depression when all patients have

the same comorbid condition, as defined by the Ambulatory Care Group (ACG) system.

Such an analysis is complicated by two characteristics of the diagnostic charge data in this

study: (1) a certain proportion of patients had zero diagnostic testing charges because these

patients didn’t have any diagnostic tests done during the study; (2) non-zero diagnostic

testing charge observations were highly skewed to the right, and their distributions may be

unknown.

When there are no zero values and when non-zero values can be assumed to follow

log-normal distributions, several authors have proposed appropriate tests and confidence

intervals for comparing the means of two log-normal distributions (Zhou et al, 1997; Zhou

et al, 2001; Krishnamoorthy and Mathew, 2003; Wu et al, 2002).

When there are zero values in populations, the most appropriate model for such the

data is a two-part model (Duan, 1983; Diehr et al, 1999). Under a two-part model, if

the distributions of non-zero values can be assumed to be log-normal, Zhou and Tu (1999)

proposed a likelihood ratio test, and Zhou and Tu (2000) provided several confidence intervals

for the ratio in the means of two populations.

When non-zero costs cannot be approximated by log-normal distributions, there are no

published methods available for constructing good confidence intervals for the difference of

means of two skewed populations with additional zero values. We needed to develop an

approach that could address both the problem of zero values and the problem of unknown

skewed distributions. In this paper we use two-part models to address the problem of zero

versus non-zero values. Under the assumed two-part models, we develop the empirical like-

lihood method to address the second issue that non-zero values are skewed.

Empirical likelihood (EL) methods (Owen, 2001) are particularly suitable for skewed

populations. First, empirical likelihood (EL) methods do not assume a symmetry shape,

and instead its shapes are determined by data. Second, EL methods allow for confidence

interval construction without an information/variance estimator. Third, the EL methods

allow us to employ likelihood methods without having to pick a parametric family for the

data.
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This paper is organized as follows. In Section 2, we formulate a model for the data and

define the parameters of interest. In Section 3 we develop an empirical likelihood-based

method for the construction of confidence intervals of the parameters of interest. In Section

4, we conduct simulation studies to assess coverage accuracy, interval length, and bias of the

proposed intervals in finite sample sizes. In Section 6, we analyze the motivating example,

introduced in the beginning of this section, with the proposed method.

2 Data and model setup

We assume that the two populations of interest contain both zero and positive observations

with unknown but skewed distributions. Let W1,W2, · · · ,Wn and V1, V2, · · · , Vm be two

random samples from these two populations with corresponding means µ and ν, respectively.

To deal with zero costs, we use a two-part model for each population. Assume δ = P (W1 =

0) > 0, η = P (V1 = 0) > 0. We can show that

µ = E(Wi) = (1− δ)E(Wi | Wi > 0), ν = (1− η)E(Vi | Vi > 0).

We are interested in finding a confidence interval for

θ = ν − µ.

3 Main Theorem

In this section we develop an empirical likelihood based interval for θ without assuming a

parametric distribution for the nonzero observations. Let µ∗ = E(W1|W1 > 0) and ν∗ =

E(V1|V1 > 0). Let n0 and n1 be the number of zero and non-zero observations in the first

sample {W1,W2, · · · , Wn}, respectively, and let m0 and m1 be the number of zero and non-

zero values in the second sample {V1, V2, · · · , Vm}, respectively. For convenience, we denote

the non-zero values as x1, · · · , xn1 for the first sample, y1, · · · , ym1 for the second sample.

A combined binomial likelihood for δ, η and the empirical likelihood for θ is defined as

L(δ, η, θ) = δn0(1− δ)n1

n1∏

i=1

piη
m0(1− η)m1

m1∏

j=1

qj,
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subject to the constraints

n1∑

i=1

pi = 1,
n1∑

i=1

pi(xi − µ

1− δ
) = 0, pi ≥ 0,

m1∑

j=1

qj = 1,
m1∑

j=1

qj(yj − ν

1− η
) = 0, qj ≥ 0.

Lagrange multiplier method gives the log-likelihood

l(δ, η, µ, θ) = n0 log δ + n1 log(1− δ)−
n1∑

i=1

log
(
1 + λ(xi − µ

1− δ
)
)

+ m0 log η + m1 log(1− η)−
m1∑

j=1

log
(
1 + ξ(yj − θ + µ

1− η
)
)
,

where λ, ξ, µ are determined by

1

n1

n1∑

i=1

xi − µ
1−δ

1 + λ(xi − µ
1−δ

)
= 0,(3.1)

1

m1

m1∑

j=1

yj − θ+µ
1−η

1 + ξ(yj − θ+µ
1−η

)
= 0,(3.2)

λn1

1− δ
+

ξm1

1− η
= 0.(3.3)

The likelihood ratio statistic is given by

R(θ) = 2
(

sup
δ,η,µ,θ

l(δ, η, µ, θ)− sup
δ,η,µ

l(δ, η, µ, θ)
)
.

Theorem 3.1 Let W1,W2, · · · ,Wn and V1, V2, · · · , Vm be two random samples from two dif-

ferent populations which consist of both zero and positive observations. Suppose 0 < δ =

P (W1 = 0) < 1, 0 < η = P (V1 = 0) < 1. Assume that EW 2
1 < ∞, EV 2

1 < ∞ and

0 < n/m → ρ < 1 as n,m →∞,. Then we have

R(θ) → χ2
1.

For a proof, see Appendix.

4 Simulation Results

We conducted a simulation study to assess the coverage accuracy and the average length of

empirical likelihood confidence intervals in comparison with existing intervals. We generated
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non-zero values from three different types of skewed distributions, including exponential, log-

normal, and chi-squared distributions; we generated zero values from binomial distributions

with different proportions, with δ = η = 0.2, 0.3, 0.5, respectively. The numerical results

were based on 10,000 pseudo-random samples of various sizes.

In Tables 1 and 2, non-zero values in the first sample (X) were generated from the expo-

nential distribution, e−x, x > 0, and non-zero values in the second sample (Y ) were generated

from the exponential distribution, e−(x−1), x ≥ 1. In Tables 3 and 4, non-zero values in the

first sample (X) were generated from the log-normal distribution with parameters 0 and 1,

and non-zero values in the second sample (Y ) were generated from the log-normal distribu-

tion with parameters 1 and 2. In Tables 5 and 6, non-zero values in the first sample (X) were

generated from a chi-square distribution with one degree of freedom, and non-zero values in

the second sample (Y ) were generated from a chi-square distribution with three degrees of

freedom.

For the purpose of comparison, we also report the confidence intervals based on the

asymptotic normality of the nonparametric maximum likelihood (ML) estimator θ̂0. It is

easy to show that the nonparametric ML estimator for θ has the following form:

θ̂0 = m−1
m1∑

j=1

yj − n−1
n1∑

i=1

xi.

Its variance is

σ2 = (µ∗)2δ(1− δ)/n + (1− δ)σ2
X/n + (ν∗)2η(1− η)/m + (1− η)σ2

Y /m,

where σ2
X = E(W 2

1 |W1 > 0) − (µ∗)2, σ2
Y = E(V 2

1 |V1 > 0) − (ν∗)2. Replacing µ∗, ν∗ by

x̄ = n−1
1

∑n1
i=1 xi, ȳ = m−1

1

∑m1
j=1 yj and σ2

X , σ2
Y by

∑n1
i=1(xi − x̄)2/n1,

∑m1
j=1(yj − ȳ)2/m1, we

get the sample variance σ̂2. Therefore the (1− α)100% confidence interval based on normal

approximation is

(θ̂0 − zασ̂, θ̂0 + zασ̂),

where zα is the upper α quantile of N(0, 1). For the log-normal case, we also included

confidence intervals based the parametric maximum likelihood and bootstrap methods that

can be easily derived from the methods in Zhou and Tu (2000).

5

Hosted by The Berkeley Electronic Press



TABLES 1-6 GO HERE

From the results in Tables 1-6, we see that in the exponential and chi-squares cases,

the empirical likelihood (E.L.) method is very competitive with the non-parametric normal

approximation (N.A.) method. In the log-normal case, the E.L. method greatly outperforms

the N.A. method in terms of both coverage probability and the length of confidence intervals.

For the log-normal case, the performance of the E.L. method is also much better than the

parametric maximum likelihood (M.L.) and bootstrap (B.T.) methods. The reason why the

EL-based interval outperforms the parametric ML interval may be that the parametric ML

interval uses a symmetric form for θ while the EL-based interval does not and allows the

data to determine its shape.

5 An application to an real example

Callahan, et al. (1997) studied the relationship between depression and the expected cost

of diagnostic testing for a patient. Here, the focus of statistical analysis was on the mean

of diagnostic testing cost because the mean can be used to recover the total cost, which

reflects the entire diagnostic expenditure in a given patient population. We re-analyzed the

real data set in Callahan’s study. To illustrate the proposed methods, we analyzed a subset

of patients who had a chronic medical condition, as defined by Ambulatory Care Group

(ACG) system. We were interested in comparing expected costs between depressed patients

and non-depressed patients in this subset. The data set consists of 13 depressed patients

and 112 non-depressed patients. The sample means for the depression and non-depression

groups are $588.7 and $487.9, respectively, with respective standard deviations of 1116.3

and 1097.7. In this data set, there are some zero costs. In the depression group, 4 patients

has zero costs, and in the non-depression group, 18 patients had zero costs. In addition,

non-zero costs are highly skewed; the sample skewness is 6.49 for the depression group and

2.47 for the non-depression group. Applying the existing normal approximation and our EL-

based methods, we obtain that the 95% confidence interval for the difference of the expected

means for the depression and non-depression groups; the resulting confidence intervals are
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(−314.166, 780.848) using the normal approximation method, and (−374.172, 851.084) using

the empirical likelihood method. The empirical confidence interval is wider than the interval

based on the normal approximation. The result is consistent with our simulation results

which have shown that the normal approximation interval has a coverage probability that is

lower than the nominal level while the empirical interval has a coverage probability that is

close to the nominal level.

6 Discussion

In this paper we have developed an empirical likelihood (EL) based interval for the difference

between two skewed populations with additional zero values. The main advantage of the EL

method is that it employs likelihood methods without having to pick a parametric family for

the data. Our simulation studies showed that the EL-based interval outperforms the normal

approximation-based and the bootstrap methods, and the improvement can be huge when

non-zero values are highly skewed.
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Appendix. A proof for Theorem 3.1

We first derive supδ,η,µ,θ l(δ, η, µ, θ).

Differentiating l with respect to δ, η, µ and θ, we obtain that

∂l

∂δ
=

n0

δ
− n1

1− δ
+

λµn1

(1− δ)2
,(6.4)

∂l

∂η
=

m0

η
− m1

1− η
+

ξνm1

(1− η)2
,(6.5)

∂l

∂µ
=

λn1

1− δ
+

ξm1

1− η
,(6.6)

∂l

∂θ
=

ξm1

1− η
.(6.7)

Setting the expressions in (6.6) and (6.7) to zero, we obtain that ξ = λ = 0. Setting the

expressions in (6.4) and (6.5) to 0, we obtain the following non-parametric ML estimators:

δ̂0 = n0/n, η̂0 = m0/m, µ̂0 = n−1
n1∑

i=1

xi, θ̂0 = m−1
m1∑

j=1

yj − n−1
n1∑

i=1

xi.(6.8)

Hence

sup
δ,η,µ,θ

l(δ, η, µ, θ) = n0 log
n0

n
+ n1 log

n1

n

+ m0 log
m0

m
+ m1 log

m1

m
.

We now turn to supδ,η,µ l(δ, η, µ, θ) for a fixed value of θ. In order to get the supremum,

we need to solve equations (3.1), (3.2), (6.4), (6.5) and (6.6), whose solutions are denoted

by λ̂, δ̂, ξ̂, η̂ and µ̂. Using standard arguments in the empirical likelihood literature, we may

show that λ̂ = Op(n
− 1

2 ), δ̂ − δ = Op(n
− 1

2 ), ξ̂ = Op(n
− 1

2 ), η̂ − η = Op(n
− 1

2 ), µ̂− µ = Op(n
− 1

2 ).

Also note that n0

n
− δ = Op(n

− 1
2 ), m0

m
− η = Op(n

− 1
2 ). Applying Taylor’s expansions to (6.4),

(3.1), (6.5), (3.2), (6.6) at λ = 0, δ = n0

n
, ξ = 0, η = m0

m
, µ, respectively, we obtain that




0

0

0

0

0




=




0

1
n1

∑n1
i=1(xi − µ

1−n0
n

)

0

1
m1

∑m1
j=1(yj − ν

1−m0
m

)

0




+ S




λ̂

δ̂ − n0

n

ξ̂

η̂ − m0

m

µ̂− µ




+ op

(
n−

1
2

)
+ op

(
m− 1

2

)
,
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where

S =:


µ
(1−n0

n
)2

− n0

n1(
n0
n

)2
− 1

(1−n0
n

)2
0 0 0

−s2
x − µ

(1−n0
n

)2
0 0 − 1

1−n0
n

0 0 ν
(1−m0

m
)2

− m0

m1(
m0
m

)2
− 1

(1−m0
m

)2
0

0 0 −s2
y − ν

(1−m0
m

)2
− 1

1−m0
m

1
1−n0

n

0 m1

n1(1−m0
m

)
0 0




.

Here

s2
x =

1

n1

n1∑

i=1

(xi − µ

1− n0

n

)2, s2
y =

1

m1

m1∑

j=1

(yj − ν

1− m0

m

)2.

Noting that

n0

n
− δ = Op

(
n−

1
2

)
,
m0

m
− η = Op

(
m− 1

2

)
, s2

x → σ2
x, s

2
y → σ2

y,

we have



0

1
n1

∑n1
i=1(xi − µ

1−n0
n

)

0

1
m1

∑m1
j=1(yj − ν

1−m0
m

)

0




=




− µ
(1−δ)2

1
δ(1−δ)2

0 0 0

σ2
x

µ
(1−δ)2

0 0 1
1−δ

0 0 − ν
(1−η)2

1
η(1−η)2

0

0 0 σ2
y

ν
(1−η)2

1
1−η

ρ 0 1 0 0







λ̂

δ̂ − n0

n

ξ̂

η̂ − m0

m

µ̂− µ




+op

(
n−

1
2

)
+ op

(
m− 1

2

)
.

Therefore,

δ̂ − n0

n
= µδλ̂ + op

(
n−

1
2

)
+ op

(
m− 1

2

)
,(6.9)

η̂ − m0

m
= νηξ̂ + op

(
n−

1
2

)
+ op

(
m− 1

2

)
,(6.10)

ρλ̂ + ξ̂ = op

(
n−

1
2

)
+ op

(
m− 1

2

)
,(6.11)

λ̂ =
(1− δ)(x̄− µ

1−n0
n

)− (1− η)(ȳ − ν
1−m0

m

)

(1− δ)(σ2
x + µ2

(1−δ)2
δ) + ρ(1− η)(σ2

y + ν2

(1−η)2
η)

+ op

(
n−

1
2

)
+ op

(
m− 1

2

)
.(6.12)
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Again, using Taylor expansions we obtain that

n0 log
n0/n

δ̂
+ n1 log

n1/n

1− δ̂
+

n1∑

i=1

log

(
1 + λ̂

(
xi − µ̂

1− δ̂

))

= −n0 log

(
1 +

1

n0/n
(δ̂ − n0

n
)

)
− n1 log

(
1− 1

n1/n
(δ̂ − n0

n
)

)

+
n1∑

i=1

log

(
1 + λ̂

(
xi − µ

1− n0

n

− µ̂− µ

1− n0

n

− µ

(1− n0

n
)2

(δ̂ − n0

n
)
)

+ op(n
−1)

)

= −n0

(
1

n0/n
(δ̂ − n0

n
)− 1

2(n0/n)2
(δ̂ − n0

n
)2 + op(n

−1)

)

−n1

(
− 1

n1/n
(δ̂ − n0

n
)− 1

2(n1/n)2
(δ̂ − n1

n
)2 + op(n

−1)

)

+n1λ̂

(
x̄− µ

1− n0

n

− µ̂− µ

1− n0

n

− µ

(1− n0

n
)2

(δ̂ − n0

n
)

)

−1

2
λ̂2

n1∑

i=1

(
xi − µ

1− n0

n

− µ̂− µ

1− n0

n

− µ

(1− n0

n
)2

(δ̂ − n0

n
)

)2

+ op(1)

=
n2

2

(
1

n0

+
1

n1

)
(δ̂ − n0

n
)2 − 1

2
n1σ

2
xλ̂

2

+n1λ̂

(
x̄− µ

1− n0

n

− µ̂− µ

1− n0

n

− µ

(1− n0

n
)2

(δ̂ − n0

n
)

)
+ op(1)

=
n

2

δµ2

1− δ
λ̂2 +

1

2
n1σ

2
xλ̂

2 + op(1),

m0 log
m0/m

η̂
+ m1 log

m1/m

1− η̂
+

m1∑

j=1

log

(
1 + ξ̂

(
yj − ν̂

1− η̂

))

=
m

2

ην2

1− η
ξ̂2 +

1

2
m1σ

2
y ξ̂

2 + op(1).

Hence we have

1

2
R(θ) = λ̂2n

2

(
(1− δ)(σ2

x +
µ2

(1− δ)2
δ) + ρ(1− η)(σ2

y +
ν2

(1− η)2
η)

)
+ op(1)

=
n

2

(
(1− δ)(x̄− µ

1−n0
n

)− (1− η)(ȳ − ν
1−m0

m

)
)2

(1− δ)(σ2
x + µ2

(1−δ)2
δ) + ρ(1− η)(σ2

y + ν2

(1−η)2
η)

+ op(1)

=

(√
n(1− δ) n

n1
(n1

n
x̄− µ)−√ρ

√
m(1− η) m

m1
(m1

m
ȳ − ν)

)2

(1− δ)(σ2
x + µ2

(1−δ)2
δ) + ρ(1− η)(σ2

y + ν2

(1−η)2
η)

+ op(1).

Noting that

V ar
(

n1

n
x̄− µ

)
= E

(
n2

1

n2
V ar(x̄‖n1)

)
+ V ar

(
n1

n
E(x̄‖n1)

)
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= E
(

n1

n2
σ2

x

)
+

µ2

n2(1− δ)2
V ar(n1)

=
(1− δ)σ2

x

n
+

δµ2

n(1− δ)
,

V ar
(

m1

m
ȳ − ν

)
=

(1− η)σ2
y

m
+

ην2

m(1− η)
,

we have

√
n(1− δ)

n

n1

(
n1

n
x̄− µ)−√ρ

√
m(1− η)

m

m1

(
m1

m
ȳ − ν)

→d N

(
0, (1− δ)(σ2

x +
µ2

(1− δ)2
δ) + ρ(1− η)(σ2

y +
ν2

(1− η)2
η)

)
,

which implies

R(θ) →d χ2
1

as n,m →∞.
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Table 1: Coverage accuracy with nominal level 0.90 when skewed data are from exponential

distributions. (E.L.: smoothed empirical likelihood; N.A.: normal approximation.)

Method δ = η = 0.2 (length) δ = η = 0.3 (length) δ = η = 0.5(length)

n = m = 50 E.L. 0.891 (0.714) 0.888 (0.707) 0.889 (0.692)

N.A. 0.897 (0.716) 0.894 (0.724) 0.899 (0.695)

n = m = 70 E.L. 0.890 (0.608) 0.890 (0.606) 0.891 (0.589)

N.A. 0.895 (0.606) 0.897 (0.613) 0.896 (0.588)

n = m = 100 E.L. 0.894 (0.511) 0.896 (0.512) 0.895 (0.494)

N.A. 0.896 (0.507) 0.899 (0.513) 0.899 (0.492)

Table 2: Coverage accuracy with nominal level 0.95 when skewed data are from exponential

distributions. (E.L.: smoothed empirical likelihood; N.A.: normal approximation.)

Method δ = η = 0.2(length) δ = η = 0.3(length) δ = η = 0.5(length)

n = m = 50 E.L. 0.943 (0.854) 0.942 (0.845) 0.945 (0.831)

N.A. 0.948 (0.853) 0.948 (0.863) 0.952 (0.829)

n = m = 70 E.L. 0.943 (0.728) 0.946 (0.725) 0.947 (0.706)

N.A. 0.947 (0.722) 0.950 (0.730) 0.951 (0.701)

n = m = 100 E.L. 0.944 (0.611) 0.945 (0.612) 0.944 (0.592)

N.A. 0.948 (0.605) 0.948 (0.612) 0.948 (0.587)
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Table 3: Coverage accuracy with nominal level 0.90 when skewed data are from log-normal

distributions. (E.L.: smoothed empirical likelihood; N.A.: normal approximation; M.L.:

maximum likelihood; B.T.: bootstrap)

Method δ = η = 0.2(length) δ = η = 0.3(length) δ = η = 0.5(length)

n = m = 50 E.L. 0.822 (3.860) 0.811 (3.282) 0.794 (2.792)

N.A. 0.789 (6.226) 0.783 (5.769) 0.782 (4.790)

M.L. 0.732 (4.607) 0.745 (4.411) 0.745 (3.918)

B.T. 0.815 (5.094) 0.830 (4.986) 0.744 (3.626)

n = m = 70 E.L. 0.842 (3.777) 0.832 (3.076) 0.812 (2.695)

N.A. 0.806 (5.405) 0.800 (5.066) 0.797 (4.259)

M.L. 0.731 (3.838) 0.735 (3.669) 0.751 (3.253)

B.T. 0.795 (4.059) 0.805 (3.930) 0.742 (3.030)

n = m = 100 E.L. 0.858 (2.967) 0.855 (2.768) 0.830 (2.443)

N.A. 0.824 (4.672) 0.821 (4.397) 0.811 (3.689)

M.L. 0.718 (3.182) 0.729 (3.035) 0.746 (2.683)

B.T. 0.788 (3.359) 0.797 (3.209) 0.753 (2.532)
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Table 4: Coverage accuracy with nominal level 0.90 when skewed data are from log-normal

distributions. (E.L.: smoothed empirical likelihood; N.A.: normal approximation; M.L.:

maximum likelihood; B.T.: bootstrap)

Method δ = η = 0.2(length) δ = η = 0.3(length) δ = η = 0.5(length)

n = m = 50 E.L. 0.888 (4.017) 0.875 (3.427) 0.855 (2.848)

N.A. 0.834 (7.419) 0.831 (6.874) 0.829 (5.708)

M.L. 0.788 (5.490) 0.797 (5.256) 0.795 (4.669)

B.T. 0.888 (6.216) 0.896 (6.042) 0.811 (4.304)

n = m = 70 E.L. 0.908 (3.949) 0.898 (3.203) 0.876 (2.799)

N.A. 0.852 (6.440) 0.848 (6.037) 0.845 (5.075)

M.L. 0.792 (4.573) 0.795 (4.371) 0.801 (3.876)

B.T. 0.861 (4.832) 0.878 (4.768) 0.800 (3.586)

n = m = 100 E.L. 0.920 (3.129) 0.913 (2.918) 0.895 (2.580)

N.A. 0.869 (5.567) 0.868 (5.239) 0.859 (4.397)

M.L. 0.783 (3.792) 0.792 (3.616) 0.802 (3.197)

B.T. 0.860 (4.046) 0.865 (3.839) 0.820 (3.015)
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Table 5: Coverage accuracy with nominal level 0.90 when skewed data are from χ2 distribu-

tions. (E.L.: smoothed empirical likelihood; N.A.: normal approximation.)

Method δ = η = 0.2(length) δ = η = 0.3(length) δ = η = 0.5(length)

n = m = 50 E.L. 0.857 (1.314) 0.856 (1.278) 0.869 (1.185)

N.A. 0.865 (1.315) 0.861 (1.288) 0.877(1.176)

n = m = 70 E.L. 0.859(1.120) 0.854(1.093) 0.879 (1.010)

N.A. 0.862(1.113) 0.858(1.092) 0.880 (1.000)

n = m = 100 E.L. 0.852(0.940) 0.860 (0.921) 0.879 (0.848)

N.A. 0.863(0.933) 0.864 (0.917) 0.881(0.839)

Table 6: Coverage accuracy with nominal level 0.95 when skewed data are from χ2 distribu-

tions. (E.L.: smoothed empirical likelihood; N.A.: normal approximation.)

Method δ = η = 0.2(length) δ = η = 0.3(length) δ = η = 0.5(length)

n = m = 50 E.L. 0.917 (1.560) 0.919 (1.519) 0.926 (1.415)

N.A. 0.923 (1.567) 0.920(1.535) 0.928(1.401)

n = m = 70 E.L. 0.921(1.337) 0.917(1.304) 0.931(1.210)

N.A. 0.922(1.326) 0.920 (1.301) 0.937 (1.191)

n = m = 100 E.L. 0.923(1.125) 0.926(1.102) 0.934(1.017)

N.A. 0.924 (1.112) 0.926(1.092) 0.935 (0.999)
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Table 7: Coverage accuracy with δ = 18/112, η = 4/13 with various skewed distributions.

(E.L.: smoothed empirical likelihood; N.A.: normal approximation.)

Nominal level Method Exponential(length) Lognormal(length) Chisquare(length)

0.9 E.L. 0.864 (0.980) 0.759 (7.717) 0.829(2.151)

N.A. 0.868 (1.123) 0.673 (8.888) 0.837(2.187)

0.95 E.L. 0.923 (1.154) 0.828 (8.485) 0.891(2.537)

N.A. 0.920 (1.338) 0.713 (10.591) 0.889(2.606)
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