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Abstract. We propose and compare two approaches for regression analysis of multi-

level binary data when clusters are not necessarily nested: a GEE method that relies on a

working independence assumption coupled with a three-step method for obtaining empirical

standard errors, and a likelihood-based method implemented using Bayesian computational

techniques. Implications of time-varying endogenous covariates are addressed. The meth-

ods are illustrated using data from the Breast Cancer Surveillance Consortium to estimate

mammography accuracy from a repeatedly screened population.

KEY WORDS: longitudinal data, endogeneity, conditional, marginal, transition models,

hierarchical models.

1 Introduction

Large biomedical data sets often confront investigators with the need to address multiple

levels of “clustering” that arise from the organizational structure of the health care delivery

system. For example, multiple patients may be evaluated or treated by the same physi-

cian. Furthermore, multiple physicians may practice within a clinic or hospital unit and

share common beliefs or policies. When large data sets encompass outcomes on individual

patients and analysis focuses on the relationship between patient outcomes and measured

characteristics of patients, doctors, or clinics, a proper statistical analysis must consider the

potential correlation induced by unmeasured heterogeneity at each level of the organizational

hierarchy.

A branch of statistics commonly referred to as “multilevel models” (Goldstein, 1995)

or “hierarchical linear models” (Bryk and Raudenbush, 1992) has developed in response

1

Hosted by The Berkeley Electronic Press



to the organizational clustering found in educational settings where students are nested

within classrooms, and classrooms are nested within schools. This data structure motivated

development of statistical methods that explicitly parameterize systematic components of

variation attributable to measured characteristics of both subjects and clusters (i.e., co-

variates for students and classrooms) and that characterize the magnitude of random or

unmeasured heterogeneity as represented by random effects. Although hierarchical models

in the educational evaluation literature focused on continuous outcomes and based inference

on multivariate normal models, recent interest has considered the extension to discrete out-

comes using mixed-effects generalized linear models (Hedeker and Gibbons, 1994; Daniels

and Gatsonis, 1999; Rodriguez and Goldman, 2001).

Longitudinal data can also be viewed as a type of multilevel data where repeatedly

measured outcomes are clustered within a subject (Diggle, Heagerty, Liang and Zeger, 2002).

However, methods specifically developed for the analysis of longitudinal data also explicitly

acknowledge the time ordering of measurements and adopt correlation models that capture

short-term serial correlation not explained by cluster-level random effects. For example,

Diggle (1988) discusses the use of a model with random intercepts and a continuous time

auto-regressive error process.

Despite the richness of models and estimation algorithms for continuous outcomes, model-

ing of multilevel binary data remains a significant challenge in many biomedical applications.

Short categorical time series are typical in longitudinal epidemiological studies. Hierarchical

models using the standard assumption of normally distributed subject-specific effects can

be difficult to fit and may not adequately characterize the multivariate categorical struc-

ture (see Carlin et al., 2001; Agresti and Liu, 1999). When substantive interest is in the
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marginal regression structure, conditionally specified generalized linear mixed models do not

directly address the scientific question, and must either be marginalized to obtain model

summaries or reparameterized to allow direct inference on marginal contrasts. See Chapter

7 of Diggle, Heagerty, Liang, and Zeger (2002) for a comparison and discussion of marginal

and conditional approaches.

A generalized estimating equations (GEE; Liang and Zeger, 1986) approach directly

models the marginal mean and may be computationally feasible even with large numbers of

subjects. However, without modification this approach may give biased results when data

are not missing completely at random (Laird, 1988; Robins et al., 1995). Estimation that

relies on a working independence correlation structure may be less efficient than a correctly

specified maximum likelihood estimator, because efficient inference using GEE demands that

the working correlation model approximates the true correlation structure of the data (Wang

and Carey, 2003; Shults and Morrow, 2002). In addition, directly using GEE for non-nested

clusters or incompletely crossed designs has not been previously investigated. Betensky et

al. (2000) propose “reclustering” by grouping observations into independent blocks of data,

but this is not feasible for crossed designs. Reclustering may also lead to a small number of

independent blocks which is known to produce negatively biased sandwich variance estimates

(Mancl and DeRouen, 2001).

Further complications arise in the case of stochastic time-varying covariates. A time-

varying covariate is exogenous when it is not predicted by past outcomes. Formally, under

an exogenous covariate process, p (xt|Ht−1 (y) ,Ht−1 (x)) = p (xt|Ht−1(x)) where Ht (u) is the

history of u up to and including time t. In contrast, an endogenous covariate is conditionally

dependent on past response values. See Diggle, Heagerty, Liang, and Zeger (2002) Chapter 12
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for more detailed discussion. Hierarchical models and GEE with weighted working covariance

matrices assume that the full covariate conditional mean, i.e., the mean given the covariate

vector from all time points, is equal to the cross-sectional mean (Pepe and Anderson, 1994;

Diggle, Heagerty, Liang and Zeger, 2002). This assumption can be met for an exogenous

covariate process by including appropriate current or lagged values of the covariate. When

covariates are endogenous, GEE with a working independence covariance matrix may be used

to characterize the cross-sectional or lagged association, but the necessary use of diagonal

covariance weighting may result in a sacrifice of efficiency. With endogenous treatment or

exposure variables, alternative causal inference targets and methods of estimation have been

proposed. Robins, Greenland, and Hu (1999) discuss targets of inference and contrast their

causal estimation methods with standard regression approaches that simply characterize

associations among observed random variables. In our motivating example we are interested

in descriptive models for assessing systematic variation in the accuracy of screening tests

rather than making causal inference statements based on potential outcomes.

Given the complementary advantages and assumptions of GEE and likelihood-based

methods, we propose two marginal approaches to account for the correlation within short

time series measured on individual subjects, and the correlation induced through organiza-

tional clustering of patients within a doctor. The first approach is a marginalized multilevel

model based on the ideas described in Heagerty and Zeger (2000), Heagerty (2002), and

Diggle, Heagerty, Liang, and Zeger (2002). This approach combines a marginal general-

ized linear model that estimates the influence of covariates on the marginal probability of

a positive response with a conditional logistic regression model that describes the depen-

dence structure. The conditional model captures the serial dependence within individuals
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using a Markov structure and includes cluster-specific effects to account for the correlation

within the larger clusters. The second approach is a three-step strategy for fitting GEE to

non-nested clusters using standard software.

This work was motivated by a large multi-site study aiming to estimate the accuracy of

screening mammography as practiced in the community and to describe how the accuracy

varies across different subgroups of women. Women are screened at multiple time points,

and outcomes are correlated within radiologists, who typically screen hundreds to thousands

of women annually. Women are not necessarily nested within radiologists. The accuracy

of mammography is characterized by its sensitivity, the prevalence of a positive/abnormal

mammogram result among woman with breast cancer, and its specificity, the prevalence

of a negative/normal mammogram result among woman without breast cancer. Marginal

logistic regression models provide a convenient and direct approach for modeling changes in

sensitivity and specificity across sub-populations defined by measured covariate values.

In the next section, we introduce the marginalized multilevel model and describe model

fitting using a Bayesian approach under the assumption of exogenous covariates and in the

case of endogenous covariates. In section 3, we describe a three-step estimation strategy

based on GEE as implemented in standard software. We illustrate the approach using

data from the Breast Cancer Surveillance Consortium in Section 4. We conclude with a

comparison of the methodologies.
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2 Marginalized Multilevel Model

We consider the case where interest is in the marginal effects of covariates on the probability

of a repeatedly measured binary outcome that is clustered, but not necessarily nested, within

an additional level (e.g., repeatedly screened individuals clustered within radiologists). Ex-

tensions to more than two clustering levels is straightforward. Let yit be the tth binary

outcome for the ith individual; i = 1, . . . , N ; t = 1, . . . , Ti. We model the influence of a

p× 1 vector of possibly time-varying covariates xit on the marginal probability of a positive

response µM
it

using logistic regression:

µM
it

= p (yit = 1|Hit(x)) (1)

logit
(
µ
M

it

)
= xitβ

where Hit (x) = (xi1, . . . ,xit) denotes covariates measured up to and including time t. Here,

we assume the regression model properly specifies the conditional mean given the covariate

history (Pepe and Andersen, 1994) such that E (yit|xit) = E (yit|Hit(x)). In general, this

condition assumes that stochastic time-varying covariates are properly modelled through xit,

possibly by including lagged covariates.

Let cit indicate the cluster to which the ith individual belongs at time t.We do not assume

individuals are nested within a cluster over time. For example, a woman’s mammograms may

be read by different radiologists at different visits. We capture the dependence structure of

yi through a conditional logistic regression model that includes the previous outcome yit−1 to

account for the serial correlation within individuals and incorporates cluster-specific effects
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uj to account for correlation within larger clusters cit; j = 1, . . . , J :

µC
it = p (yit = 1|xit, yit−1, cit = j, uj) (2)

logit
(
µC
it

)
= ∆it + γtyit−1 + uj

uj ∼ N (0, 1/τ )

The individual-specific intercept ∆it is fully constrained by the relationship between the

marginal and conditional means, as described below. We assume a first-order Markov model

since we are dealing with short time series; however, higher order models may be adopted

(Heagerty, 2002). A regression model may also be specified for γt :

γt = ztα

where α measures how the dependence of yit on yit−1 varies as a function of covariates

zt.We take the cluster-specific effects uj to be normally distributed since uj represents the

average effect of all unmeasured/unobservable cluster-specific factors. By the central limit,

this average additive effect will tend toward normality as the number of latent covariate

effects increases.

The marginalized multilevel model has several advantages. First, the marginal mean is

directly modeled so the regression coefficients β have cross-sectional or population average

interpretations. Second, the mean model is separate from the association model. As a

result, the interpretation of the regression coefficients β does not depend on the specification

of the association model. Last, the dependence within women is modeled using a transition
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model, which is a natural specification for short, binary time series. For further discussion

on marginalized and conditional multilevel models, see Heagerty and Zeger (2000).

Directed acyclic graphical models for yit when covariates xit are exogenous (A) and

endogenous (B).

Figure 1 shows the directed acyclic graphical models (DAG) for yit in the cases of fixed

(and thus exogenous) covariates (Figure 1A) and endogenous covariates (Figure 1B). Note

that stochastic time-varying covariates may also be exogenous, but we have represented the

covariates in Figure 1A as fixed for simplicity. Unknown parameters are represented by solid

circles. Dashed circles represent deterministic functions of these parameters. Single squares

represent observed random variables and double squares represent fixed covariates. Solid

arrows, drawn from parent nodes to their descendents, represent probabilistic dependences

and dashed arrows show deterministic relationships. We assume x is independent of u

since individual-level covariates should not depend on radiologist-specific effects. The key

distinction between Figures 1A and 1B is that under an endogenous covariate process, the

previous response yit−1 predicts future covariates xit. The parameters ζ and ξ describe the

covariate submodel, which is discussed in subsection 2.2.
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2.1 Likelihood-based Estimation with Exogenous Covariates

Assuming outcomes within an individual are independent conditional on the previous result

yit−1 and cluster-specific effects u, the likelihood may be written as follows:

p (y|x,α,β,u,τ ) ∝
N∏

i=1

Ti∏

t=1

(
µ
C
it

)yit (
1 − µ

C
it

)(1−yit)

where µC

it
= logit−1 (∆it + γtyit−1 + uj).

We use Markov Chain Monte Carlo (MCMC) to sample from the posterior distribution,

which is proportional to the product of the prior distributions and the likelihood:

p (α,β,u,τ |y,x) ∝ p (α) p (β) p (τ )
R∏

j=1

p (uj|τ )
N∏

i=1

Ti∏

t=1

(
µ
C
it

)yit (
1 − µ

C
it

)(1−yit)
.

We present our fitting approach using standard prior distributions, taking α and β to be

normal (0, 1/ψ) and τ to be gamma (A,B) with investigator-specified hyperparameters ψ, A,

and B. In the style of Gibbs sampling, each set of parameters is updated conditional on the

remaining parameters using Metropolis (random walk) steps (Metropolis, et al., 1953; Gilks,

Richardson, and Spiegelhalter, 1996). The algorithm along with acceptance probabilities are

detailed in Appendix 1.

To calculate the likelihood, we need to determine the values of ∆ such that equations
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(1) and (2) are simultaneously satisfied. To do this, we use the following relationship:

µ
M

it
= E

u

{
Eyit−1

[E (yit|yit−1,Hit(x),u)]
}

(3)

=




∫ {
h (∆it, 1, z)µit−1 (z) + h (∆it,0, z)

[
1− µit−1 (z)

]}
φ (z) dz if cit = cit−1

∫ {
h (∆it, 1, z)µ

M

it−1
(Hit(x))+ h (∆it,0, z)

[
1− µM

it−1
(Hit(x))

]}
φ (z) dz if cit �= cit−1

where h (∆it, yit−1, z) = logit−1 (∆it + γ
t
yit−1 + σz) , µ

it−1
(z) =

p (yit−1 = 1|xit,Hit−1(x), uj = σz), µ
M
it−1 (Hit(x)) = p (yit−1 = 1|xit,Hit−1(x)) , σ =

√
1/τ,

and φ (z) is the standard normal density.

To solve for ∆it when t > 1 we need the values of µit−1 (z) and µM
it−1

(Hit(x)). Under

the assumption of exogenous covariates xit; i.e., p (yit|xi1, . . . ,xiTi
) = p (yit|Hit(x)); µit−1

(z)

and µM
it−1

(Hit(x)) do not depend on xit given Hit−1(x) (Diggle, Heagerty Liang, and Zeger,

2002). In this case, µM
it−1

(Hit(x)) =logit−1 (xit−1β) and we can easily calculate µ
it
(z) by

first solving for ∆i1 and µ
i1
(z) and then sequentially updating ∆it and µ

it
(z) given µ

it−1
(z)

and µM
it−1

(Hit(x)). Details are presented in Appendix 2.

2.2 Likelihood-based Estimation with an Endogenous Covariate

In the previous estimation algorithm for an exogenous covariate processes, we could assume

p (yit−1|xit,Hit−1(x)) = p (yit−1|Hit−1(x)) , and this equality was used to marginalize yit

and solve for ∆it. However, if the covariate process is endogenous, xit depends on yit−1 and

therefore p (yit−1|xit,Hit−1(x)) will no longer equal p (yit−1|Hit−1(x)). In order to marginalize

in this situation, we model the covariate process in addition to the response process, which

allows recovery of ∆it and evaluation of the likelihood.
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In the case of an endogenous covariate, µ
it
(z) and µ

M

it−1
(Hit(x)) can be estimated through

the following factorizations:

µ
it−1

(z) = p (yit−1|xit,Hit−1(x), uj) =
p (yit−1|Hit−1(x), uj) p (xit|yit−1,Hit−1(x))

p (xit|Hit−1(x))
(4)

µ
M

it−1
(Hit(x)) = p (yit−1|xit,Hit−1(x)) =

p (yit−1|Hit−1(x)) p (xit|yit−1,Hit−1(x))

p (xit|Hit−1(x))

where

p (xit|Hit−1(x)) = p (xit|yit = 1,Hit−1(x)) p (yit−1 = 1|Hit−1(x), uj = σz)

+p (xit|yit = 0,Hit−1(x)) p (yit−1 = 0|Hit−1(x), uj = σz) .

and we make the reasonable assumption that p (xit|yit−1,Hit−1(x)) and p (xit|Hit−1(x)) do

not depend on u. We may estimate p (xit|yit−1,Hit−1(x)) by fitting a generalized linear model

for each endogenous covariate xitk:

g [E (xitk|yit−1,Hit−1(x))] = ζ
0k
+ ζ

1k
yit−1 + ξ

k
Hit−1(x).

We now need to sample from the full posterior distribution:

p (α,β,u,τ ,ζ, ξ|y,x) ∝ p (α) p (β) p (τ) p (ζ) p (ξ) p (y,x|α,β,u,τ , ζ, ξ) .

where the joint likelihood for both the response and covariate processes may be factored as
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follows:

p(y,x|α,β,u,τ , ζ, ξ) =
T∏

t=1

p [yt|xt
,∆

t
(α,β, ζ, ξ, τ) ,α,u] p (xt|yt−1,Ht−1(x), ζ, ξ) .

Model fitting details may be found in Appendix 2.

3 Generalized Estimating Equations Approach

Previous literature has shown that GEE can be validly applied for estimation of the associ-

ation between a stochastic time-varying covariate and a longitudinal response if a working

independence correlation matrix is used (see Pepe & Anderson 1994 and Diggle, Heagerty,

Liang, and Zeger, 2002, section 12.3). Robins et al. (1999) has shown that standard estima-

tion methods such as GEE, while able to validly estimate associations, may not characterize

causal effects for time-varying treatments or exposures particularly when the exposures of in-

terest are endogenous. In cancer screening regression is used to structure the cross-sectional

association between current disease status and current test result, and therefore GEE with

working independence provides a valid analytical method for estimation and inference re-

garding response and covariate association when time-varying covariates are either exogenous

or endogenous. In this section we discuss how standard GEE methods can be exploited to

obtain valid inference for regression analysis with non-nested clusters.

To detail the approach we consider use of working independence which solves the esti-

mating equation

∑

i

∑

t

DT

it
V −1
it

(yit − µ
M

it
) = 0
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where Dit = ∂µM
it
/∂β, and Vit = var(yit | xit). Based on results of Mayer-Hamblett and Self

(2002) and Lumley and Mayer-Hamblett (2003), the solution to the estimating equations, ̂β,

has an asymptotic variance given as

var(̂β) = A−1
N,nBN,n A

−1

N,n

AN,n =

∑

i

∑

t

D
T
itV

−1

it Dit

BN,n = var

(∑
i

∑
t

Uit

)

where Ui = D
T

it
V
−1

it (yit − µMit ) and n = maxi (Ti). A consistent estimate of BN,n can be

obtained using

̂BN,n =

∑
i

∑
t

∑
j

∑
s

δ(i, j, s, t) · UitU
T
js

where δ(i, j, s, t) = 1 if either i = j indicating that observations yit and yjs are from the

same individual or if cit = cjs indicating a common radiologist for the observations, and 0

otherwise.

The indicator δ(i, j, s, t) can be viewed as a logical “or” operator that captures the same

individual or the same radiologist, and as such can be represented as:

δ(i, j, s, t) = δS(i, j) + δR(i, j, s, t) − δS(i, j) · δR(i, j, s, t)

where δS(i, j) = 1 if i = j and 0 otherwise, and δR(i, j, s, t) = 1 if cit = cjs and 0 otherwise.
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This representation shows that the estimate ̂BN,n can be formed from three contributions:

̂BN,n =
̂BS
N,n +

̂BR
N,n −

̂BSR
N,n

̂BS
N,n =

∑
i

∑
t

∑
j

∑
s

δS(i, j) · UitU
T
js =

∑
i

∑
t

∑
s

UitU
T
is

B̂R
N,n =

∑
i

∑
t

∑
j

∑
s

δR(i, j, s, t) · UitU
T
js

B̂SR
N,n =

∑
i

∑
t

∑
j

∑
s

δS(i, j) · δR(i, j, s, t) · UitU
T
js

=
∑
i

∑
t

∑
s

δR(i, j, s, t) · UitU
T
is

Operationally this implies that B̂N,n can be obtained from three standard GEE estimates

using: cluster on a variable S-ID that identifies subjects to obtain ̂BS
N,n; cluster on a variable

R-ID that identifies radiologists to obtain ̂BR
N,n; cluster on a variable SR-ID that identifies

unique subject-radiologist combinations to obtain ̂BSR
N,n.

Using working independence the final estimated variance for ̂β is simply a linear combi-

nation of variance estimates produced by GEE:

var(̂β) = A−1
N,nBN,n ·A

−1

N,n

=

(
AN,nB

S
N,n ·A

−1

N,n

)
+

(
AN,nB

R
N,n ·A

−1

N,n

)
−

(
AN,nB

SR
N,n ·A

−1

N,n

)

= V S
N,n + V R

N,n − V SR
N,n

where V S
N,n is the estimated variance from a working independence GEE clustering on S-ID

while similarly V R
N,n clusters on R-ID and V SR

N,n clusters on SR-ID.

To illustrate a non-nested correlation structure and to show why the empirical variance
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calculation involves three terms, we present a simple example in Table 1 representing obser-

vations obtained from three individuals seen by two radiologists. The correlation between

a pair of observations from the same subject is represented by × and is taken into account

when clustering on subject using δS(i, j) to include the cross-product UisU
T
jt in the empirical

variance calculation given by ̂BS
N,n. Correlation between observations on different subjects

who see the same radiologist is represented by© and is properly accounted for by clustering

on radiologist using δR(i, j, s, t) to form the sum ̂BR
N,n. Correlations for observations that are

from the same subject and the same radiologist are represented by©×. For example, the first

two observations in Table 1 represent measurements obtained at two different time points but

for the same subject, and with reading by the same radiologist. The cross-product UisU
T
jt

for this observation is included in both ̂BS
N,n and ̂BR

N,n. By subtracting ̂BSR
N,n in the final

empirical variance calculation, the “double counting” represented in Table 1 by the symbol

©× is corrected. The SR-ID for this example is formed by concatenating the S-ID with the

R-ID to obtain SR-ID=( 11, 11, 21, 22, 22, 31 ), and identifies four groups of observations.

Table 1. Example correlation structure for two non-nested clusters.
Correlation between observations from the same subject (S-ID) is
represented by ×. Correlation between observations from the same

radiologist (R-ID) is represented by ©. Correlation between
observations from the same subject and radiologist are represented

by ©× . Blank spaces represent independent observations.

Observation 1 2 3 4 5 6
S-ID 1 1 2 2 2 3

R-ID 1 1 1 2 2 1
1 1 1 ©× ©× © ©

2 1 1 ©× ©× © ©

3 2 1 © © ©× × × ©

4 2 2 × ©× ©×

5 2 2 × ©× ©×

6 3 1 © © © ©×
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In this section we have outlined a moment-based approach for estimating regression rela-

tionships with time-varying covariates under a non-nested correlation structure. In contrast

to the marginalized multilevel model estimated with likelihood-based methods, the GEE

approach using working independence does not explicitly parameterize the correlation struc-

ture, but rather relies on an empirical variance estimator to non-parametrically capture

within-subject and within-reader dependence.

4 Example

We illustrate the proposed approaches using data collected between 1996 and 2000 by a

mammography registry that participates in Breast Cancer Surveillance Consortium (BCSC;

http://breastscreening.cancer.gov). The BCSC is a NCI-sponsored collaboration between

seven population-based mammography registries in the United States, established in 1994

to evaluate the performance of mammography in community settings and to improve our

understanding of the effects of screening on cancer outcomes. Each registry prospectively

collects demographic, risk-factor, and clinical information each time a woman goes to a

participating facility for a mammogram. In addition, each mammography registry links

women in their registry to a state tumor registry or regional Surveillance, Epidemiology, and

End Results (SEER) program and possibly to pathology databases to collect information on

cancer status.

Interest is in estimating the marginal sensitivity and specificity of screening mammog-

raphy as it is practiced in the community by age, breast density, and whether or not the

mammogram was the woman’s first mammogram. We considered a mammogram to be
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positive if the radiologist gave it a BI-RADS assessment of 0 (needs additional imaging), 4

(suspicious abnormality), 5 (highly suggestive of malignancy), or 3 (probably benign finding)

with a recommendation for immediate follow-up. A woman was considered to have breast

cancer if she was diagnosed with invasive carcinoma or ductal carcinoma in-situ within a

year after her mammogram and before her next screening mammogram.

4.1 Model for Mammography Accuracy

Let yit be the mammogram result for the ith woman at her tth screening during follow-up

and let dit be her corresponding breast cancer status such that dit = 1 if she is diagnosed with

breast cancer within the follow-up period and dit = 0 if she is cancer free; i = 1, . . . , N ; t =

1, . . . , Ti. Note that t here corresponds to a woman’s observation number in the data set,

not necessarily the number of mammograms in her lifetime. We jointly model sensitivity

and specificity in a single logistic regression model, modeling the marginal probability of a

positive mammogram µM
it

as a function of a p× 1 vector of covariates xit and cancer status

dit (Pepe, 2003):

logit
(
µM
it

)
= β

0
+ xit1β1

+ · · ·+ xitpβp + ditδ0 + xit1ditδ1 + · · ·+ xitpditδp.

Sensitivity is defined as the true positive rate or the probability of a positive mammogram

given cancer in the follow-up period: p (yit = 1|dit = 1). Specificity is one minus the false

positive rate or the probability of a negative exam given no cancer in the follow-up period:

1−p (yit = 1|dit = 0). The β coefficients capture the influence of covariates on the probability

of a positive mammogram (the “call back” rate). The δ coefficients capture the additional
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influence of covariates given dit = 1. Thus, a test of δ = 0 tests whether x influences the

accuracy of mammography.

For the marginalized multilevel model, we capture the dependence structure through a

conditional logistic regression model that includes the previous outcome yit−1 to account for

the serial correlation within women and that incorporates radiologist-specific effects. The ac-

curacy of screening mammography is typically only estimated for women without a previous

history of breast cancer, since women with a history of breast cancer undergo surveillance

mammography as opposed to true screening. Therefore, observation t for woman i is only

included in the analysis if dit′ = 0 for t′
= 1, . . . , t− 1, and hence, the previous mammogram

result is either a true negative (if yit−1 = 0) or a false positive (if yit−1 = 1). Let uj be the

effect associated with the jth radiologist, j = 1, . . . , J . To take into account the correlation

within women and radiologists, the conditional probability of a positive mammogram µC
it is

modeled as a function of the previous result and the radiologist-specific effect:

µC
it = p (yit = 1|dit, yit−1 for t > 1, cit = j, uj) (6)

logit
(
µC
it

)
= ∆it + (α1 + α2dit) yit−1 + uj

uj ∼ N (0, 1/τ )

An interaction between yit−1 and dit was included, since the influence of the previous out-

come may depend on current disease status. We only included a single random effect for

radiologist, as opposed to allowing two radiologist-specific effects that depend on disease sta-

tus, because exploratory analyses fitting mixed-effects models (ignoring correlation within

women) showed that the maximized log likelihoods were nearly equivalent for the model with
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a single radiologist-specific effect and the model with two correlated random effects.

To test for endogeneity, we regressed each time-varying covariate (mammogram number,

breast density, and disease status) on the previous outcome (mammogram result), adjusting

for age and previous values of that covariate when appropriate. We found that the assump-

tion of exogeneity does not hold for cancer status, because having a previous false positive

mammogram was a significant predictor of future cancer (OR = 1.45, 95% CI = 1.18 to

1.76); There are a couple of possible explanations for this. First, some benign breast dis-

eases picked up by mammography are predictive of future cancer. Second, this may be due

to our definition of breast cancer, which only includes cases that are found within one-year

and before the next screening examination. Some mammograms we considered to be false

positive may have picked up cancer that was not diagnosed until after our follow-up period.

To account for endogeneity, we modelled the probability of having cancer at time t as a

function of prior mammography result yit−1at time t− 1 using logistic regression:

logit [p (dit = 1)] = ζ
0
+ ζ

1
yit−1 + ξHit−1(x).

where Hit−1(x) includes prior age and prior density.

The prior distributions for α,β, δ, ζand ξ were taken to be normal(0, 100) which is

relatively flat across the range of typical logistic regression parameter values. The prior

distribution for the precision τ for the radiologist-specific effect distribution was taken to

be gamma (2.1, 2). The radiologist-specific effects are not expected to be greater than the

typical size of logistic regression coefficients; thus, we chose values of the gamma distribu-

tion that put more weight on standard deviations less than 4. After updating the tuning
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parameters for the Metropolis steps using the three-simulation strategy of Raftery and Lewis

(1996), we ran three samplers for each model starting at dispersed values for 20,000 itera-

tions each, throwing away the first 10,000 iterations for burn-in. Results are based on the

30,000 remaining iterations. To check convergence, the samplers were compared to verify

convergence to the same posterior modes. For the Gauss-Hermite quadrature, 20 points were

used.

For comparison, the marginal mean model was also fit using the three-step GEE strategy

discussed in Section 3.

4.2 Results

The analyses include 123,083 screening mammograms on 73,216 women age 40-79, read by

41 radiologists. Among these women, 816 were diagnosed with breast cancer within the

follow-up period. About half of the women had one observation (50.3%), 37.3% had two,

11.4% had three, and 1.0% had four or more observations over the 5 year time period. The

number of mammograms read by each radiologist ranged from 109 to 10,287 with a median

of 2,534, and the number of mammograms read for women diagnosed with breast cancer

ranged from 0 to 73, with 40 radiologists seeing at least one woman subsequently diagnosed

with cancer. Of the 816 women with cancer, 702 had a positive mammogram resulting in a

crude sensitivity of 86.0% (Table 2). Of the 122,267 observations with no diagnosis of breast

cancer, 107,696 had a negative mammogram giving a crude specificity of 88.1% (Table 2).
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Table 2. Number of observations (column percentages) for each
mammogram result by breast cancer status.

Mammogram Result Breast Cancer No Breast Cancer Total N
Positive 702 (86.0%) 14,571 (11.9%) 15,273
Negative 114 (14.0%) 107,696 (88.1%) 107,810
Total N 816 122,267 123,083

The regression coefficients and widths of the confidence/credible intervals (CIs) from the

marginalized multilevel models with and without correction for endogenous covariates, the

three-step GEE approach, and the naïve (unadjusted) model are shown in Table 3. The

Bayesian credible intervals are 95% highest posterior density intervals. In general, results

are similar for all approaches. The most important predictor of a positive mammogram is

having breast cancer. Having a first mammogram, increasing age, and increasing breast

density are all associated with an increased probability of being recalled for further work-

up of a mammogram; however, only breast density is significantly associated with poorer

accuracy of mammography.

It is difficult to determine a priori if adjustment for correlation will result in smaller or

larger variance estimates, since covariates vary both within and between clusters. However,

comparing the CI widths reveals some clear patterns (Table 3). These patterns differ for the

β coefficients (main effects), which are estimated from the entire study population, and the δ

coefficients (interaction effects), which are effectively estimated only from women diagnosed

with breast cancer. The GEE CIs for the β coefficients are wider than the naïve CIs, which

is what we would generally expect since data are correlated within clusters. Except for the

intercept, the β CIs from the marginalized multilevel model adjusting for endogeneity are

narrower than the GEE CIs, hinting at efficiency gains for the likelihood-based approach.
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Table 3. Estimated regression coefficients and width of confidence/credible intervals (CI) from
naive model, three-step GEE approach, and marginal multilevel model (MMM) without and with
adjustment for endogenous covariates. Estimates with CIs that do not include zero are in bold.

The naïve model assumes that all observations are independent.

Estimate CI Width
Naïve/ MMM MMM MMM MMM

Parameter GEE Exogenous Endogenous Naïve GEE Exogenous Endogenous
Intercept -2.45 -2.34 -2.37 0.10 0.22 0.22 0.25
First screen 0.48 0.52 0.51 0.09 0.12 0.09 0.09
Age 40-49 0.17 0.12 0.13 0.12 0.14 0.12 0.11
Age 50-59 0.22 0.21 0.21 0.11 0.13 0.11 0.11
Age 60-69 0.14 0.16 0.15 0.12 0.14 0.12 0.12
Dense breasts 0.40 0.37 0.36 0.07 0.15 0.08 0.07
Breast cancer (BC) 4.82 4.82 4.83 1.00 0.96 1.03 1.00
First*BC 0.39 0.42 0.46 1.66 1.54 1.68 1.62
Age 40-49*BC -0.69 -0.59 -0.55 1.28 1.11 1.25 1.24
Age 50-59*BC -0.34 -0.35 -0.42 1.14 1.05 1.14 1.13
Age 60-69*BC -0.02 -0.05 -0.04 1.21 0.94 1.29 1.20
Dense breasts*BC -1.18 -1.19 -1.16 0.97 0.94 0.94 0.93
Previous FP 0.70 0.70 0.15 0.16
Previous FP*BC 1.39 0.88 3.03 3.21
Tau 7.06 6.26 4.80 4.35
FP=false positive, BC=breast cancer
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The ratio of standard errors comparing the marginalized model to GEE range from 0.48 to

0.88. The CIs from the marginalized multilevel model with adjustment for endogeneity are

of equal width or narrower than CIs from the unadjusted model.

For the δ coefficients, the GEE CIs are narrower than the naïve models. There are several

possible explanations for this result. First, breast cancer status changes over time within

women and varies both between and within radiologists. Second, this may be due to bias

in standard error estimates resulting from the small number of clusters, with only 41 total

radiologists (Mancl and DeRouen, 2001). The CIs from the marginalized multilevel model

with adjustment for endogeneity are wider than the GEE CIs but narrower than the naïve

CIs. The CIs from the marginalized multilevel model with adjustment for endogeneity are

narrower than CIs from the unadjusted model.

Table 4. Estimated sensitivity and specificity (95% confidence/credible intervals)
by age, first versus subsequent mammography, and breast density, adjusted for

other covariates in the model.

Sensitivity Specificity
GEE MMM GEE MMM

Overall 86.0 (83.4, 88.1) 86.5 (84.3, 89.1) 88.1 (87.1, 89.1) 87.3 (86.1, 88.5)
Mammogram number
First 93.1 (87.3, 97.0) 94.9 (89.3, 97.8) 83.1 (81.8, 84.5) 81.8 (80.1, 83.3)
Subsequent 85.1 (82.3, 87.4) 85.7 (83.2, 88.4) 88.9 (87.8, 89.8) 88.2 (87.0, 89.3)

Age (years)
40-49 80.4 (73.8, 86.1) 82.6 (75.7, 88.1) 88.0 (87.0, 88.9) 87.4 (86.1, 88.6)
50-59 85.9 (80.5, 90.4) 86.5 (82.4, 90.5) 87.4 (86.2, 88.5) 86.6 (85.2, 87.8)
60-69 88.5 (84.8, 91.7) 89.7 (85.1, 93.0) 88.2 (87.0, 89.4) 87.3 (85.9, 88.5)
70-79 87.3 (84.0, 90.1) 88.7 (83.5, 92.4) 89.6 (88.6, 90.5) 88.8 (87.6, 90.0)

Breast density
Not Dense 91.2 (87.4, 94.3) 92.5 (88.9, 94.6) 90.2 (89.3, 91.2) 89.4 (88.3, 90.4)
Dense 82.8 (79.6, 85.5) 83.7 (80.1, 87.1) 86.2 (85.0, 87.4) 85.5 (84.1, 86.8)

Table 4 displays the accuracy measures from the GEE model and the marginalized mul-

tilevel model with adjustment for endogeneity, standardized to the overall distribution of the
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Table 5. Conditional sensitivity and specificity
(95% credible intervals) by previous
mammography result, marginalized

over radiologist-specific effects.

Mode (95% CI)
Sensitivity

Previous TN 83.8 (80.9, 87.2)
Previous FP 97.9 (91.4, 99.8)

Specificity
Previous TN 89.5 (88.5, 90.5)
Previous FP 81.3 (79.6, 82.9)

other covariates in the model among cancer cases for sensitivity and the distribution among

non-cancer cases for specificity. Sensitivity is estimated to be slightly lower and specificity

is slightly higher from the GEE model compared to the marginalized multilevel model. The

estimated sensitivity of mammography is 86.0 (95% CI = 83.4 to 88.1) from the GEE model

and 86.5% (95% CI = 84.3% to 89.1%) from the marginalized multilevel model. The esti-

mated specificity is 88.1 (95% CI = 87.1 to 89.1) from the GEE model and 87.3% (95% CI =

86.1% to 88.5%) from the marginalized multilevel model. Sensitivity is higher and specificity

is lower for first mammograms. Sensitivity and specificity are both lower for women with

dense breasts.

The marginalized multilevel model provides additional, scientifically-interesting informa-

tion on conditional accuracy given previous mammography result, displayed in Table 5. Re-

sults were marginalized over the radiologists-specific effects using Gauss-Hermite quadrature.

Having a previous false positive mammogram is predictive of a future positive mammogram,

independent of disease status (OR = 2.02, 95% CI = 1.86 to 2.18), but is not significantly

associated with mammography accuracy (OR = 2.41, 95% CI = 0.72 to 17.8). Both the

true positive and false positive rates are higher for women with a previous false positive
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mammogram. Sensitivity is 83.8% (95% CI = 80.9% to 87.2%) for women with a previous

true negative mammogram and 97.9% (95% CI = 91.4% to 99.8%) for women with a previ-

ous false positive mammogram. Specificity is 89.5% (95% CI = 88.5% to 90.5%) for women

with a previous true negative mammogram and only 81.3% (95% CI = 79.6% to 82.9%) for

women with a previous false positive.

Figure 1: Posterior distribution of sensitivity by radiologist. Radiologists are ordered by

increasing number of mammograms read where 1 corresponds to the radiologist that read

the fewest mammograms (N=109) and 41 corresponds to the radiologist that read the most

mammograms (N=10,287).

The posterior mode of the population precision for the radiologist-specific effects is 6.3.

This corresponds to a standard deviation on the log-odds scale of 0.40. The posterior dis-

tributions for each radiologist’s sensitivity and specificity, ordered by the total number of

mammograms read, are shown in Figures 2 and 3. Posterior modes for sensitivity range from
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82% to 91%. Specificity ranges from 80% to 91%.

Figure 2: Posterior distribution of specificity by radiologist. Radiologists are ordered by

increasing number of mammograms read where 1 corresponds to the radiologist that read

the fewest mammograms (N=109) and 41 corresponds to the radiologist that read the most

mammograms (N=10,287).

5 Discussion

This manuscript has focused on the development and comparison of two multilevel ap-

proaches for regression analysis of binary data. A GEE method that relies on a working

independence assumption coupled with a three-step method for obtaining empirical standard

errors is outlined. Likelihood-based methods implemented using Bayesian computational

techniques are discussed, and implications of covariate endogeneity are addressed. Table 6

makes some broad comparisons of key advantages and disadvantages for each approach.
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Table 6. Comparison of key advantages and disadvantages of GEE and
likelihood based approaches.

Property GEE Likelihood-based
Number of clusters (—) Requires a large number of (+) Permits general

clusters for valid empirical inference even with a
standard errors small number of clusters

Missing data (—) Requires missing completely (+) Requires either missing
at random (MCAR) or at random or MCAR
weighting inversely by
non-missingness probability

Estimation efficiency (—) For non-nested clusters and (+) Optimal under correct
endogenous covariates, working model specification
independence is required,
which may be inefficient

Robustness (+) Valid inference on regression (—) Valid inference requires
parameters without requiring correct specification of
correct dependence model mean and dependence

models
Computational ease (+) Uses standard software (—) Requires tailored

with minor modification software
Time-varying covariates (+) Consistent estimation of (—) Requires exogeneity

cross-sectional models by with appropriate lags
using working independence or model for covariates
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In our motivating application there are 41 top-level clusters, and GEE empirical standard

error estimates may be negatively biased with such a modest number of clusters. Bayesian

estimation is essentially exact, but with a small number of clusters can be sensitive to the

variance component or regression parameter priors. Missingness issues were not considered

important in our example, but without modification GEE may give biased results when

data are not missing completely at random. Although efficiency may not seem an issue

with over 120,000 observations, ultimately we have only 816 cancer cases, and only 114 false

negative tests among these cases. Thus, our data contain substantial information regarding

specificity but rather limited information regarding sensitivity. In prospective longitudinal

studies, although many subjects are typically enrolled, the accrual of incident cases may be

quite small for rare outcomes and thus efficient estimation can be crucial. Finally, in contrast

to GEE, use of maximum likelihood or Bayesian methods requires correct dependence model

specification for valid inference and tailored software to address the non-nested multilevel

structure and endogenous covariates.

In this manuscript we develop two estimation methods for marginal regression inference

that are valid under different assumptions about the distribution of the observed data. The

ability to compare the primary regression results and assess whether conclusions are sensi-

tive to the specific secondary dependence or missingness assumptions is valuable in practice.

Ultimately, the choice of analysis method will depend on the particular characteristics of

the application, including the plausibility of required assumptions and computational con-

venience.
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7 Appendix 1: MCMC algorithm

In the style of Gibbs Sampling, we first update the regression coefficients α and β in a single

block, conditional on u and τ , using a Metropolis (random walk) step. Let θ =
(
αT

,βT
)T

. A

vector z is simulated from a multivariate normal distribution with mean zero and covariance

matrix Σ and the candidate values θ∗ are taken to be the current values θ + z. The tuning

parameter Σ may be estimated using the three-simulation strategy of Raftery and Louis

(1996), setting Σ = 2.3√
Q
Σ
∗
where Σ

∗
is the estimated conditional covariance matrix of θ and

Q is the length of θ. The acceptance probability for θ∗ is

exp

{
−

ψ

2

Q∑

q=1

[(
θ∗q
)2
− θ

2

q

]} N∏
i=1

Ti∏

t=1

(
µ
C

it
(τ ∗)

)
yit

(
1− µ

C
it (τ

∗)
)(1−yit)

(µC
it (τ ))

yit (1− µ
C
it (τ ))

(1−yit)
.

We update the cluster-specific effects u conditional on τ ,α, and β using a Metropolis

(random walk) step. For each j, the candidate value u∗j is set equal to the current value uj+z

where z is a normal deviate with precision estimated as above. The acceptance probability
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for the candidate value u∗j is

exp

{
−

τ

2

[
(uj)

2
− u

2

j

]} N∏
i=1

Ti∏

t=1

(
µ
C

it
(τ∗)

)
yit

(
1− µ

C
it (τ

∗)
)(1−yit)

(µC
it (τ ))

yit (1− µ
C
it (τ ))

(1−yit)
.

Similarly, to update the population precision τ we use a random walk step. Unlike stan-

dard hierarchical regression, the likelihood for the marginalized hierarchical model depends

on τ after conditioning on u because β (and hence ∆) depends on τ . The acceptance proba-

bility for the candidate value τ ∗ = τ+z, where z is a normal deviate with precision estimated

as above, is

(
τ ∗

τ

)A−1+u/2

exp

(
−B (τ ∗ − τ )−

τ
∗

− τ

2

J∑

j=1

u
2

j

)
N∏
i=1

Ti∏
t=1

(
µ
C
it (τ

∗)
)
yit

(
1 − µ

C
it (τ

∗)
)(1−yit)

(µC
it (τ ))

yit (1− µ
C
it (τ ))

(1−yit)
.

The most time-consuming step is estimating ∆. To increase computational speed, τ may be

updated along with α and β in a single block.

8 Appendix 2: Solving for ∆

If all covariates are exogenous, µ
it−1

(z) and µM
it−1

(Hit(x)) do not depend on xit given

Hit−1(x). In this case, we can solve for∆ sequentially by first calculating ∆i1 and µi1
(z) and

then sequentially updating ∆it and µit (z) given µit−1 (z) and µ
M

it−1
(Hit(x)). We can calcu-

late ∆i1 using the Newton-Raphson algorithm to solve the equation that links the marginal

mean and the conditional expectation:

µ
M

i1
=

∫
logit−1 (∆i1 + σz) φ (z) dz (7)
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where

∆
(n+1)
i1 = ∆

(n)
i1 −

∫
logit−1 (∆i1 + σz)φ (z) dz − µM

i1∫
logit−1 (∆i1 + σz)

(
1 − logit−1 (∆i1 + σz)

)
φ (z) dz

.

The integrals may be estimated using Gauss-Hermite quadrature. Given∆i1, µi1
(z) =logit−1 (∆i1 + σz)

We may then sequentially solve for µit (z) and ∆it given µit−1 (z) and µM
it−1

(Hit(x)) as

follows. First, we iteratively solve for ∆it using the Newton-Raphson algorithm and Gauss-

Hermite quadrature to solve the equation that links the marginal mean and the conditional

expectation (3) where

∆
(n+1)
it

= ∆
(n)
it
−

∫
hit1µit−1

(z) + hit0

[
1 − µ

it−1
(z)

]
φ (z) dz − µM

it∫
hit1 [1 − hit1]µit−1 (z) + hit0 [1− hit0]

[
1 − µit−1 (z)

]
φ (z) dz

,

and hitk = h (∆it, k, z) . Given ∆it and µit−1 (z), we may calculate

µit (z) = h (∆it, 1, z) µit−1 (z) + h (∆it, 0, z)
[
1− µit−1 (z)

]
.

In the case of an endogenous covariate xitk, we need to additionally sample values for the

regression coefficients ζ and ξ from the GLM for xitk and estimate µit−1
(z) and µM

it−1
(Hit(x))

using the factorization given in section 2, equation (4).
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