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1 INTRODUCTION

The performance of a binary classifier with continuous output is often evaluated with Receiver

Operating Characteristic (ROC) Curve analysis (Zhu et al., 2002; Brusic et al. 2002; Pepe,

2000). For two states D and D̄, which are typically diseased and non-diseased states in medicine,

and classifier output Y, let Y > c indicate classification into state D. The ROC curve plots

(P (Y > c | D̄), P (Y > c | D)) for all possible thresholds c, and provides a visual description

of the trade-offs between the true positive rate (TPR) and the false positive rate (FPR) as the

threshold stringency (c) changes. For t = FPR(c), we can write ROC(t) = TPR(FPR−1(t)). The

curve lies in the unit-square, in which a useless classifier is represented by the diagonal line from

vertices (0, 0) to (1, 1) and a curve pulled closer towards (0, 1) indicates better performance. When

under development, a classifier’s optimal threshold is not known. Since the relative importance

of false negative and false positive misclassifications changes depending on the setting in which

the technology is implemented, the optimal threshold varies. Hence, a summary measure that

aggregates performance information across possible thresholds is desirable. The area under the

ROC curve (AUC) summarizes across all thresholds. The AUC has the interpretation as P (Y D >

Y D̄), where the superscripts indicate from which state the output arises (Bamber, 1975). We

prefer to interpret the AUC as an average true positive rate across false positive rates, since

AUC =
∫ 1
0 ROC(t)dt. A perfect classifier has AUC = 1, while one that performs no better than

chance has an AUC of 1/2. Although the AUC is by far the most commonly used summary index,

other measures have been described (see Shapiro, 1999 for a review), and are preferable in certain

settings. In this paper, we focus on the AUC.

Classifier performance may depend on several factors, including characteristics of the popula-

tion tested or operating parameters of the test. Consider the following study of an experimental
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hearing device developed to diagnose hearing impairment. The device under study, distortion

product otoacoustic emission (DPOAE), measures the strength of the cochlear response from two

sounds emitted into a single ear at different frequencies and intensities (Stover et al., 1996). The

strength of the DPOAE output, measured by DPOAE amplitude, indicates auditory function.

Since the standard method for diagnosis of hearing impairment requires active subject participa-

tion, the DPOAE device might be useful for subjects who are too sick, too young or too mentally

disabled for the behavioral gold standard test.

One goal of the study was to determine if DPOAE performance depends on the frequency and

intensity of the two stimuli emitted into the ear to select optimal stimuli for further research. Ad-

ditionally, the relationship between performance and severity of hearing impairment is of interest.

For example, maybe DPOAE better diagnoses the most severely impaired ears than those with

mild impairment. Exploration of the relationship between severity of impairment and diagnostic

accuracy yields information about the types of cases who will be diagnosed with the system. We

refer to the severity covariate as “disease-specific” because it applies only to diseased (or hearing

impaired) subjects. The other covariates, frequency and intensity, are adjustable operating pa-

rameters of the device. Other applications may include covariates that characterize performance

as a function of the population tested (e.g., age or gender) or of the testers (e.g., experience).

Understanding the effects such covariates have on the discrimination capacity of the classifier can

suggest settings in which the classifier works best and motivate innovations in settings in which

performance is inadequate.

We propose to evaluate covariate effects on classifier accuracy using a regression model for the

AUC summary index of the ROC curve. This is analogous to the evaluation of covariate effects

on an outcome variable by using regression models for the mean, which is, after all, a summary
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statistic for the distribution of the variable. Alternative approaches to regression modelling of

ROC curves have been proposed (see Pepe, 1998 for a review), and we will contrast them briefly

with AUC regression in Section 7. First, we develop our approach.

2 AUC BINARY REGRESSION

2.1 The Model

Although D and D̄ may be any two states, we use terminology from diagnostic testing for them, so

D is referred to as “disease” and D̄ is referred to as “non-disease.” We use X to denote covariates

and Y to denote classifier output. Let (Y D
i ,XD

i ) and (Y D̄
j ,XD̄

j ) denote observations from D and

D̄, with (i = 1, ..., nD) and (j = 1, ..., nD̄), respectively. The result of Bamber (1975) suggests

that we can write the covariate-specific AUC as P (Y D
i > Y D̄

j | XD
i ,X

D̄
j ) ≡ θij. The parameter

θij compares the results from diseased population with covariates XD
i to those from non-diseased

with covariates XD̄
j . To simplify notation, let Xij denote (XD

i ,X
D̄
j ), or a specified function of

them. For a vector of parameters β and a monotone increasing link function g, we propose the

following AUC regression model:

g(θij) = XT
ijβ. (1)

The probit and logit are natural link functions. When the logit link is used, exponentiated pa-

rameters have interpretations as AUC odds, where AUC odds are defined as AUC/(1 −AUC) =

P (Y D > Y D̄)/P (Y D < Y D̄). Since larger AUCs are associated with increasing accuracy, AUC

odds greater than one indicate improved test accuracy.

Now, consider a binary covariate such as gender with, say, X = 0 for males. In this case, the

AUC is computed within each gender as an AUC comparing test results of diseased females to non-
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diseased males (or vice-versa) is typically not of interest. Under the model logit(θ) = β0 + β1X,

exp(β1) is the ratio of AUC odds for the test in women versus men. If β1 > 0, the test is better at

distinguishing between diseased and non-diseased women than between diseased and non-diseased

men.

When covariates are specific to the diseased group (e.g., stage of disease), the AUC is modelled

as a function of the covariate XD
i . That is, the covariate-specific AUC is defined as P (Y D

i >

Y D̄
j |XD

i ) ≡ θi. The model logit(θi) = β0 + β1X
D
i describes the change in accuracy as a function

of XD
i on the logit scale. The number exp(β1) describes the ratio of AUC odds associated with a

one unit increase in stage of disease.

For a continuous covariate, the model of interest describes the change in accuracy as a covariate

common to the diseased and non-diseased groups changes. Consider, for example, the covariate

age. Computation of an AUC for diseased subjects of age 80 and non-diseased subjects of age

50 is not scientifically relevant, while an AUC for diseased and non-diseased subjects both of

age 80 (or of age 50) is of interest. The goal is to understand how the AUC, for diseased and

non-diseased subjects of the same age, changes as age varies. The parameter β1 in the model

logit(θij) = β0 + β1X
D
i + β2(XD

i − XD̄
j ) describes this relationship. If the covariate is age in

years, exp(β1) is the ratio of AUC odds associated with a one-year increase in age for diseased

and non-diseased subjects of the same age. If this value is greater than one, then the AUC is an

increasing function of age, and the test performs better in older subjects than in younger subjects.

2.2 Proposed Estimating Function

To estimate the regression parameters, we propose a binary regression. Define Uij = I(Y D
i > Y D̄

j ),

and let N = nD +nD̄. Note that E (Uij | Xij) = P
(
Y D

i > Y D̄
j | Xij

)
= θij. This suggests that our

model, g(θij) = XT
ijβ, is a generalized linear regression model for the binary variables Uij. The
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following estimating function:

SN (β) =
nD∑
i

nD̄∑
j

∂θij

∂β
ν(θij)−1 (Uij − θij) ≡

nD∑
i

nD̄∑
j

Sij(β) (2)

is the classic estimating function for binary regression, except the Uij ’s are not independent.

The term ∂θij/∂β is a (p × 1) vector of the partial derivatives of θij with respect to the model

parameters β. The term ν(θij) is the variance function, while last term describes the mean model

of Uij conditional on Xij .

The binary random variables Uij in expression (2) are cross-correlated. For example, the

indicator Uij will be correlated with Uij′ , for all j �= j′, because the ith diseased observation

contributes to each indicator. Similarly for each fixed j, the indicators are correlated across all

i. As a result, asymptotic theory is not standard. The estimating function assumes observations

are independent, and, to borrow language from Generalized Estimating Equations (GEE), uses

an independent working covariance matrix (WCM). Note that an WCM that accounted for the

correlations might improve efficiency. However, the Pepe-Anderson condition that allows for a non-

diagonal WCM often fails in diagnostic testing applications with repeated measures and would

result in inconsistent estimates (Diggle et al., 2002; pg.255). Furthermore, in applications in which

the above condition is met, the dimensionality of the non-diagonal WCM may be prohibitively

large. For example, in the application here the matrix would be of dimension 72708 × 72708.

2.3 Implementation

Data are observed as follows: {(Y D
1 ,XD

1 ), ..., (Y D
nD
,XD

nD
), (Y D̄

1 ,XD̄
1 ), ..., (Y D̄

nD̄
,XD̄

nD̄
)}. Section 2.2

suggests that all pairs are included in (2), but one only needs to include (and model) subsets of

pairs. First, note that if covariates are categorical and there are sufficient observations at each

covariate level, pairs are created only within strata, defined by distinct covariate values. However,
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when covariates are not categorical or data are too sparse within strata, pairs of (Y D
i ,XD

i ) and

(Y D̄
j ,XD̄

j ) must be created for subjects with different covariate values. It may not be appropriate

to pair (Y D
i ,XD

i ) and (Y D̄
j ,XD̄

j ) for all (i, j), as it allows covariate values far apart from one

another to influence model fit. We propose to pair observations with covariate values that are

within a neighborhood, e.g., create a pair if |XD
i − XD̄

j | ≤ ζ. If covariates for the (i, j)th pair

are farther than ζ apart, that pair is not included in the estimating function. Observe that the

estimating function is now a sum over only the (i, j) pairs satisfying |XD
i −XD̄

j | ≤ ζ. The number

of pairs depends on ζ and the distribution of covariates. For a given i the number of observations

from non-diseased subjects paired with Y D
i is denoted nD̄(ζ, i). Here, the estimating function is

the sum
∑nD

i

∑nD̄(ζ,i)
j Sij(β). Choosing ζ = 0, corresponds to pairing only observations with the

same covariate value. At the other extreme, setting ζ = ∞ corresponds to pairing all diseased

and non-diseased results. There is a trade-off between bias and efficiency as ζ varies. For a small

ζ, much of the data is excluded, and the method will be less efficient. On the other hand for

a large ζ, more structure is imposed on the data, and, unless it is correct, this introduces bias.

When fewer model restrictions are preferred, select ζ as small as possible, while including enough

covariate pairs within a neighborhood to give estimates with adequate precision. There are obvious

analogies here to the problem of smoothing in regression.

Once the pairing has been completed, estimation proceeds by setting the estimating function

equal to zero. If the link function is chosen to be the identity, closed-form expressions for β̂ are

derived. Otherwise, estimation requires an iterative procedure such as Newton-Raphson (McCul-

lagh and Nelder, 1997). Logistic or probit regression estimation routines in standard statistical

packages can be used to calculate estimates, although standard errors require either the bootstrap

or special programming for asymptotic variance forms.
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3 ASYMPTOTIC DISTRIBUTION THEORY

The estimating function (2) is a sum of random variables that are cross-correlated. Hence, standard

theory developed for sums of independent random variables does not apply. To simplify notation

we assume ζ = ∞ here. The theory holds for ζ ∈ (0,∞), but is notationally complex. As before,

let nD(ζ, j) denote the number of Y D’s paired with the jth result of non-diseased, and similaly for

nD̄(ζ, i). Then, as long as nD(ζ, j) = O(N) and nD̄(ζ, j) = O(N) the theory applies. If ζ is fixed

and does not get smaller as N increases, these conditions should be satisfied. In other words, as

long as each diseased is paired with a proportion of the non-diseased subjects the theory outlined

below applies.

To derive theory, we assume the following conditions (C1) {(Y D
i ,XD

i ) : i = 1, ..., nD} are

i.i.d., {(Y D̄
j ,XD̄

j ) : j = 1, ..., nD̄} are i.i.d., and both vectors are mutually independent; (C2)

limN→∞ nD/N → λ, where 0 < λ < 1 and N = nD + nD̄; (C3) g(u) is monotone increasing and

three-times differentiable with bounded derivatives; (C4) there exists ε > 0 such that ν(θij) > ε

for β ∈ Nδ(β0) ≡ {β :‖ β − β0 ‖< δ}; (C5) the covariate space is bounded; (C6) the matrix

E(∂Sij(β0)/∂β) is negative definite.

It follows from (C3)-(C6) that 1
nDnD̄

∂
∂βSN (β), 1

nDnD̄

∂2

∂β∂βT SN (β), and ∂
∂βE
(

1
nDnD̄

∂
∂βSN (β)

)
are bounded uniformly for β ∈ Nδ(β0). To see this one must show that each of the elements in

1
nDnD̄

∂
∂βSN (β) and 1

nDnD̄

∂2

∂β∂βT SN (β) has a bound independent of β. The boundedness condition

of ∂
∂βE
(

1
nDnD̄

∂
∂βSN (β)

)
is slightly more involved, and requires demonstrating that its limit is

equal to that of E
(

1
nDnD̄

∂2

∂β∂βT SN (β)
)
, whose bound does not depend on β. We refer to this as

property (B). Proofs of lemmas are found in the appendix.
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3.1 Consistency

Theorem 1. Under (C1) − (C6), as N → ∞, solutions to SN (β) = 0 are unique with probability

converging to 1 and β̂ →p β0.

Consistency is established by demonstrating the four conditions described by Foutz (1977), which

are sufficient for the existence and uniqueness of consistent solutions to likelihood equations. Al-

though the result was developed for likelihood equations, it can be applied to any estimating

function satisfying the following four properties, which we refer to as ‘Foutz conditions’: (F1)

∂SN (β)/∂β exists and is continuous for β ∈ Nδ(β0), (F2) (nDnD̄)−1 ∂SN (β)/∂β →p E (∂Sij(β)/∂β)

uniformly for β ∈ Nδ(β0) as N → ∞ , (F3) (nDnD̄)−1∂SN (β0)/∂β is negative definite with prob-

ability converging to one as N → ∞, and (F4) ESN (β0) = 0. The assumptions listed above and

the following two lemmas are sufficient for establishing the Foutz conditions.

Lemma 1. Under property (B), and if, for each fixed β ∈ Nδ(β0),
(

1
nDnD̄

∂
∂βSN (β)

)
converges to

E
(

∂
∂βSij(β)

)
in probability as N → ∞, then convergence of 1

nDnD̄

∂
∂βSN(β) to E

(
∂
∂βSij(β)

)
is

uniform for β ∈ Nδ(β0).

Lemma 2. 1
nDnD̄

∂
∂βSN (β) →p E

∂Sij(β)
∂β as N → ∞.

Condition (F1) follows trivially from the assumptions above by the existence of third deriv-

atives of the elements of SN (β). The sufficient conditions for uniform convergence required by

(F2) are given by Lemma 1. Lemma 2 establishes the convergence results needed for Lemma 1.

Hence, Foutz’ condition (F2) is satisfied. Condition (F3) follows since (nDnD̄)−1∂SN (β0)/∂β →p

E(∂Sij(β0)/∂β) by Lemma 2, which by assumption is a negative definite matrix. Finally, since by

definition E(Uij) = θij, condition (F4) is satisfied.
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3.2 Asymptotic Normality

To derive the limiting distribution, we find a sum that closely approximates SN (β) to which a

central limit theorem for triangular arrays can be applied. First we take the conditional expectation

of Uij at a fixed test result for a diseased subject. Consider the following:

E
(
Uij |Y D

i = yD
i ,X

D
i ,X

D̄
j

)
= E

(
I(yD

i > Y D̄
j )|XD

i ,X
D̄
j

)
= PXD̄

j
(yD

i > Y D̄) ≡ F D̄
XD̄

j

(yD
i ).

This notation denotes the probability of observing a value of yD
i or lower in the distribution of test

results of non-diseased that have covariate pattern XD̄
j . We refer to 1 − F D̄

XD̄
j

(yD
i ) as placement

values. They indicate the “place” the diseased observation has in the distribution of non-diseased

test results with covariate pattern XD̄
j . For a given yD

i , a value of F D̄
XD̄

j

(yD
i ) closer to 1 indicates

that most of the non-diseased test results fall below it. Note that E(F D̄
XD̄

j

(Y D
i )|XD

i ) = P (Y D
i >

Y D̄
j |XD

i ,X
D̄
j ) = θij. If the Y D’s, on average, fall in the upper tail of the distribution of Y D̄, then

the AUC will be larger.

An analogous entity is defined by conditioning on a non-diseased observation as follows:

E
(
Uij |Y D̄

j = yD̄
j ,X

D
i ,X

D̄
j

)
= (1 − FD

XD
i

(yD̄
j )) ≡ F̄D

XD
i

(yD̄
j ). The interpretation is similar to the

placement value concept for yD
i . We define the following sum:

SN,P (β) =
nD∑
i

n̄D∑
j

ωij

{(
FXD̄

j
(Y D

i ) − θij

)
+
(
F̄XD

i
(Y D̄

j ) − θij

)}
, (3)

where ωij = (∂θij/∂β)ν−1(θij). Arguments from U-statistic theory can be used to show that

N−3/2(SN,P (β)−SN (β)) →p 0. Since SN (β) and SN,P (β) are asymptotically equivalent, the asymp-

totic normality claimed in Theorem 2 is proven by applying a central limit theorem for triangular

arrays to SN,P (β), which is a sum of independent random variables.
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Theorem 2. Under (C1)-(C6),
√

nDnD̄
N (β̂ − β0) →d Z ∼ N(0, I(β0)−1 Σ/ I(β0)−1) as N → ∞,

where I(β0) ≡ −E
(

∂
∂βSij(β0)

)
and

Σ/ = lim
N→∞

nD

N

 1
nD̄

nD̄∑
j

1
n2

D

nD∑
i

nD∑
k

ωijω
T
kjcov
(
F̄D

XD
i

(Y D̄
j ), F̄D

XD
k

(Y D̄
j )
)

+ lim
N→∞

nD̄

N

 1
nD

nD∑
i

1
n2

D̄

nD̄∑
j

nD̄∑
l

ωijω
T
il cov

(
F D̄

XD̄
j

(Y D
i ), F D̄

XD̄
l

(Y D
i )
)

≡ λΣ/D̄ + (1 − λ)Σ/D. (4)

Observe that the asymptotic variance is comprised of one component that depends on vari-

ability in Y D and another that depends on Y D̄, with each weighted by its relative contribution to

the overall sample size. To obtain variance estimates, models for FD
XD and F D̄

XD̄ must be specified.

Bootstrapped standard errors are recommended when covariate data are continuous or sparse be-

cause making such assumptions is undesirable in practice. When covariates are discrete and there

are sufficient observations at each level to estimate FD
XD and F D̄

XD̄ this formula could be applied.

The theory is extended to repeated measures data when the number of diseased and non-diseased

subjects gets large. To show this, we identify all the ij pairs in the score equation and call the sum

of these U∗
ij . Similar theory can then be applied to the U∗

ijs, although the variance has a different

form. When there are repeated measures, we recommend the bootstrap to obtain appropriate

standard errors.

4 RELATIONSHIPS WITH EXISTING METHODS

4.1 Comparing two AUCs

Consider the following model to compare two tests administered to each subject: θk = g−1(β0 +

β1Xk), where (k = 1, 2) and Xk is an indicator variable for test type with value 0 when k = 1.

For this simple case, the proposed method recovers an existing approach in the literature. The

model parameterizes the AUCs for the two tests as g−1(β0) and g−1(β0 + β1). To compare the
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AUCs for the two tests, we test the null hypothesis H0 : β1 = 0. Denote Uijk = I(Y D
ik > Y D̄

jk ) and

let ν(θij) = 1. The estimating function is simply:

2∑
k=1

nDk∑
i=1

nD̄k∑
j=1

 1

Xk

{Uijk − g−1(β0 + β1Xk)
}
. (5)

The estimator of g−1(β0) under the null hypothesis is:

g−1(β̂0
0) =

(
2∏

k=1

nDknD̄k

)−1 2∑
k=1

nDk∑
i

nD̄k∑
j

Uijk.

We obtain a score-like statistic by evaluating the second element of (5) at β̂0
0 :

ScoreH0 = N�

{∑
i

∑
j Uij2

nD2nD̄2

−
∑

i

∑
j Uij1

nD1nD̄1

}
,

where the term N� = (nD1nD̄1nD2nD̄2)/(nD1nD̄1 + nD2nD̄2).

Recall that the standard empirical estimate of the AUC is the Mann-Whitney U-statistic and

recognize the terms
∑

i

∑
j Uijk/nDknD̄k as such. Hence, we can write ScoreH0 =

{
θ̂2 − θ̂1

}
,

which is the standardized difference in empirical AUCs, the standard non-parametric statistic for

comparing two or more diagnostic tests as described by DeLong et al. (1988). Our arguments

show, therefore, that our regression approach yields the standard non-parametric procedure for

comparing two tests as a special case.

4.2 Comparison with existing AUC regression methods

4.2.1 Derived Variables Approach

Thompson and Zucchini (1989) propose AUC regression methods for diagnostic tests based on

derived variables. Consider a covariate Xk that takes K distinct values. Denote an AUC estimate

at the kth covariate level as θ̂k. The derived variables AUC regression model is given by:
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E(θ̂k) = βd
0 + βd

1Xk.

Since the AUC takes values in the interval (0, 1), a model of a transformation of θ̂, such as

E(g(θ̂k)) = βd
0 + βd

1Xk where {g : (0, 1) 	→ R1}, so that it takes on less restricted values may be

preferred. Note that this model prohibits transformation back to the original AUC scale. A major

weakness of this method is that continuous covariates cannot be modelled. Further, since different

numbers of subjects often contribute to AUC estimates across covariate levels, the regression

assumption of equal variances will frequently may fail.

4.2.2 Jackknifed AUC Approach

Dorfman, Berbaum, and Metz (1992) propose a method based on computing jackknifed AUC

values for each subject to estimate random-effects models. We consider a simple extension of their

approach to a linear regression model to make their method more comparable with ours. Let θ̂k and

Nk denote, respectively, the AUC estimate and the total number of observations at the kth covariate

level. Jackknifed AUC values for the ith subject are computed as θ∗ik = Nkθ̂k−(Nk−1)θ̂k(i), where

θ̂k(i) is an estimate of θk with the ith subject deleted. Jackknifed AUC values are treated as

independent variables, and linear regression methods are used to obtain parameter estimates. In

some sense, each θ∗ik represents the contribution of the ith subject to the AUC estimate at covariate

level k. The regression model is given by E(θ∗ik) = βJ
0 + βJ

1Xk. Since E(θ∗ik) ∈ (0, 1), we again

consider using non-linear regression methods to estimate models of the form:

g (E(θ∗ik)) = βJ
0 + βJ

1Xk,

where the function g is defined as before. Like the derived variables AUC regression method, a

major limitation of this approach also is that continuous covariates are not allowed.
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4.2.3 Analytical Comparisons

Theorem 3. When nDk = nD and nD̄k = nD̄ for all k, θ̂k = 1
nDn̄D

∑
ij Uijk, and a linear regression

model with g the identity link function is assumed, the parameter estimators of the proposed,

derived variable, and jackknifed-AUC methods are identical.

Refer to the appendix for a proof. Under less restrictive conditions, such as unequal numbers

of observations across covariate levels, or a non-identity link function, the estimators differ. In

the following section, we compare the three methods under more general conditions via simulation

studies.

5 FINITE SAMPLE PERFORMANCE

We conduct several simulation studies, to compare, under a more general setting than assumed

in Theorem 3, the methods described in §4.2. Next, we evaluate the small-sample performance of

the proposed method under a model for continuous covariates. We generate data such that Y D
i ∼

N(µD,X , σ
2
D) and Y D̄

j ∼ N(µD̄,X , σ
2
D̄

), where we let µD̄,X = γ0 +γ1X and µD,X = γ0 +(γ1 +γ2)X.

Under this parameterization:

θX = Φ

µD,X − µD̄,X√
σ2

D̄
+ σ2

D

 = Φ

 γ2X√
σ2

D̄
+ σ2

D

 = Φ (βX) , (6)

where β = γ2

σ2
D̄

+σ2
D

and Φ(·) is the cumulative normal distribution function. See Pepe (1998) for

a derivation of this model.

5.1 Comparison with Existing AUC Methods

Observations are generated from the model in (6) across five covariate levels (X = 1, 2, 3, 4, 5)

with balanced and unbalanced distributions across categories. We chose µD,X = 0.5X,σD =
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1.2, µD̄,X = 0, and σD̄ = 1 so that the model is Φ−1(θk) = 0.32Xk . Sample sizes of 50, 100 and

200 are studied. We fit the three models described in Section 4.2. Results for a sample size of 100

are presented in Table 1. Results for other sample sizes are found in (Dodd, 2001). Our method

produce estimates that are both the least biased and the most efficient for all scenarios studied.

As expected, when the balance in the number of observations across covariates is distorted, the

proposed method provides a more natural weighting and results in an even greater increase in

efficiency. Efficiencies relative to our method, computed from the ratios of variances across the

1000 realizations of the model, are as low as 14% for the jackknifed-AUC and 76% for the derived

variables method.

5.2 Model with Continuous Covariates

To evaluate the method in a setting with continuous covariates, we generate data from the model

in (6), except X ∼ Uniform(0, 10). Parameter estimates are obtained from generating Uij ’s for

all pairs of disease and non-disease test results. Let Z1 =XD, where XD is the covariate value

from a diseased subject, and Z2 = XD̄−XD. In the notation of Section 2, Xij = (Z1, Z2). We

fit the model Φ−1(θZ1,Z2) = β0 + β1Z1 + β2Z2. When XD̄=XD, Z2 = 0, and thus the parameter

β1 quantifies the effect of a common value of X on the AUC. Across sample sizes ranging from

30-200 per group, estimation is reasonable (Table 2). The largest amount of bias β̂1 is 6% for a

sample size of 30 per group, and bias diminished with increasing sample size. The bootstrapped

standard error estimates tended to slightly overestimate the truth, except for a sample size of 30

per group. Coverage probability for confidence intervals using bootstrap standard errors is near

the nominal level, although it is anti-conservative for n = 30.
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6 ASSESSMENT OF DEVICE FOR DIAGNOSING

HEARING LOSS

We apply our methodology to a study designed to evaluate the hearing device described in Section

1. The other AUC methods are not applicable because one of the covariates is continuous. The

data presented are from a study of 105 hearing impaired and 103 normally hearing subjects who

were examined at three frequency and three intensity settings of the DPOAE device, resulting in

a total of nine combinations of settings. The effect of severity of hearing impairment is also of

interest. Data are analyzed from measurements taken on one ear per subject, although the method

could be used if results were provided on both ears. The gold standard method for diagnosing

impairment is a behavioral test in which subjects indicate whether a sound is audible for a range

of frequencies until a hearing threshold is determined, and was conducted on each ear.

For estimation, pairing of covariates has been accomplished by design, since the frequency

and intensity covariates were stratified, and the severity covariate applies to the impaired group

only. The model of interest is log (AUC/1 −AUC) = β0 + β1int + β2freq + β3sev, where int is

stimulus intensity (per 10 dB SPL), freq is stimulus frequency (per 100 Hz), and sev is severity of

impairment so that positive values indicate impairment in units of 10 dB SPL. Confidence interval

estimates assume a normal distribution. We use the bootstrap, resampling by subject because of

the repeated measures, to obtain standard error estimates. The model estimates indicate that the

AUC odds decrease 42% for every 10 dB increase in stimulus intensity (AUC odds = 0.58, 95% CI

= 0.43,0.79) and that the AUC odds increase 85% for every 10 dB worsening in impairment(AUC

odds = 1.85, 95% CI = 1.49,2.50), indicating that DPOAE better discriminates severely impaired

ears from normal ears than mildly impaired ears from normal ears. Lastly, increasing the frequency
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setting appears to increase the AUC odds 7% for every 100 Hz increase(AUC odds = 1.07, 95%

CI = 0.99,1.16), but this result is not statistically significant.

Graphical methods, such as plots of fitted versus empirical AUCs, were used to evaluate model

fit (Figure 1). Severity was categorized into four categories. Note the cloud of points in the upper

right quadrant (Figure 1a). Plots of frequency for fixed severity and intensity suggested a lack

of fit(not shown). Hence, the model was re-fit with frequency as dummy variables and the fit

is somewhat better (Figure 1b). Finally, jackknife procedures were used to identify influential

points. Removal of one subject’s observations was found to decrease the frequency coefficient

substantially, further increasing our wariness about interpreting the relationship between this

covariate and accuracy.

In conclusion, this analysis suggests that to achieve greater accuracy stimuli with lower intensi-

ties should be used. Severity of impairment is an important determinate of accuracy and should be

incorporated into decisions regarding the use of this device. The results are by no means conclu-

sive about the association between the AUC and stimulus frequency. These data suggest that the

relationship is likely not linear, but more data are necessary for its characterization. Finally, note

that although the AUC odds interpretation is succinct, ascribing value to a parameter requires a

more general, decision-theoretic framework that establishes a clinically meaningful change in odds.

7 DISCUSSION

We have proposed a method for evaluating covariate effects on the AUC. The AUC is a measure of

separation between the distributions of two random variables that is well established in diagnostic

testing. It has recently been proposed with different nomenclature by Fine and Bosch (2000) for use

in toxicology and by Foulkes and De Gruttola (2002) for predicting HIV resistance to antiretroviral

therapy. Because the AUC is the Mann-Whitney U-statistic, it is recognized as a monotone
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function of the Wilcoxon two-sample test statistic. In this sense, the AUC is already often used

in clinical trials for comparing study arms when the outcome measure is continuous. We believe

the regression methods we have proposed here may also find application outside of diagnostic

testing. For example, AUC regression could be used to explore interactions between covariates and

treatment effect in clinical trials. Other applications may extend more broadly to the optimization

of classifiers such as Evolutionary Algorithms, Support Vector machines or Neural Networks.

Measures other than the AUC can also be used to summarize the separation between random

variables Y D and Y D̄. However, we have shown that regression methods for the AUC is particularly

simple, as it is based on binary regression algorithms for indicator variables of the form I(Y D >

Y D̄). A related method is under development for modelling the partial AUC
∫ t
0 ROC(t)dt, a

summary index that is gaining popularity, particularly in disease screening applications. Binary

regression methods can also be adapted for this purpose (Dodd, 2001). Regression methods for

other ROC summary indices have not been proposed.

Alternative approaches to ROC regression include that of Pepe (1997), where a regression

model for the ROC curve is stipulated, and that stemming from work by Tosteson and Begg

(1987) that models the probability distributions for the test results Y D and Y D̄. The latter

approach, modelling probability distributions, requires the strongest assumptions, while Pepe’s

approach, that models the relationship between those distributions as characterized by the ROC

curve, requires fewer. Our approach requires fewer assumptions still because covariate effects on

a summary index need only be specified. We will investigate if this leads to robustness for our

approach over others in future work. We refer to Pepe (1998) for discussion of the attributes of

different approaches to ROC regression methods.

In conclusion, we have proposed a new method for making inference about covariate effects on
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the performance of a classifier. Attractions of this approach are that it can be simply applied by

adapting standard binary regression methods, it requires fewer assumptions than existing ROC

regression methods, it is the only AUC regression method that can deal with continuous covariates,

asymptotic distribution theory is established and, as a special case, it reduces to standard methods

for comparing two ROC curves. Simulation studies show good small-sample performance for

inferential procedures, and in an example we found that the method lead to important insights

into the performance of a hearing test. Further applications of the method to real data will

eludicate the value of the method in practice.

8 APPENDIX: PROOFS

In the following sections, we provide proofs of lemmas. Lemmas 1 and 2 help establish a method of

inference for the proposed method. However, since parametric assumptions are necessary to obtain

variance estimates, in practice we recommend bootstrapping. Lemma 3 analytically demonstrates

an equivalence with existing approaches in a restricted setting.

8.1 Proof: Lemma 1

We show that under (C1)-(C6), if the sum (nDnD̄)−1∂SN (β)/∂β →p ESij(β) as N → ∞, then

convergence of (nDnD̄)−1∂SN (β)/∂β to its expectation is uniform for β ∈ Nδ(β0).

We find a finite union of intervals with a known length that cover Nδ(β0). For ψ > 0, define

intervals Ck = (βk, βk+1) such that |βk+1 − βk| < ψ, and a finite union of these intervals,
⋃K

k=1Ck

covers Nδ(β0). The triangle inequality gives the following:
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sup
β∈Nδ(β0)

∣∣∣∣ 1
nDnD̄

∂SN (β)
∂β

− E

(
1

nDnD̄

∂SN (β)
∂β

)∣∣∣∣
= max

k
sup
β∈Ck

∣∣∣∣∣ 1
nDnD̄

∂SN (β)
∂β

− 1
nDnD̄

∂SN (βk)
∂β

+E

(
1

nDnD̄

∂SN (βk)
∂β

)

−E
(

1
nDnD̄

∂SN (β)
∂β

)
+

1
nDnD̄

∂SN (βk)
∂β

− E

(
1

nDnD̄

∂SN (βk)
∂β

) ∣∣∣∣∣
≤ max

k
sup
β∈Ck

∣∣∣ 1
nDnD̄

∂SN (β)
∂β

− 1
nDnD̄

∂SN (βk)
∂β

∣∣∣ +

max
k

sup
β∈Ck

∣∣∣∣E( 1
nDnD̄

∂SN (βk)
∂β

)
−E

(
1

nDnD̄

∂SN (β)
∂β

)∣∣∣∣
+ max

k
sup
β∈Ck

∣∣∣∣ 1
nDnD̄

∂SN (βk)
∂β

− E

(
1

nDnD̄

∂SN (βk)
∂β

)∣∣∣∣
= A1,N +A2,N +A3,N (7)

The Mean Value Theorem gives the following result for the first term in (7).

A1,N = max
k

sup
β∈Ck

∣∣∣∣ 1
nDnD̄

∂SN (β)
∂β

− 1
nDnD̄

∂SN (βk)
∂β

∣∣∣∣
=

1
nDnD̄

max
k

sup
β∈Ck

(β − βk)
∂

∂β

(
∂SN (β�)
∂β

)
, for β∗ ∈ (β, βk)

< ψM1 where M1 <∞,

since the largest interval length is ψ and the derivative is assumed to be uniformly bounded by M1

for β ∈ Nδ(β0). The Mean Value Theorem and the uniform boundedness of
(

∂
∂βE (∂SN (β�)/∂β)

)
similarly imply A2,N < ψM2 where M2 < ∞. Finally, since (nDnD̄)−1∂SN (βk)/∂β converges in

probability to its expectation, for a given k, we can find an Nε such that when N > Nε then

P

(
1

nDnD̄

∂SN (βk)
∂β

− E

(
1

nDnD̄

∂SN (βk)
∂β

)
> ε/2
)
< γ/K.

That is, for ε > 0 and γ > 0,
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P
(

max
k

sup
β∈Ck

∣∣ 1
nDnD̄

∂SN (βk)
∂β

− E
( 1
nDnD̄

∂SN (βk)
∂β

)∣∣ > ε/2
)

= P

(
max

k

∣∣∣∣ 1
nDnD̄

∂SN (βk)
∂β

− E

(
1

nDnD̄

∂SN (βk)
∂β

)∣∣∣∣ > ε/2
)

<
∑

k

P

(∣∣∣∣ 1
nDnD̄

∂SN (βk)
∂β

−E

(
1

nDnD̄

∂SN (βk)
∂β

)∣∣∣∣ > ε/2
)

<
∑

k

γ/K = γ eventually.

Choose ψ such that (M1 +M2)ψ < ε/2 , it follows that P (A1,N +A2,N +A3,N > ε/2 + ε/2) < γ,

for large N.

8.2 Proof: Lemma 2

To establish convergence in probability, consider the term E(∂Sij(β)/∂β|Y D
i ), which is random

with respect to Y D
i and independent across all i. By the triangle inequality,

P

{∣∣∣∣ 1
nDnD̄

∂

∂β
SN (β)−E∂Sij(β)

∂β

∣∣∣∣>ε} = P

{∣∣∣∣∣ 1
nDnD̄

∂

∂β
SN (β) − 1

nD

∑
i

E

(
∂

∂β
Sij(β)|Y D

i

)

+
1
nD

∑
i

E

(
∂

∂β
Sij(β)|Y D

i

)
− E

∂Sij(β)
∂β

∣∣∣∣∣ > ε

}

≤ P

{∣∣∣∣∣ 1
nDnD̄

∂

∂β
SN (β)− 1

nD

∑
i

E

(
∂

∂β
Sij(β)|Y D

i

)∣∣∣∣∣ >ε/2
}

+P

{∣∣∣∣∣ 1
nD

∑
i

E

(
∂

∂β
Sij(β)|Y D

i

)
−E∂Sij(β)

∂β

∣∣∣∣∣ >ε/2
}

(8)

Consider the first term on the right-hand side (RHS) of the inequality in (8):

E

∣∣∣∣∣ 1
nDnD̄

∂

∂β
SN (β)− 1

nD

∑
i

E

(
∂

∂β
Sij(β)|Y D

i

)∣∣∣∣∣ = E

∣∣∣∣∣∣ 1nD
∑

i

 1
nD̄

∑
j

∂

∂β
Sij−E

(
∂

∂β
Sij(β)|Y D

i

)∣∣∣∣∣∣
≤ 1
nD

∑
i

E

∣∣∣∣∣∣
 1
nD̄

∑
j

∂

∂β
Sij(β) − E

(
∂

∂β
Sij(β)|Y D

i

)∣∣∣∣∣∣ (9)

The terms inside the expectation in (9) are i.i.d. across j for fixed i. Hence, by the weak law of

large numbers (WLLN), (9) →p 0. Since convergence in mean implies convergence in probability, it

21

http://biostats.bepress.com/uwbiostat/paper186



follows that for all ε > 0, P
(∣∣∣ 1

nDnD̄

∂
∂βSN (β) − 1

nD

∑
iE
(

∂
∂βSij|Y D

i

)∣∣∣ > ε/2
)
→ 0 as N → ∞.

Now consider the second term on the RHS in (8). The terms E(∂Sij(β)/∂β|Y D
i ) are indepen-

dent and have finite expectation. From the WLLN 1/nD
∑

iE(∂Sij(β)/∂β|Y D
i ) →p E (∂Sij(β)/∂β) .

Therefore, for ε > 0, P
(∣∣∣ 1

nD

∑
iE
(

∂
∂βSij(β)|Y D

i

)
− E
(

∂
∂βSij(β)

)∣∣∣ > ε/2
)
→ 0 as N → ∞.

Hence the two terms in (8) →p 0, and the result follows.

8.3 Proof: Theorem 3

We show that the least-squares estimates from the proposed, derived-variables and jackknife-AUC

methods are the same. To simplify we assume that nD = nD̄ = n, although the result holds for

any nD and nD̄, as long as they do not vary with k. Recall that test results of non-diseased and

diseased subjects are paired within a given covariate level.

For the proposed model, E(Uijk) = βP
0 +βP

1 Xk, let Uijk ≡ I(Y D
ik > Y D̄

jk ), Ū ≡ 1
Kn2

∑
ijk Uijk, X̄ ≡

1
2nK

∑
ijkXijk = 1

K

∑
k Xk, S(U,X) ≡ ∑ijk UijkXk − Kn2ŪX̄, and S(X,X)P ≡ ∑ijkX

2
ijk −

Kn2X̄ = n2
{∑

k X
2
k −KX̄

}
The least-squares estimators are given by:

β̂P
0 = Ū − β̂P

1 X̄ and β̂P
1 =

S(U,X)
S(X,X)P

.

First, we show the estimators from the derived variables method, with model E(ÂUCk) =

βd
0 + β1X

d
k , and are the same. Observe that ÂUCk ≡ 1

Kn2

∑
ijk Uijk = Ū and S(X,X)d ≡∑

k X
2
k − KX̄2 = 1

n2S(X,X)P . A little algebra shows that S(ÂUC,X) ≡ ∑k(ÂUCkXk) −

KÂUCX̄ = 1
n2S(U,X). It follows that β̂d

1 = S(ÂUC,X)/S(X,X)d = β̂P
1 and β̂d

0 = β̂P
0 .

The jackknifed-AUC model is E(Alk) = βJ
0 + βJ

1Xk, where Alk denotes the jackknifed-AUC

value (JA) at the kth covariate level for l = 1, ..., 2n. We use Alk to denote an JA from the

combined vector, (AD̄
1k, ..., A

D̄
nD̄k, A

D
(nD̄+1)k, ..., A

D
(nD̄+nD)k). We also denote the vector as {AD̄

ik : i =

1, ..., nD, A
D
jk : j = 1, ..., nD̄}. Note that the superscript in AD̄

ik indicates that this term is averaged
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across all non-diseased observations and random with respect a given observation from diseased.

The least-squares estimators from the jackknife-AUC model depend on the random vari-

ables {Alk : l = 1, ..., 2n}. Observe that X̄J ≡ 1
K2n

∑K
k=1

∑2n
l=1Xlk = X̄ and S(X,X)J ≡∑K

k=1

∑2n
l=1X

2
lk−2nKX̄ = 2n

{∑
kX

2
k −KX̄

}
= 2

nS(X,X)P . Next, we show that Ā ≡ 1
K2n

∑K
k=1∑2n

l=1Alk equals Ū . The mean of the jackknifed AUC at covariate level k can be written as Āk =

1
2n

∑
lAlk = 1

2n

∑n
i=1A

D̄
ik + 1

2n

∑n
j=1A

D
jk. Define F̂ D̄

k (Y D
ik ) = 1

n

∑
j I(Y

D
ik > Y D̄

jk ) and F̂D
k (Y D̄

jk ) =

1
n

∑
i I(Y

D
ik > Y D̄

jk ), where F̂ is the empirical CDF. Note that these are the empirical placement

value estimators. To illustrate the relationship between the Uijk terms and Alk, we use a result

from Hanley and Haijan-Tilaki (1997):

AD̄
ik =

2n− 1
n− 1

F̂ D̄
k (Y D

ik ) − n

n− 1
ÂUCk and AD

jk =
2n− 1
n− 1

F̂D
k (Y D̄

jk ) − n

n− 1
ÂUCk.

The mean of the AD̄
ik’s is given by:

1
n

n∑
i=1

AD̄
ik =

1
n

n∑
i=1

{
2n − 1
n− 1

F̂ D̄
k (Y D

ik ) − n

n− 1
ÂUCk

}

=
2n− 1
n(n− 1)

n∑
i=1

F̂ D̄
k (Y D

ik ) − n

n− 1
ÂUCk

=
2n− 1
n− 1

ÂUCk − n

n− 1
ÂUCkÂUCk.

Using a similar argument, the mean of the AD
jk’s can be shown to equal ÂUCk. Hence, Āk = ̂AUCk

and ĀJ = 1
k

∑
k
̂AUCk = Ū . Now, consider the term S(A,X)

S(A,X) =≡
K∑

k=1

2n∑
l=1

AlkXk − 2nKŪX̄
K∑

k=1

=
K∑

k=1

n∑
i=1

AD̄
ikXk︸ ︷︷ ︸

(c)

+
K∑

k=1

n∑
j=1

AD
jkXk︸ ︷︷ ︸

(d)

−2KnĀX̄ (10)
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The term (c) in the expression in (10) is equal to:

K∑
k=1

n∑
i=1

AD̄
ikXk =

K∑
k=1

n∑
i=1

(
2n − 1
n− 1

F̂ D̄
k (Y D

ik ) − n

n− 1
ÂUCk

)
Xk

=
K∑

k=1

n∑
i=1

2n− 1
n− 1

 1
n

n∑
j=1

UijkXk

− n2

n− 1

∑
k

ÂUCkXk

=
2n− 1
n(n− 1)

K∑
k=1

n∑
i=1

n∑
j=1

UijkXk − n2

n− 1

∑
k

ÂUCkXk (11)

In a similar manner, one can show that (d) in equation (10) equals the expression shown in (11),

and expression (10) equals:

2

 2n− 1
n(n− 1)

∑
ijk

UijkXk− n2

n− 1

∑
k

ÂUCkXk

− 2KnŪX̄

= 2

 2n− 1
n(n− 1)

∑
ijk

UijkXk − 1
n− 1

∑
ijk

UijkXk

− 2KnŪX̄

=
2
n

∑
ijk

UijkXk −KnŪX̄

=
2
n
S(U,X)P

The least-squares estimators for the jackknife AUC method are β̂J
1 = S(A,X)/ S(X,X)J = β̂P

1

and β̂J
0 = Ā− β̂J

1 X̄
J = β̂P

0 .
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Figure 1: (a) empirical versus fitted AUCs on the log-odds scale with frequency as continuous. F=frequency,
I=intensity, S=severity category. (b) empirical versus fitted log AUC-odds with frequency as dummy variables.

Table 1. Bias and Efficiency Comparison of Three AUC Regression Methods
for Balanced and Unbalanced Covariates with 100 Samples Each from

states D and D̄ under the Model Described in Section 5.1, with g = Φ−1

Balanced Design Unbalanced Design
Method Proposed Derived Jackknife Proposed Derived Jackknife
β̂1 0.326 0.338 0.341 0.329 0.332 0.360
% Bias 2.0 5.5 6.6 2.7 3.7 12.6
Relative
Efficiency 1 0.88 0.43 1 0.76 0.14
NOTES: True β1= 0.320, The balanced design sampled equal numbers at each covariate
level. The unbalanced design sampled 50%, 10%,10%, 10%, 20% within covariate levels
X = 1, 2, 3, 4, 5, respectively. Results represent 1000 realizations from the model.

Table 2. Bias in Parameter and Bootstrapped Standard Error
Estimates, and Coverage Probability for Confidence Intervals

under the Model Described in Section 5.2.
Sample size Mean Percent Bootstrap True Percent Coverage
(per group) β̂1 bias SE SE bias 95% CI
30 0.442 6.3% 0.166 0.180 -8.0% 0.930
50 0.433 4.1% 0.140 0.133 5.2% 0.950
100 0.427 2.5% 0.090 0.086 5.1% 0.955
200 0.417 0.2% 0.062 0.060 3.0% 0.953
NOTES: Confidence intervals computed assuming normality with bootstrapped
standard error estimates. SE = Standard Error. CI = Confidence Interval. Re-
sults represent 1000 realizations of the model and 200 bootstrap samples each.
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