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SUMMARY. High throughput technologies, such as gene expression arrays and protein 

mass spectrometry, allow one to simultaneously evaluate thousands of potential 

biomarkers that distinguish different tissue types. Of particular interest here is cancer 

versus normal organ tissues. We consider statistical methods to rank genes (or proteins) 

in regards to differential expression between tissues. Various statistical measures are 

considered and we argue that two measures related to the Receiver Operating 

Characteristic Curve are particularly suitable for this purpose. We also propose that 

sampling variability in the gene rankings be quantified and suggest using the ‘selection 

probability function,’ the probability distribution of rankings for each gene. This is 

estimated via the bootstrap. A real data set derived from gene expression arrays of 23 

normal and 30 ovarian cancer tissues are analyzed. Simulation studies are also used to 

assess the relative performance of different statistical gene ranking measures and our 

quantification of sampling variability. Our approach leads naturally to a procedure for 
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sample size calculations appropriate for exploratory studies that seek to identify 

differentially expressed genes. 

 

KEY WORDS: Classification; Discrimination; Exploratory analysis; Genomics; Prediction; 

Proteomics; ROC curves. 

 

1. Introduction 

The development of microarrays that provide simultaneous evaluation of mRNA 

expression levels for thousands of genes is one of the exciting new advances in modern 

medical research. It promises to identify disease at its most basic biological level, namely 

at that of the genes. The implications for medicine are considerable (The Chipping 

Forecast, 1999). Insights into genetic alterations caused by disease can lead to new 

therapeutic strategies. Genetic alterations that precede disease can be targets for disease 

prevention strategies. The research community can expect insights into the etiology of 

disease and pathways involved in its progression, that may well revolutionize medical 

practice. 

 

There are new statistical challenges posed by data from microarray experiments, due 

primarily to the exploratory nature of experiments and the huge numbers of genes under 

investigation. It must also be recognized that different sorts of questions are addressed 

with microarray experiments and that the appropriate statistical approach depends, of 

course, on the question of interest (Dudoit et al, 2000). Categories of objectives 

pertaining to experiments that include multiple tissue types (e.g. cancer versus non-
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cancer tissue) include: i) selection of genes that are differentially expressed in different 

known classes of tissue; (ii) identification of a minimal combination of genes that 

provides discrimination between known tissue types; (iii) identification of groups of 

genes whose expression levels are correlated; and (iv) new classifications of tissue types 

defined by genes whose expression levels are related.  Statistical techniques such as 

regression methods and discriminant analyses have been adapted for (ii) (Dudoit et al, 

2000), whereas clustering techniques are more appropriate for (iii) and (iv) (Tibshirani et 

al, 2000, Hastie et al, 2000, Lazzeroni and Owen, 2002, Van Der Laan and Bryan, 2001). 

In this paper we consider statistical methods for objective (i), which, at first glance, 

seems to be the most straight-forward.  

 

The particular application that motivated our work concerns the search for biomarkers of 

ovarian cancer that could be used in population screening. Ovarian tissue from 30 

subjects with cancer and 23 subjects without cancer were analyzed for mRNA expression 

using glass arrays spotted for 1536 gene clones. The data, Y , for the gig
th gene clone in 

the ith tissue sample, is a measure of the mRNA expression of the gth gene in that tissue 

relative to a control tissue, with a common control employed for all experiments. We 

refer to Dudoit et al. (2002) and Newton et al. (2000) for a simple summary of this 

technology and a technical explanation for how Y  is calculated. Schummer et al. (1999) 

describe their data processing algorithms that are similar to those used to arrive at the 

relative expression values in the ovarian cancer study.  Using standard terminology for 

these experiments, Y  is the logarithm of the  ratio of the intensities of the red to green 

ig

ig
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fluorescent dyes, where green dye is used for the common control and red is used for the 

experimental tissue. 

 

The scientific objective is to identify genes that are differentially expressed in ovarian 

cancer tissue compared with normal ovarian tissue. Ovarian tissue cannot of course be 

used directly for population screening. However, if a gene is found that is expressed 

differentially in cancer tissue, then the corresponding protein product (or an antibody to 

it) may be detectable in blood or urine and could be the basis for a population screening 

test. We refer to Pepe et al (2001) for discussion of the phases of biomarker development 

from the initial exploratory phase that we discuss here to its application in population 

screening programs. In general, scientists are more interested in identifying genes that are 

over-expressed rather than under-expressed in cancer screening research. This is  because 

detecting the presence of a new aberrant protein in blood is a potentially easier task than 

detecting the reduced level of a normal protein, particularly if that protein is also 

produced by normal organ tissue in the body of the patient with cancer. Therefore in this 

paper we focus on detection of over-expressed genes although adaptation of the methods 

to detection of under-expressed genes is obvious. 

 

There are many genes over-expressed in cancer tissue that cannot lead to screening 

markers. For example, genes that relate simply to inflammation or growth are not 

candidates because those processes also occur naturally in the body. Clinical assays for 

some gene products may be too difficult to develop for technical reasons. Therefore we 

need to select a sizeable number of over-expressed genes in order to arrive at a subset that 
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might have potential for screening. For the initial selection, we will include multiple 

genes that are redundant in the sense that they identify the same cancer samples so that if 

one gene proves useless for biomarker development we can still pursue another that could 

identify those same cancers. 

 

The experimental data are used to rank candidate genes according to some statistical 

measure characterizing differential expression. In section 2 we discuss the choice of 

statistical measure. A method for quantifying the degree of confidence in the ranking of a 

gene provided by the data is proposed is section 3. This acknowledges the finite number 

of tissues examined, variability across tissues and the large number of genes investigated, 

all of which contribute to uncertainty in the ranking of the genes. Application to the 

ovarian cancer data in section 4 illustrates the approach. One approach to computing 

sample sizes in these exploratory studies is suggested in section 5. Some further remarks 

about experimental design are made in section 6. We close with some thoughts on further 

extensions of our proposed methods. 

 

2. Characterizing Interesting Differential Expression 

 

2.1 Measures of Discrimination 

 

At each gene, data are available for nD cancer tissues and nC normal tissues. 

, 1, ...,
.

, 1, ...,

D
gi D

C
gj C

Y i n

Y j n

=

=
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To say that there is differential expression at gene g is to say that the distribution of D
gY   

is different from that for C
gY . What sorts of differences are of particular interest? Figure 1 

displays some hypothetical distributions that we use for discussion. Although we depict 

the distribution of C
gY

C

 as a standard normal distribution, this is a matter of convenience 

only and our discussion is more general in that we do not assume any particular 

distribution for gY . Our discussion here only concerns the separation between the 

distributions for C
gY  and D

gY . Note that there always exists a transformation so that C
gY  is 

standard normal and the view in Figure 1 is on this scale. Since most of the procedures 

we will discuss are rank based, knowledge of the specific transformation is not necessary. 

Moreover, our discussion about separation in this section does not require knowledge of 

the transformation either.  

 

The ideal situation is represented in the top panel where there is almost complete 

separation between the distributions. In this case the relative expression level of gene g is 

an ideal candidate marker for cancer because the values are completely different in 

cancer tissue from those in normal tissue. There is a threshold value that allows one to 

classify cancer versus normal tissue with almost 100% accuracy. 

 

Consider now settings where the distributions overlap. We contend that for cancer 

screening, the separation in panel II is of more practical interest than that in panel III. The 

marker clearly distinguishes a subset of cancers from normals in II, whereas in panel III 

marker values for cancer tissues are entirely within the range of those for non-cancer 
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tissues. Looking ahead to population screening and assuming that gene expression 

translates roughly into protein expression, in panel II there is a threshold for the screening 

test that provides detection of about 30% of cancers while falsely identifying only 1% of 

non-cancers as screen positive. In screening it is important to keep false positive rates 

extremely low because even a small false positive rate translates into large numbers of 

people being subjected to diagnostic procedures that are costly and invasive. Using a 

similar threshold in panel III corresponding to the 1% false positive rate, detects only 2% 

of cancers because the distributions overlap over the whole normative range. 

 

We suggest that statistical measures of discrimination between the distribution of D
gY  and 

C
gY  focus on separation at and beyond upper quantiles of the normative range. Figure 2 

shows receiver operating characteristic (ROC) curves that characterize separations 

between distributions. Each point on the ROC curve, (t,ROC(t)), corresponds to a 

different threshold u, and by definition t = P[ C
gY ≥u], and ROC(t)=P[ D

gY ≥u]. The ROC 

curve can be thought of as a plot of the true versus false positive rates associated with all 

possible thresholds for classifying a tissue as cancerous based on the relative expression 

level gY  (Pepe, 2000). Because low values of t correspond to high quantiles of C
gY , our 

suggestion is to focus on the ROC curve at low values of . t

 

Two summary measures of discrimination that are commonly used in ROC analysis are: 

 

  0 0( ) [ (1 )]D C
gROC t P Y y t= ≥ −
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and 

 

( )
0

0
0

( ) .
t

pAUC t ROC t dt= ∫  

 

where t  is some small false positive rate and 0 0(1 )Cy t−  is the quantile in the upper tail 

of the normative range corresponding to . The measure ROC (  is easily conceived of 

by non-statisticians, as the proportion of cancer tissues with expression levels above the  

 quantile of normal tissues. The partial area under the curve, pAUC , in effect 

averages this proportion across values of t

0t 0 )t

0(1 t− ) 0( )t

0t<  (McClish, 1989).  If two curves have the 

same value of ROC ( , the curve with larger pAUC (  would indicate better 

separation at that gene because for some values of t

0 )t 0 )t

0t< , ROC (  must be higher for that 

gene. 

)t

 

The ROC (  or pAUC  statistic calculated for the three settings of Figure 1, ranks 

biomarker II better than biomarker III for small values of t  ( t ≤0.10). On the other 

hand, other classic measures of discrimination such as the two-sample t-statistic or the 

Mann-Whitney U statistic(equivalently the Wilcoxon statistic) rank biomarker III better 

than biomarker II. We regard this as a serious weakness of those statistics for our 

application. We also see from Figure 2 that all of these statistics rank biomarker I as the 

0 )t 0( )t

0 0
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best, regardless of , and indeed any reasonable statistic should because biomarker I is 

almost perfect.  

0t

 

How should one choose t ? Ideally the choice of t  will depend on false positive rates 

that are acceptable in practice, and  could be chosen as the maximally acceptable one. 

The magnitudes of false positive rates that are acceptable will vary with the application 

since they depend on the costs and consequences of the errors. Very small t  are in 

general required for cancer screening. However, with small numbers of tissue samples, 

estimation of pAUC (  or ROC  at very small  will not be possible. Thus in our 

application we chose  to be small, but large enough that the estimates of ROC  and 

pAUC (  were reasonably  precise for our purposes. Further research into appropriate 

choices for t  in large and small sample studies would be worthwhile. 

0

)

0

t

0t

0( )

0

0t

0t

t 0

0( )t

0 )t

0

 

We suggest that empirical estimates of ROC (  and pAUC  be used to rank genes 

for differential expression in cancer versus normal tissue. Other measures of 

discrimination that we calculate for comparison are: (i) Zstat, the standardized difference 

in means, i.e., the two-sample t-statistic and (ii) AUC, the area under the entire ROC 

curve 

0 )t 0( )t

1

0

( ) .AUC ROC t dt= ∫  
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Interestingly the empirical AUC is equal to the numerator of the Mann-Whitney U-

statistic, [ ] /D C
gi gj D

i j

I Y Y n n≥∑ ∑ C , and hence equivalent to the Wilcoxon ranksum 

statistic for comparing the distribution of D
gY  and C

gY . It can be interpreted as an estimate 

of  (Bamber, 1975). Each of ROC , pAUC  and AUC are 

distribution free rank statistics whereas Zstat depends on the underlying probability 

distributions for 

D C
g gY ≥ 

D

P Y 0( )t 0( )t

gY C and gY . 

 

2.2  Illustration 

 

To illustrate our ideas we consider a small dataset comprising the first 100 genes in our 

ovarian cancer dataset. Table 1 displays the top 10 ranking genes in order when ranked 

according to the different statistical measures. Later we will return to the larger dataset. 

For illustration purposes, we chose a smaller set here because this provided substantial 

variation in the discrimination capacities of the top 10 genes while the top 10 genes from 

the  larger pool of genes were less varied. 

 

Turning  to Table 1 we see that to a large extent the same genes were identified by all 

discrimination measures, although the order of ranking differed. Consider, however, 

genes 5 and 97 for which raw data and ROC curves are displayed in Figure 3. The Mann-

Whitney U-statistic (AUC) ranked these genes very similarly, as the 6th and 8th, 

respectively. On the other hand, the pAUC statistic ranked them quite differently as the 

3rd and 31st ranking genes, respectively. The raw data and the ROC curves indicate that 
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indeed for gene 5 more of the cancer tissues are above the bulk of the normative range 

than is the case for gene 97. The pAUC statistic picks up on this fact and gives it a far 

higher rank than it gives gene 97. It suggests to these authors that gene 5 should receive 

higher priority for biomarker development than gene 97. 

 

Insert Table 1 

 

2.3 Additional steps for selection. 

 

The main point we wish to make in this section is that careful consideration of the 

statistical measure used to rank genes in regards to differential expression is warranted in 

applications. In disease screening, ROC or pAUC measures are proposed. The ranking is 

of course only one step in the process of selecting genes for further study. One will 

investigate the actual separation achieved between the distributions of D
gY  and C

gY  for 

genes that rank well. ROC curves such as shown in Figure 3b should be considered in 

this evaluation because they display the separation achieved on a scale that is relevant to 

the problem and that allows for direct comparisons between genes. It is more difficult to 

compare genes using frequency distributions of the raw expression data (Figure 3a). 

 

The next step towards selecting genes for further experimental work is to investigate 

what is already known about the function of the genes that appear to have promising 

differential expression. Libraries of information are available from the public and private 

domains. Genes may be eliminated from further investigation for a variety of reasons 
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related to their known function or prior experience with assay development. Investigators 

then select some set of genes for further investigation. The number depends on multiple 

factors, not the least of which is the resources available for experimental work. 

 

In this paper we focus on the initial step in the gene selection process, namely the ranking 

step that orders genes in regards to a statistical measure of differential expression. In 

section 3 we discuss the sampling variability in the rank ordering. Related to this, in 

section 5 we propose that the achievement of adequate rank ordering be a basis for 

choosing sample sizes in these studies. In particular we propose that the study design 

should ensure that genes with promising differential expression should rank high and 

therefore be drawn to the attention of the investigators. 

 

3. Assessing Variability 

 

3.1 The probability of gene selection. 

 

The relative rankings of genes is the primary outcome of the study. However, the 

rankings are subject to sampling variability. How should this variability be 

acknowledged? Standard errors or p-values don’t seem to be directly relevant to the task 

because the stated objective is neither to estimate parameters nor to test hypotheses. 

Rather, the task is to rank genes and to select the top genes for further study. Therefore 

we propose the following quantity to quantify our degree of confidence in choosing the 

gth gene among the top k. 
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 Pg(k) = P[gene g ranked in the top k] 

   = P[Rank (g) ≤ k] 

 

The value of  may be of particular interest for k equal to a predetermined number 

of genes to be selected (10 in the small illustration). However, the whole survivor 

function can be considered, { ( , and this gives a more full description of 

sampling variability in the ranking. Various factors contribute to the variability in 

Rank(g): (i) the number of cancer tissues and normal tissues studied,  and ; (ii) the 

extent and type of differential expression of the g

( )gP k

( )P k

),  1gP k k ≥ }

Dn Cn

th gene; (iii) the number of genes in the 

selection pool, which we denote by N; (iv) the differential expression of genes other than 

the gth gene; and not least, (v) the algorithm or statistical measure used to rank genes. The 

quantity, , will be affected by all of these factors. g

 

Intuitively, as sample sizes increase, the  function will tend to 0 or 1 for 

differentially expressed genes according to whether the true asymptotic discriminating 

measure for the g

( )gP k

th gene ranks below  or not. Genes that in truth are very highly 

discriminatory will certainly have high ranks even in experiments with small sample sizes 

and  will be close to 1. This may be reduced by chance if there is a large number of 

competing genes and in particular if a substantial number of competing genes also exhibit 

differential expression. Observe that at the opposite extreme, if no genes are differentially 

expressed, then . 

k

( )gP k

( ) /gP k k N=
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The selection probabilities, , as we call them, can be estimated by the bootstrap 

with the resampling unit being at the tissue level. Thus, when a tissue is included in the 

bootstrap sample, the entire vector of data relating to all genes for that tissue is entered 

into the bootstrapped dataset, and genes are ranked within the dataset according to the 

statistical measure chosen. The bootstrapping therefore acknowledges the complex 

correlations between genes. 

( )gP k

 

All of our statistical measures but Zstat are rank statistics. Tied data points influence the 

distribution of rank statistics and we note that tied data points ensue with simple 

resampling of observed data. However, real data, such as the original dataset, do not have 

ties because gY  is measured on a continuous scale. Thus, we modified the bootstrapping 

to randomly break ties by adding miniscule random noise (jitter) to the expression levels. 

This was done in an effort to make the bootstrap distribution of the rank statistics more 

reflective of the actual distribution across different realizations of the experiment. 

 

 

3.2  Illustration 

 

Returning to the small illustration described earlier, Table 1 shows  based on 200 

bootstrapped samples for each gene ranked in the top 10. Thus if the strategy of the 

experiment is to select the top 10 genes ranked on the basis of ROC(0.1), we are highly 

confident (  about the selection of genes 93, 76, 65 and 42. However, we 

(10)gP

(10) 90%)gP >
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estimate that, due to sampling variability, genes 35, 23 and 52 have 60%≤  chance of 

ranking in the top 10 if the experiment were repeated. 

0)

k =

 

A comparison of the two estimators of , with and without jitter in the bootstrap 

sample, suggested that they are quite similar. That is, we arrive at the same conclusions 

about  for the rank-based measures if the data are jittered or not. Thus tied 

datapoints in the bootstrap samples do not appear to affect the  estimates 

substantially. 

(10)gP

(10)gP

(1gP

 

3.3  Simulation 

 

As a simple example we simulated data on 2000 genes for equal numbers of cancers and 

normal tissues. Of the 2000 genes, 95% were configured to be non-informative in the 

sense that D
gY  and C

gY  had the same distributions, namely standard normal (without loss 

of generality). For 100 genes the distributions were normal with mean 1 and standard 

deviation 2 for cancer tissues and standard normal for non-cancer tissues. For an 

informative gene therefore, the area under the corresponding ROC curve was 

67.012/)01(( 22 +−Φ ) =  (Reiser and Guttman, 1986). Data for different genes were 

generated independently. We set the number of genes to be selected at . Table 2 

panel A shows the proportions of informative markers selected averaged across 100 

simulation studies. That is, it shows P[Rank(g)≤k│g is an informative gene]. 

100
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Insert table 2 

 

The results suggest that the top 100 genes consist primarily of informative genes even 

with relatively small sample sizes. An informative gene has a 68% chance of being in the 

top 100 ranked on the basis of the pAUC(0.2) statistic when 30 samples are analyzed, 15 

cancer and 15 normal tissues. The chance reaches 91% when a total of 35 cancer and 35 

normals are evaluated. 

 

In this particular example, (setting A of Table 2), the pAUC statistic was most effective 

at selecting informative genes. Interestingly it outperformed the full area under the curve 

the AUC statistic. That is, focusing on differences between the normal and cancer tissues 

only in the upper end of the normative range, yielded a better selection algorithm. This 

will not always be the case. In another set of simulations (also shown in Table 2) where 

informative genes had a mean 1 and standard deviation 1 in cancer tissues compared with 

standard normal in non-cancer tissues, the AUC statistic performed better.  

 

These simulations assume statistical independence of genes and hence are unlikely to 

reflect real data. In practice one might find that subsets of informative genes are 

correlated statistically, and likewise subsets of uninformative genes are correlated. 

Intuition suggests that this would lead to higher selection probabilities for informative 

genes than those in Table 2 because correlated genes will behave as a unit and reduce 

variability compared with the setting where all genes are independent. We will return to 

simulation studies later when we consider sample size calculations. 
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4. Analysis of the Full Ovarian Cancer Dataset 

 

The 1536 genes spotted on the glass arrays were ranked according to each of the 

discriminatory statistics defined above. Sixty-five genes were ranked in the top 100 by all 

4 ranking statistics while 16 genes were selected among the top 100 by only one of the 

statistics (7 by ROC (0.10), 9 by pAUC (0.10), 0 by AUC and 0 by Zstat only). 

 

The stability of their selection, quantified by  Pg(100), was estimated with 200 bootstrap 

samples. Figure 4 displays the results. The selection probabilities for the AUC and Zstat 

statistics are overall higher than those for the pAUC (0.10) and ROC (0.10) statistics. 

This presumably indicates less variability in the statistics that use more of data, namely 

AUC and Zstat. The selection algorithms based on them therefore are less variable and 

more reproducible across experiments. However, we saw earlier (Table 2) that this does 

not necessarily induce higher sensitivity to differential expression and in particular to the 

sorts of differential expression of most interest to biologists. 

 

Another display of the resampling results, specifically for the pAUC (0.1) statistic, is 

shown in Figure 5. For each gene selected we calculated its ranking in each bootstrap 

sample. Its 80th and 90th percentile across the bootstrap samples is shown. We observe for 

example that gene 1483, which ranked best in the original dataset, ranked at or above 14 

in 90% of the resampled datasets and at or above 8 in 80% of the resampled datasets. 

Gene 65, which ranked 50th in the original dataset, had ranks of 148 and 115 at its 90th 
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and 80th bootstrap percentiles, respectively. We see that for all genes ranked in the top 24, 

their rankings were better than 100 in at least 90% of the bootstrap samples. Thus, we 

have high confidence in the good ranking of these genes, in the sense that it is unlikely to 

be attributable to sampling variability. On the other hand, all of the genes that ranked 

worse than 63rd in the original data were at the 150th rank or worse in at least 10% of 

bootstrap samples, and 15/37 (41%) had 90th percentiles above 200. 

 

Let’s briefly consider the biological relevance of the highest ranking genes. The top 10 

ranking clones for the pAUC(0.1) statistic are SPINT2 (2 clones), TACSTD1, HE4, 

Oviductal glycoprotein, Keratin 8, Argininosuccinate synthetase (ASS), 2 ESTs, and a 

novel gene. Of the six genes with known function, five are tumor-related: SPINT2 is 

expressed in colorectal cancer (Kataoka et al., 2000); TACSTD1, an adenocarcinoma-

associated antigen, is currently being used in a clinical trial as a target in the treatment of 

gastro-intestinal carcinomas (Staib et al., 2001); HE4 is a potential ovarian cancer marker 

(Schummer et al., 1999), which is currently being evaluated in a serum assay 

(unpublished results); oviductal glycoprotein has a role in fertilization (Verhage et al., 

1997) and was found to be expressed at higher levels in ovarian carcinomas (unpublished 

results); and Keratin 8 expression is associated with cervical cancer progression (Smedts 

et al., 1990). Moreover, one of the two EST-related clones is homologous to a putative 

integral membrane transporter protein discovered in hepatocellular carcinoma (NCBI 

website http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=retrieve&db=Nucleotide 

&list_uids=7320864&dopt=GenBank). 
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With five of six top-ranking genes known to be related to cancer, our biologist colleagues 

are motivated to study further the remaining 3 genes with unknown function. They 

suspect that those genes may be tumor-related as well. This of course remains to be seen. 

 

Of the top 10 genes selected according to the pAUC(.1) statistic, 6 were also ranked in 

the top 10 by the AUC statistic. The 4 additional genes ranked in the top 10 by AUC 

included one with unknown function, one that relates to a brain protein not found in 

normal ovary, one “housekeeping genes” involved in glycolysis and one (IFI27) that has 

been found to be overexpressed in breast carcinomas. The last two were ranked 28 and 

30, respectively, with the pAUC(.1) statistic having values that were approximately 64% 

of the ideal value of 0.1. In contrast the 9th  and 10th  ranking genes according to the 

pAUC(.1) algorithm were 80% of the ideal value. 

 

5. Sample Size Calculations 

 

Gene expression microarray experiments are expensive. Therefore in practice sample 

sizes tend to be small. Our simulation study and analysis of the ovarian cancer dataset 

nevertheless, suggested that an informative analysis, properly accounting for sampling 

variability, can be based on experiments with relatively small sample sizes. This initially 

seemed surprising to us, but in retrospect it is intuitively reasonable. Informative genes 

will show themselves to be so even with small sample sizes. 
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What advice can the statistician offer for choices of sample sizes in exploratory gene 

expression studies? Since the task is to select informative genes from the pool of genes 

studied, the criterion for choosing sample sizes should be that they be large enough to 

ensure that informative genes have a high chance of being selected for further study on 

the basis of data from the experiment. Again, traditional notions of basing sample size 

calculations on hypothesis tests or on precision of estimators seem inappropriate. 

 

Suppose that resources exist such that the top ranked  genes will be considered for 

further study, , say. The sample size might be driven by the requirement that an 

informative gene, ranking in truth in the top  genes (

0k

1k

0 100k =

1k 30 = say), has a probability of 

at least β  of being ranked in the top  in the experiment. That is, the investigator 

suspects that a gene that ranks in the top k

0k

1 will be of interest and wants to be assured that 

such a gene will be identified in the experiment. Therefore, one might choose  and 

so that  

Dn

cn

 β=≤≤=∈ ])(TrueRank)(Rank[)( 1010 kgkgPkkPg  

where True Rank(g) is the ranking of gene g according to the ranking statistic chosen, if 

an infinite number of tissue samples were studied, D cn n= = ∞

( )gP k

. This probability is 

related to the selection probability  defined earlier. However, here instead of 

quantifying confidence in observed results, it now quantifies the power of the experiment 

to select a gene that in truth is a high ranking gene. Like  it depends on the size and 

( )gP k
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contents of the pool of genes considered, the ranking statistic used and importantly on  

and . 

Dn

cn

n

 

To calculate  we suggest that a simulation study be performed. In fact the 

simulation study described in section 3.3 was our first attempt at this. In that setting we 

calculated  for various sample sizes and showed that even with a total 

sample size of 30, , the study design had a power β = 68% assuming that 

the pAUC (0.1) ranking statistic was used for analysis. The data generating mechanism in 

that simulation, however, is very simple and is not based on a theoretically justifiable 

model. Sample size calculations cannot be used for practical application without such 

justification. Unfortunately, it is extremely unlikely that one can ever stipulate a 

simulation model for gene expression array data that is based on adequate biological 

theory and knowledge of laboratory processes.  

0 1( |gP k k∈

(100 | 100)g ∈

D cn n

)

P

15= =

 

Ideally a set of pilot data would be available upon which to base a simulation. To 

illustrate, suppose that the ovarian cancer data represents a dataset from a pilot study. We 

based a second simulation study on these data. Specifically we resampled with 

replacement the entire data vector of gene expressions for n  cancer tissues and  

normal tissues from the original dataset and determined P

*
D

*
cn

g(k0│∈k1). Various sample 

sizes,  and  were considered. That is, the distributions of observed data were 

regarded as the population distributions for cancers and normals and we randomly 

selected from those (infinite) populations in order to simulate data for the planned 

*
D

*
cn
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experiments. (In this sense bootstrapping can be considered as a simulation.) Table 3 

displays  for various choices of sample sizes. We see that a gene that in 

truth ranks in the top 10 according to the pAUC (0.1) measure is almost certainly selected 

with data from a study involving as few as 30 tissues, if the selection criterion is that its 

pAUC (0.1) statistic ranks in the top 100 in the study. A gene, truly in the top 50 is likely 

to be selected (β=91%) from a study using 25 cancer and 25 non-cancer tissues. 

1(100 | )gP ∈

0( |gP k ∈

1k

∪

k

)

 

The power , 1k , quantifies how likely a gene randomly selected from the top  

is likely to be ranked in the top . Table 3 also displays which is the 

probability that all 

1k

0k

*
Cn

0( |gP k k∪

0k

* * 50D Cn n

 truly top-ranking genes will rank in the top  when the 

experiment involving n  and  tissues is performed. These probabilities are much 

lower because the criterion to be met is more stringent. In order that all top 30 genes be 

likely to be selected it appears that at least 100 tissues 

*
D

= =  should be studied 

(Pg(100│ 30)=84%). 

1)

 

In these simulations we only considered equal numbers of cases and controls. Unequal 

sample sizes could be chosen. It would be interesting to see if, in general, relatively more 

cases than controls are desirable and how this should in general relate to the relative 

variability of gene expressions in cases versus controls. Another aspect that we feel 

should be explored further relates to the likely over-optimism of the pilot data that we use 

for simulation. Efron and Tibshirani (1994, section 25.5) suggest some caution about 

plugging in parameters from a pilot study for power calculations and their concerns apply 
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here too. One could add noise to the observed data in the simulations for more 

conservative sample size calculations. 

 

6. Additional Design and Data Analysis Considerations 

 

 

We have considered only the comparative design where assays for both the normal 

tissues and cancer tissues are performed, each using a common control tissue. Thus a 

sample of relative expression values are obtained for both the normals and the cancers, 

represented by { }, 1, ,D
ig DY i n= … , and { }, 1, ,C

jg CY j n= …  , respectively. In this design 

the distribution of D
gY  can be compared with that of C

gY , the latter being the appropriate 

reference distribution. 

 

An alternative design frequently cited in the statistical literature (Van Der Laan and 

Bryan (2001)) entails using a non-cancer tissue as a control within the assay for a cancer 

tissue. The data at gene g from such an experiment can be represented as 

{ , 1, ,ig D}Z i = … n where igZ  is the expression in the cancer tissue relative to the normal 

control transformed to a log scale. Typically the mean of the distribution of gZ  is 

compared with 0, the null value if expression at the gene g is the same on average in 

cancer and normal tissue.  
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We have argued in section 2 that the mean difference { } { }D C
g gE Y Y E Z− =

D

g   is only 

one summary of the separation between the distributions of gY  and C
gY , and that in 

many cases alternative summary measures are more relevant. Unfortunately summary 

measures, such as pAUC, are not identifiable from the distribution of gZ . Indeed we 

believe that the two distributions for D
gY  and C

gY , respectively, or at least their ROC 

curve should be generated by an experiment in order to adequately assess differential 

expression. Unfortunately they simply cannot be reconstructed from the single 

distribution of the composite variable gZ . Clearly many different pairs of random 

variables ( ,  can give rise to a single composite )D C
g gY Y D C

g g gZ Y Y= − .  

 

In summary, for the type of application we consider in this paper, we prefer the design 

that yields relative expression levels for both normals and cases instead of just the 

composite gZ . This design allows a full and flexible comparison of the two distributions, 

that for normal tissues yielding a reference distribution against which the cancer tissue 

distribution can be compared. Such is not achieved with the design that evaluates normals 

only within the assay for the cancer tissue. 

 

7. Concluding Remarks 

 

In this paper we have considered the identification of a subset of genes that are 

differentially expressed between two tissue types from a large pool of candidate genes. 

The same statistical problem arises in experiments involving other recently developed 
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high throughput technologies. For example, protein mass spectrometry can be used to 

identify a set of proteins differentially expressed from amongst a large set of candidate 

proteins. Large arrays of tumor antigens are used to select a subset to which antibodies 

are differentially present in subjects with and without cancer. The concept of ranking 

genes using a statistical measure of discrimination between tissues, applies equally well 

to proteins in protein spectrometry and to antigens in tumor immunogenicity experiments. 

Thus, our methods will also be useful in these settings. 

 

We have emphasized that investigators must carefully choose the statistical measure for 

ranking the genes so that it fits the purpose of the experiment. For disease screening we 

have argued that biomarkers must be highly specific. This could be argued for other 

applications too, such as in the identification of treatment targets. Statistical measures 

such as the pAUC or ROC statistics are appealing when specificity is important. 

Dudoit et al (2002) use Zstat, the standardized difference in means, to rank genes. Efron 

et al (2000) also use a difference in means with a somewhat different standardization. 

Their rationale for using these measures over others was not discussed. One feature of 

those measures is that they depend on the absolute values of 

0( )t 0( )t

gY , whereas the empirical 

ROC statistics do not since they are rank statistics. This presumably infers robustness on 

the ROC statistics but at the expense of disallowing the magnitudes of relative expression 

to influence the relative ordering of genes. Whether or not the magnitude of gY  should 

influence the gene rankings over and above the separation between the probability 

distributions of D
gY  and C

gY , is a debatable point since magnitude of expression does not 

translate directly into biological effect in the body. Another feature of the pAUC  and 0( )t
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ROC  statistics is that they are not influenced by variability in the measurement of Y0( )t g 

at the lower end of the scale, at values below the (1-t0) quantile of C
gY .   

 

We have suggested the selection probability, , to quantify sampling variability and 

confidence in the gene ranking, and as the basis for sample size calculations. Dudoit et al 

(2000) use p-values for a related purpose. However, we find the interpretation of  

more compelling given the exploratory nature of the study. The purpose is not to test a 

null hypothesis about equal distributions of gene expression versus unequal distributions. 

More importantly, the objective is to rank genes according to the extent of differential 

expression. Although the measures used by Dudoit et al (2000) and by Newton et al 

(2000) are statistics for testing a null hypothesis, they are used more in the same spirit as 

we use statistics, namely to rank genes according to the extent of differential expression. 

Efron et al (2000) consider two probabilities: a p-value, Prob {data at gene g | null 

hypothesis of equal expression}, and a Bayesian probability, Prob {gene g affected | data 

at gene g} = 1-P {equal expression | data at gene g}. Again, since many genes will be 

differentially expressed, probabilities relating to the null state of equal expression seem 

less compelling than ranking the extent of differential expression amongst the genes. 

Moreover, Efron et al (2000) use the probabilities to rank the genes, whereas we use the 

selection probabilities only to quantify sampling variability in the rankings. 

( )gP k

( )gP k

 

Our selection probabilities are more closely related in this regard to the ‘single gene 

probabilities’ proposed by Van der Laan and Bryan (2001). The single gene probabilities 

are used to quantify sampling variability in a gene clustering algorithm, and are estimated 
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by a parametric bootstrap approach. Kerr and Churchill (2001) also assess reliability of 

clustering algorithms with the bootstrap. Our selection probabilities quantify sampling 

variability in a gene ranking algorithm, and are estimated with a non-parametric bootstrap 

procedure. Since the bootstrap provides consistent estimates of the distributions of the 

vectors { 1 , ,D B
NY } and {Y C… 1 , ,C

NY }, and for any given g, PY… g(k) is a  function of these 

distributions it seems intuitive that the bootstrap estimate of Pg(k) will be consistent. 

However, it is likely that bootstrap or any data-based estimates of  will be 

correlated with the data-based ordering of the gene. This correlation implies that if 

attention is restricted to a subset of genes that are observed to rank high say, then as a 

group their estimated selection probabilities will tend to be biased upwards. Efforts to 

reduce this bias would be worthwhile. 

( )gP k

 

The initial motivation for our research was to develop a strategy for sample size 

calculations. The strategy we propose is based on selection probabilities for informative 

genes, and is implemented with bootstrap simulation studies using pilot data. A similar 

strategy could be used for calculating sample sizes in studies that have the determination 

of gene clusters as the ultimate purpose. The single gene probabilities of Van der Laan 

and Bryan (2001) or some related construct could take the place of the selection 

probabilities in that sort of application. 

 

Laboratory techniques for measuring gene expression with microarrays are certainly 

imperfect. Moreover, data processing procedures for calculating the relative expression 

values from the raw images data are evolving. The variability and biases in the derived 
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values will surely impact on the gene rankings observed. It would be interesting to 

determine the extent of these impacts and if the use of ROC statistics can mitigate some 

of these problems because they are rank based. Hopefully, laboratory and data processing 

procedures will improve in the future, to alleviate related statistical concerns. 

 

Although the identification of differentially expressed genes is the first objective, it is not 

the only objective of an exploratory gene expression study. In cancer research, it is 

recognized that cancer is a heterogeneous disease and that different unidentified subtypes 

may be characterized by unique sets of overexpressed genes. Thus, if a single gene 

doesn’t completely discriminate cancer from non-cancer it may be possible that a small 

set of genes each flagging one subtype will. Statistical methods to identify such minimal 

subsets are needed. Ranking of different subsets of genes might draw on ideas presented 

here. In addition, the identifications of clusters of genes, that is, genes that are over- or 

underexpressed in the same cancer tissues would be of interest. Biological insights into 

the pathways and pathogenesis of cancer would likely result. Some modifications of the 

plaid models (Lazzeroni and Owen, 2002) to include a baseline reference group of tissues 

(non-cancer in our case) might be useful for this purpose. 
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Figure Legends 

 

Figure 1. Hypothetical distributions for gene expression data showing different sorts of 

separations between cancer tissue and normal tissue. 

 

Figure 2. Receiver operating characteristic curves corresponding to pairs of distributions 

shown in Figure 1. 

 

Figure 3(a). Frequency distributions and (b)ROC curves corresponding to gene 5 and 97 

in the ovarian cancer data set. 

 

Figure 4. (a) Violin plots (Hintze and Nelson, 1998) of selection probabilities for the top 

100 ranked genes in the ovarian cancer datasets using 4 different ranking 

statistics. Probability estimates are based on 200 bootstrap samples. The 

median is indicated by a short horizontal line, the first to third interquartile 

range by the narrow shaded box, and a vertical line extends to the upper and 

lower adjacent values. The surrounding violin shell consists of mirrored local 

kernal density estimates of the distribution. The y-axis is labeled at the 

minimum, median, and maximum values. 

(b) A comparison of the selection probabilities for the AUC statistic and the 

pAUC (0.1) statistic. 
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Figure 5. Gene rank percentiles (90th and 80th) in the bootstrap distribution for the ovarian 

cancer data set. Shown are results for the top ranked 100 genes. 200 bootstrap 

samples were drawn with the sampling unit being tissue. 
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Table 1. 
Gene number, selection probability Pg(10), and value of the discriminatory measure for the top 10 ranking genes among the first 100 

genes in the ovarian cancer dataset. 
ROC(.10) pAUC(.10) AUC Z-stat 

rank             
                

gene Pg(10) statistic rank gene Pg(10) statistic rank gene Pg(10) statistic rank gene Pg(10) statistic
1 93 1.00 0.900 1 93 1.00 0.090 1 93 1.00 0.971 1 93 1.00 6.149
2                
                
                
                
                
                

                
                
                

76 0.81 0.767 2 65 0.99 0.059 2 42 1.00 0.870 2 65 1.00 5.090
3 65 0.98 0.733 3 5 0.94 0.051 3 76 1.00 0.864 3 42 0.96 4.238
4 42 0.92 0.667 4 23 0.83 0.044 4 65 0.98 0.854 4 97 0.74 3.543
5 5 0.89 0.600 5 42 0.60 0.041 5 16 0.82 0.804 5 39 0.71 3.321

6.5 16 0.71 0.533 6 51 0.68 0.040 6 5 0.74 0.789 6 23 0.60 3.032
6.5 39 0.61 0.533 7 52 0.63 0.040 7 52 0.74 0.784 7 35 0.55 3.011
8 35 0.58 0.500 8 35 0.38 0.033 8 97 0.71 0.780 8 76 0.50 2.664

9.5 23 0.54 0.467 9 73 0.38 0.032 9 39 0.52 0.752 9 63 0.40 2.567
9.5 52 0.43 0.467 10 76 0.48 0.032 10 75 0.43 0.736 10 5 0.47 2.554
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Table 2 

Results of a simulation study with N=2000 genes of which 100 are informative about disease 
status. Shown are P[Rank(g)≤100] for informative genes. In all simulations Yg has a standard 

normal distribution among controls and for non-informative genes among cases. The distribution 
of Y for informative genes  is N(1,2) in setting A and N(1,1) in setting B. D

g

 A B 
 n=#cases=#controls n=#cases=#controls 
Statistic 15 25 35 15 25 35 

ROC(.10) .69 .82 .89 .57 .69 .77 

pAUC(.10
) 

.68 .83 .92 .50 .62 .72 

ROC(.20) .59 .75 .83 .65 .76 .84 

pAUC(.20
) 

.68 .83 .91 .58 .71 .81 

AUC .42 .56 .66 .68 .84 .92 

T statistic .42 .58 .68 .69 .84 .93 
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Table 3 
Study power Pg {100| ∈ k1} as a function of sample size using the ovarian cancer data as a 
simulation model. Also shown is the power for the more stringent criterion Pg {100| ∪ k1}. 

  Pg {100| ∈ k1} 
True Ranking (k1) ≤ 10 ≤ 20 ≤ 30 ≤ 40 ≤ 50 
 (nD, nc)      
 (15, 15) .997 .982 .934 .893 .850 
 (25, 25) 1.000 .996 .973 .949 .914 
 (50, 50) 1.000 1.000 .994 .987 .968 
 (100, 100) 1.000 1.000 .999 .998 .990 
  Pg {100| ∪ k1}. 
 (15, 15) .960 .654 .120 .016 .000 
 (25, 25) 1.000 .928 .486 .202 .024 
 (50, 50) 1.000 1.000 .836 .638 .206 
 (100, 100) 1.000 1.000 .984 .928 .608 
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