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1. INTRODUCTION

In clinical trials, information is often collected on a time-to-event (e.g. “survival”) and time-dependent and

time-independent covariates. An example is given by AIDS Clinical Trials Group (ACTG) Protocol 175, a

randomized trial to compare zidovudine alone, zidovudine plus didanosine, zidovudine plus zalcitabine, or

didanosine alone, in HIV-infected subjects on the basis of time to progression to AIDS or death (Hammer

et al., 1996). Between December 1991 and October 1992, 2467 subjects were recruited and followed until

November 1994. CD4 count, as a reflection of immune status, was measured for each participant about

every 12 weeks after randomization. It is well known that observations of CD4 count are subject to

substantial biological variation and measurement error.

In survival analysis, a routine objective is to characterize the relationship between survival and the

covariates. Standard inference procedures usually require the true values of the covariates at the event

times. However, covariates like CD4 count may be subject to substantial measurement error. In addition,

longitudinal covariates are usually collected intermittently and may not observed at the event times. Naive

approaches that ignore measurement error might lead to biased estimation and misleading inference (Pren-

tice, 1982; Tsiatis and Davidian 2001; Song and Huang 2005b). A popular approach to dealing with the

aforementioned measurement error is to use a joint model, which assumes that the longitudinal observa-

tions follow a mixed effects model and the survival time depends on the random effects of the mixed effects

model through a survival model. The mixed effects model may be viewed as an extension of the standard

additive measurement error model for time-independent covariates and the joint modeling approaches may

be applied to repeated measured time-independent covariates as well (Wang, Wang and Wang, 2000).

In joint modeling, the most widely used survival model is the proportional hazards model. Various

approaches have been proposed under this framework, including the regression calibration (e.g. Pawitan

and Self, 1993; Tsiatis et al., 1995; Bycott and Taylor, 1998; Dafni and Tsiatis, 1998), likelihood based
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approaches (e.g. DeGruttola and Tu, 1994; Wulfsohn and Tsiatis, 1997; Faucett and Thomas, 1996;

Henderson et al., 2000; Xu and Zeger, 2001a; Song, Davidian and Tsiatis, 2002b), corrected score (Wang,

2005) and conditional score (Tsiatis and Davidian, 2001; Song, Davidian and Tsiatis, 2002a) approaches.

However, the proportional hazards assumption may be too restrictive in practice. For example, in AIDS

studies, it is well known that the effect of the anti-retrovival treatments may decay after some time. More

flexible models are needed to characterize such covariate effects.

An appealing alternative is the time-varying-coefficient proportional hazards model, which allows the

effect of coefficients to vary over time. In the case of no measurement error, this model has been studied

by Zucker and Karr (1990) using the penalized partial likelihood method and by Murphy and Sen (1991)

using the histogram sieve method. However, both approaches involve complicated optimization procedures

over a high dimensional parameter space. Recently, Winnett and Sasieni (2003) took an iterated residual

approach based on the Schoenfeld residuals for the standard proportional hazards model. They showed the

estimator is consistent, but did not provide the asymptotic distribution. One appealing alternative is the

local partial likelihood approach proposed by Cai and Sun (2003). The estimator is shown to be consistent

and asymptotically normal. In addition, it is the maximum point of a concave function and is thus simple

to compute. Tian, Zucker and Wei (2005) investigated a similar estimating procedure and proposed a

resampling method to construct confidence bands for the time-varying coefficients over a properly selected

time interval. However, at our best knowledge, no approach exists to dealing with measurement error or

joint modeling under the time-varying-coefficient proportional hazards framework.

In this paper, based on the local partial likelihood method, we propose two approaches for the varying

coefficient proportional hazards model when longitudinal covariates are measured with error. One is a

corrected score approach, and the other is a conditional score approach. Both approaches require no

distributional assumptions on the underlying true covariates. The asymptotic properties of the estimators
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are derived based on martingale and empirical process theories. Since time-independent covariates with

repeated measurements can be viewed as a special case of longitudinal covariates, this subsumes the case

of time-independent covariates measured with error. We organize the paper as follows. In Section 2, we

give the model definition. The corrected score and conditional score estimators are proposed in Sections 3

and 4. The finite sample performances of the estimators are assessed by simulation studies in Section 5

and illustrated by an application to the ACTG 175 data in Section 6. We conclude with discussions in

Section 7.

2. MODEL DEFINITION

Let T denote the failure time and C denote the censoring time. The observed survival data are V =

min(T, C), and ∆ = I(T ≤ C), where I(·) is the indicator function. Let X(u) = {X1(u), . . . , Xp(u)} denote

p covariates at time u, which include both time-dependent and time-independent covariates. Suppose that

the covariate process Xk(u) is not observed directly; rather, longitudinal measurements of Xk(u), Wk =

(Wk1, . . . , Wkmk
)T are observed at times tk = (tk1, . . . , tkmk

). For time-independent covariates that are

exactly measured, mk = 1 and Wk = Xk. Let W = (W T
1 , . . . , W T

p )T , τ = (t1, . . . , tp), m = (m1, . . . , mp).

Suppose {(Ti, Ci, Vi, ∆i, W i, Xi, τi, mi) : i = 1, . . . , n} are independent and identically distributed samples

of (T, C, V, ∆, W , X, τ, m) and the observed data set is {(Vi, ∆i, W i, τi, mi) : i = 1, . . . , n}.

Assume that the longitudinal covariate processes follow the linear mixed effects models,

Xik(u) = αT
ikfk(u),

Wikj = Xi(tikj) + eikj ,

where fk(u) is a known qk-dimensional function of u, and αik is a qk-dimensional random effect, j =

1, . . . , mk, and fk and αik may be different for each k, k = 1, . . . , p. This allows flexible modeling of the

time trajectory of each covariate via polynomial or spline models. The random effects αik may be correlated
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across k. In fact, no distributional assumption is placed on αi = (αT
i1, . . . , α

T
ip)

T (q × 1), q =
∑

k qk, nor is

one needed. For time-independent covariates, αik is a scalar and fk(u) = 1.

The errors eikj are assumed to be normally-distributed with mean zero and variance σ2
kk that may

reflect both biological variation and measurement error. For time-independent covariates measured with

no error, eikj = 0. For simplicity, we assume that the available measurements are sufficiently separated

in time that serial correlation associated with within-subject biological variation is negligible; however,

this assumption can be relaxed as discussed in Section 7. We allow measurements on different covariates

at the same time to be correlated. More formally, we may write for k, k′ = 1, . . . , p, j = 1, . . . , mik,

and j′ = 1, . . . , mik′ , cov(eikj , eik′j′) = σkk′I(tikj = tik′j′). Here σkk′ is the covariance between errors from

covariates k and k′ measured at the same time point, reflecting correlation of components of within-subject

biological variation, the measurement error, or both; this formulation subsumes the case σkk′ = 0 for all

k 6= k′. Let ei = (eT
i1, . . . , e

T
iK)T , where eik = (eik1, . . . , eikmik

)T . We assume that ei is independent of

(Ti, Ci, αi, ti).

A time-varying-coefficient proportional hazards model is assumed for the relationship between the

hazard of failure and the covariates, under which the hazard for subject i equals

λi(u|X) = lim
du→0

du−1 Pr(u ≤ Ti < u + du|Ti ≥ u, αi, Ci, ti(u), ei(u))

= λ0(u) exp
{
βT

0 (u)Xi(u)
}

. (1)

Here λ0(u) is an unspecified baseline hazard; β0(u) is a p×1 vector of regression parameters; ti(u) = (tikj <

u; k = 1, . . . , p) denotes the observation times before u; and ei(u) = {eikj : tikj < u, k = 1, . . . , p, j =

1, . . . , mik}. Model (1) is different from the standard proportional hazards model in the regression coeffi-

cients, which may vary over time. This equation makes explicit the assumption that censoring, timing of

measurements, and covariate measurement errors are noninformative. Our interest focuses on estimation
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of β0(u).

3. CORRECTED SCORE ESTIMATOR

For any given t > 0, let β(u) ≈ β(t) + β′(t)(u − t) be the linear approximation of β(u) at t, where

β′(t) = dβ(t)/dt. Let bT = (bT
T0, b

T
T1)

T = {βT
0 (t), β′T

0 (t)}T , and b = (bT
0 , bT

1 ) = {βT (t), β′T (t)}T . For any

vector c, define c⊗r = 1, c, ccT for c = 0, 1, 2 respectively. When the true covariate processes Xi(u) are

known, we consider the local estimating function for bT ,

ŨI(b) = (nH)−1
n∑

i=1

∫ L

0
Kh(u − t)

{
Xi(u, u − t) −

G̃I,1(b, u, u − t)

G̃I,0(b, u, u − t)

}
dNi(u). (2)

Here L is a fixed time; H = diag(Ip, hIp), where Ip denotes a p × p identity matrix, h is the bandwidth;

Kh(u) = h−1K(h−1u), where K(·) is a kernel density; Xi(u, u − t) = ut ⊗ Xi(u), where ⊗ is the operator

for Kronecker product and ut = (1, u− t)T ; For r = 0, 1, 2, G̃I,r(b, u, u− t) = n−1
∑n

i=1 G̃I,ri(b, u, t), where

G̃ri(b, u, t) = Yi(u)X⊗r
i (u, u− t) exp

{
bT Xi(u, u − t)

}
; Ni(u) = I(Vi ≤ u, ∆i = 1, mik(u) ≥ qk, k = 1, . . . , p)

is the counting process, Yi(u) = I(Vi ≥ u, mik(u) ≥ qk, k = 1, . . . , p) is the at risk process, and mik(u) is the

number of the observations before time u for the kth covariate. Estimating function (2) is similar to Cai and

Sun’s local partial likelihood score function (Cai and Sun, 2003), only with the replacements of N∗
i (u) =

I(Vi ≤ u, ∆i = 1) by Ni(u) and Y ∗
i (u) = I(Vi ≥ u) by Yi(u). Noting that Ni(u) = N∗

i (u)I{mik(u) ≥

qk, k = 1, . . . , p} and Yi(u) = Y ∗
i (u)I{mik(u) ≥ qk, k = 1, . . . , p}, it is easy to see that (2) is a weighted

local partial likelihood score function with predictable weights I{mik(u) ≥ qk, k = 1, . . . , p}. Using these

weights facilitates the construction of a corrected score, as will become clear below. We call the estimator

obtained from the equation ŨI(b) = 0, say b̂I , the ideal estimator since it is unachievable when Xi(u) is

not observed.

In practice, the true covariate process Xi(u) is unknown. Intuitively, a naive estimator can be obtained

by replacing Xi(u) by its ordinary least square estimate in (2). However, the naive estimator is biased
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as indicated by the simulation studies in Section 5. One useful technique is the corrected score method

(Stefanski, 1989; Nakamura, 1990), which removes the bias through correction of the “score” function.

To implement the corrected score approach, we substitute Xik(u) by its ordinary square estimator

X̂ik(u) based on the longitudinal observations before time u rather than on all the longitudinal observations

as in naive regression. This ensures the predictability of X̂ik(u), which is important for the consistency

of the corrected score estimator. The same technique has been used for the conditional and corrected

score approaches under the standard proportional hazards framework (Tsiatis and Davidian, 2001; Song

et al., 2002a; Wang, 2005). The estimation of X̂ik(u) is possible only if mik(u) ≥ qk, which clarifies the

inclusion of this condition in the definitions of Yi(u) and Ni(u). Define ω = {σkk′ : k ≥ k′}, the distinct

parameters characterizing the variances and covariances of the errors. For now, we assume ω is known. Let

X̂i(u) = {X̂T
i1(u), . . . , X̂T

ip(u)}T . For k = 1, . . . , p, define Fik = [fk(tik1), . . . , fk(tikmik
)]T , (mik × qk), and

let 0qk
be a qk × 1 vector of zeros, and Iikk′ be the (mik ×mik′) matrix whose (j, j′) entry is I(tikj = tik′j′),

for j = 1, . . . , mik and j′ = 1, . . . , mik′ . Let

F (u) =





fT
1 (u) 0T

q2
. . . 0T

qp

0T
q1

fT
2 (u) . . . 0T

qp

...
...

. . .
...

0T
q1

0T
q2

. . . fT
p (u)





, (p × q).

Since Xi(u) = F (u)αi, following Song et al. (2002a), conditional on {αi, ti}, the covariance of X̂i(u) is

equal to Σi(u) = F (u)Di(ω)F T (u), where

Di(ω) =





Di11(ω) Di12(ω) · · · Di1p(ω)

Di21(ω) Di22(ω) · · · Di2p(ω)

...
...

. . .
...

Dip1(ω) Dip2(ω) · · · Dipp(ω)





, (q × q),
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and Dikk′(ω) = σkk′{F T
ikFik}

−1F T
ikIikk′Fik′{F T

ik′Fik′}−1, (qk × qk′).

We now derive the corrected score estimator. Suppose h is fixed. When n goes to infinity, by the

functional law of large number (Andersen and Gill, 1982), the weighted local partial likelihood score

function ŨI(b) converges in probability to

ŨI(b) = H−1

∫ L

0
Kh(u − t)



E{Xi(u, u − t)} −
E

{
G̃I,1i(b, u, u − t)

}

E
{

G̃I,0i(b, u, u − t)
}



 dE{Ni(u)}.

Let X̂i(u, u − t) = ut ⊗ X̂i(u), Σi(u, u − t) = var
{

X̂i(u, u − t)|αi, ti(u)
}

= (utu
T
t ) ⊗ Σi(u), and

ĜCR,ri(b, u, u − t) = Yi(u)X̂⊗r
i (u, u − t) exp

{
bT X̂i(u, u − t) −

1

2
bT Σi(u, u − t)b

}

for r = 0, 1, 2. With some algebra, we can show that

E
{

ĜCR,1i(b, u, u − t)
}

E
{

ĜCR,0i(b, u, u − t)
} =

E
{

G̃I,1i(b, u, u − t)
}

E
{

G̃I,0i(b, u, u − t)
} + E {Σi(u, u − t)b} .

This suggests that the bias of the naive estimating function can be removed by adding a consistent estimator

of E {Σi(u, u − t)b}. Thus the local corrected score estimating equation is

ÛCR(b) = (nH)−1
n∑

i=1

∫ L

0
Kh(u − t)

{
X̂i(u, u − t) + Σi(u, u − t)b

−
ĜCR,1(b, u, u − t)

ĜCR,0(b, u, u − t)

}
dNi(u) = 0, (3)

where ĜCR,r(b, u, u − t) = n−1
∑n

i=1 ĜCR,ri(b, u, u − t) (r = 0, 1, 2). In fact, when h goes to 0 at a certain

rate, we can also show that ŨI(b) and ŨCR(b) still converge to a common limit. The arguments are sketched

in Appendix A. When there is no measurement error, the corrected score estimating equation (3) reduces

to the weighted local partial likelihood score equation (2).

Cai and Sun (2003) showed the consistency and asymptotic normality of the local partial likelihood

estimator based on the concavity of the local partial likelihood and the martingale theory. However, unlike

the local partial likelihood score function ÛI(b), the corrected score estimating function ÛCD(b) in (3) is
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not the derivative of a concave function. Therefore the arguments of Cai and Sun (2003) cannot be applied

directly for the corrected score estimator. Here, using both the martingale and empirical process theories,

we derive their asymptotic properties under the regularity conditions stated in Appendix A, which are

slightly stronger than those given in Cai and Sun (2003). Write µr =
∫

urK(u)du, and

Qµ =




µ0 µ1

µ1 µ2



 .

Let β′′(t) be the second derivative of β(t). A point t ∈ [0, L] is called an interior point if t ∈ [h, L − h].

The results are summarized in the following theorems with the arguments sketched in Appendix A.

Theorem 1. Under Conditions A1–A10, as n → ∞, a solution to the corrected score estimating equation

(3), say b̂, exists uniquely in a neighborhood of bT with probability 1. Moreover, H(b̂ − bT ) converges in

probability to 0.

Theorem 2. Under Conditions A1–A10, when t is an interior point, as n → ∞,

(nh)1/2

[
H

(
b̂ − bT

)
−

1

2
h2

{
Q−1

µ (µ2, µ3)
T
}
⊗ β′′

0 (t)

]

is asymptotically normal with mean zero and the variance can be consistently estimated by Γ̂−1(t)Ω̂(t, b̂)Γ̂−1(t),

where Γ̂(t) and Ω̂(t, b) are given in Appendix A. The asymptotic variance is larger than that of the ideal

estimator b̂I .

By analogy to Cai and Sun (2003), we can derive the theoretically optimal bandwidth based on Theorem

2, which minimizes the asymptotical mean integrated square error. However, this depends on the unknown

quantities such as β′′(t) and the asymptotic variance. Future research is needed to develop appropriate

bandwidth selection methods.
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When t is a boundary point on [0, L], similar results exist as those in Theorem 2. Specifically, for t = ch,

0 < c < 1, µr is replaced by µr,c =
∫ 1
−c uK(u)du; for t = (L − ch), µr is replaced by µ∗

r,c =
∫ c
−1 uK(u)du.

The proofs are similar and omitted for brevity.

4. CONDITIONAL SCORE ESTIMATOR

An alternative technique to deal with measurement error is the conditional score method. The key idea

of the conditional score approach is to “condition away” the nuisance random effects based on some

“sufficient statistics.” Given Yi(u) = 1, αi and ti(u), the conditional distribution of dNi(u) is Bernoulli

with the probability λ0(u)du exp{βT (u)Xi(u)}, which can be approximated by λ0(u)du exp{bT Xi(u, u−t)}

through the linear expansion of β0(u) at t. Then, with similar arguments as those given by Tsiatis and

Davidian (2001) and Song and Huang (2005a), we can show that the “sufficient statistic” for the nuisance

parameter αi is Si(b, u, u− t) = X̂i(u, u− t) + Σi(u, u− t)bdNi(u). Conditional on this sufficient statistics,

the conditional intensity process can be written as

λi(u|s, t) = lim
du→0

du−1 Pr {dNi(u) = 1|Si(b, u, u − t) = s, ti(u), Yi(u)}

≈ λ0(u)ĜCD,0i(b, u, u − t).

Here

ĜCD,ri(b, u, u − t) = Yi(u)S⊗r
i (b, u, u − t) exp

{
bT Si(b, u, u − t) −

1

2
bT Σi(u, u − t)b

}

for r = 0, 1. Thus we may consider the following estimating equations,

n∑

i

∫ L

0
Kh(u, u − t)ST

i (b, u, u − t){dNi(u) − λ0(u)ĜCD,0i(b, u, u − t)du} = 0, (4)

n∑

i

{dNi(u) − λ0(u)ĜCD,0i(b, u, u − t)du} = 0. (5)
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Solving for λ0(u) from (5) and substituting it into equation (4), we get the local conditional score estimating

equation,

ÛCD(b) = (nH)−1
n∑

i=1

∫ L

0
Kh(u − t)

{
Si(b, u, u − t) −

ĜCD,1(b, u, u − t)

ĜCD,0(b, u, u − t)

}
dNi(u) = 0, (6)

where for r = 0, 1, ĜCD,r(b, u, u − t) = n−1
∑n

i=1 ĜCD,ri(b, u, u − t). When there is no measurement error,

the conditional score estimating equation (6) also reduces to the weighted local partial likelihood score

equation (2).

Instead of deriving the asymptotical properties directly for the conditional score estimator, we show

that the conditional score estimator is asymptotic equivalent to the corrected score estimator, with the

proof given in Appendix B.

Theorem 3. Under Conditions A1–A10, as n → ∞, a solution to the conditional score estimating equation

(6), say b̃, exists uniquely in a neighborhood of bT with probability 1. In addition, (nh)1/2H(b̃− b̂) = op(1).

In practice, the error variance parameter ω is unknown, however, it can be estimated using the methods

of moments estimator ω̂ as given in Song et al. (2002a). Since ω̂ is a regular linear estimator for ω, the

consistency and the asymptotic normality of the conditional score and corrected score estimators remain

and the variances can be estimated by the sandwich technique.

5. SIMULATION STUDIES

We conducted several simulation experiments to assess the performance of the conditional score and cor-

rected score estimators. Under the standard proportional hazards model with constant regression coeffi-

cients, the performance of these two estimators have been compared in Song and Huang (2005a) and Wang

(2005), and the conditional score estimator performs better than the corrected score estimator in the case

of small sample and large measurement error.
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For simplicity, we consider the case when there is a single covariate X(u). Under the first scenario,

for each subject i, Xi(u) = αi0 + αi1u, where (αi0, αi1) are jointly normal with mean (4.173,−0.0103)

and variance D, which has distinct elements (D11, D12, D22) = (1.24,−0.0114, 0.003). The longitudinal

observations of X(u) are measured at u = {0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80}, with a 10% missing

rate after u = 16. The error eij is generated from a normal distribution with mean 0 and variance 0.1 or

0.2. The true regression coefficient β(u) = −1 and the baseline hazard λ0(u) = 1. Censoring is generated

from an exponential distribution with mean 110 and truncated at u = 80, leading to a censoring rate of

36%.

Under the second scenario, the covariate Xi(u) = αi0 is measured twice at the baseline u = 0, where

αi0 is normal with mean 1 and variance 1. The error eij is also generated from a normal distribution

with mean 0 and variance 0.1 or 0.2. The true regression coefficient β(u) = u and the baseline hazard

λ0(u) = 1. Censoring is generated from an exponential distribution with mean 2 and truncated at u = 2.

The censoring rate is 32%.

For each scenario, 1000 Monte Carlo data sets are simulated with n = 300. For each data set, we fit

the above model four ways: (i) using the “ideal” approach in which the true values of Xi(u) at each failure

time were used (Cai and Sun’s method); (ii) using the naive regression; (iii) using the conditional score

estimator; (iv) using the corrected score estimator. For all methods, 95% Wald confidence interval for β(t)

is constructed. We use the Epanechnikov kernel K(u) = 0.75(1−u2)I(|u| ≤ 1) here and for the application

in Section 6.

We estimate the regression coefficient β(t) at t = 10, 20, 30, 40 with h = 20, 40, 60 for the first scenario

and at t = 0.25, 0.50, 0.75, 1.0 with h = 0.4, 0.8, 1.2 for the second scenario. The results are given in

Tables 1–4. In all cases, the conditional score and corrected score estimators show negligible bias close to

that of the unachievable ‘ideal’ estimator. In contrast, the naive regression can yield biased estimates and
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coverage probabilities well below the nominal level. The empirical standard deviations are close to the

standard errors except for a few cases for the corrected score estimator, which is caused by some extreme

outliers. The corrected score approach fails to find solution for some datasets while the conditional score

estimator works well. This issue worsens with decrease in h. This conforms to the relative behaviors of the

two estimators under the standard proportional hazards model. Both methods have coverage probabilities

close to the nominal level and works similarly among the wide ranges of the bandwidth. The selection of

the bandwidth does not show obvious impact on any of these estimators. Similar results were observed by

Cai and Sun (2003) for the local partial likelihood estimator.

We have also conducted simulations with a skewed bimodal mixture of normal distributions for the

random effects and observed similar results. With increase in sample size, both the conditional score and

corrected score methods show improvement while the naive approach performs worse.

6. APPLICATION TO ACTG 175 DATA

To demonstrate the utility of the methods for investigating association between error contaminated covari-

ates and clinical endpoint, we apply the methods to the ACTG 175 data. We are interested in assessing

the effect of CD4 count and treatment on time to AIDS or death. Figure 1 presents log10-transformed CD4

profiles for 10 randomly selected subjects and shows an apparent initial increase, with a peak at week 12,

followed by an approximate linear decline. The logarithmic transformation is usually used for CD4 count

to achieve approximate within subject normality and constant variance. Because only 9 events occurred

before week 12, for simplicity, we consider the data including and after week 12. The trajectory of log10

CD4 seems to follow approximate straight-line relationship (Song and Huang, 2005b). Thus we assume

Xi1(u) = αi10 + αi11u represents “inherent” log10(CD4 count) for subject i at time u. The estimate of the

error variance is 0.0104. The primary analysis found zidovudine alone to be inferior to the other three ther-

apies; thus, further investigations focused on two treatment groups, zidovudine alone and the combination
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of the other three. We took the hazard for AIDS or death to be λi(u) = λ0(u) exp{β1(u)Xi1(u)+β2(u)Xi2},

where Xi2 = I(treatment 6= zidovudine).

We estimated the regression parameters using the naive regression and the conditional score approaches.

Results are shown in Figure 2 for h = 60, 72, 84. The estimates for β1(u) are negative with magnitude de-

creasing over time. The estimates for β2(u) tend to decrease after randomization before reaching a negative

minimum around week 20 and then increase to close to zero, which indicates that the treatment reaches

its maximum effect within several months, gradually decays thereafter and diminishes eventually. Thus,

in this case, it seems inappropriate to use constant regression coefficients as in the standard proportional

hazards model. The estimates are not sensitive to the different choices of bandwidth h except for u close

to 0. The corrected score approach fails to find a solution at many time points and the results are omitted.

From our numerical simulation experience, the corrected score estimator is more likely to encounter the

small sample problem than the conditional score estimator.

7. DISCUSSION

We have proposed two semiparametric estimators for the time-varying-coefficient proportional hazards

model with covariates measured with error. The estimators are asymptotically equivalent, but the con-

ditional score estimator has better finite sample performance than the corrected score estimator. The

asymptotic normality of the estimators justifies the computation of the pointwise Wald confidence inter-

vals. However, for time-varying-coefficients, it may be more appealing to derive the confidence bands over

an interval. A resampling method similar to that proposed by Tian et al. (2005) may be used and will be

investigated in the future. Another interesting topic for future research is to develop appropriate methods

for bandwidth selection.

The model as presented here may be extended to more complicated situations. We have focused on

the case when the errors are independent across time. However, noting that this assumption is only used

13 Hosted by The Berkeley Electronic Press



in computing the variance of the least square estimator X̂i(u), it can be relaxed to the cases of other error

correlation structures, such as the exponential correlation model (Diggle et al., 2002, p.56), as long as we

can derive a consistent estimator for the variance of X̂i(u). When some coefficients do not vary over time,

it is more efficient to use a model with mixed constant and time-varying coefficients. The conditional score

and corrected score estimators may be derived similarly except that the slopes for the constant coefficients

are zero. In addition, the survival model can be generalized to include the random effects instead of the

true covariates by analogy to Song et al. (2002a) and Wang (2005).

ACKNOWLEDGEMENTS

The research is partially supported by the National Institutes of Health grants CA53996 (Wang) and

CA88754 (Wang and Song).

APPENDIX A: PROOF OF THEOREM 1

Let N (b0) be a compact neighborhood of b0. Let eX,ik(u) =
{
F T

ikFik

}−1
Fikeik(u), eX,i(u) = (e1i(u), . . . , eip(u))T ,

νr =
∫

urK2(u)du, H∗ = diag(1, h), and S∗
i (b, u, u − t) = X̂i(u) + Σi(u) {b0 + (u − t)b1} dNi(u). Write

Ĝ∗
I,r(b, u, u − t) = n−1

n∑

i=1

Yi(u)Xr
i (u) exp

{
bT
0 Xi(u) + bT

1 (u − t)Xi(u)
}

,

Ĝ∗
CR,r(b, u, u − t) = n−1

n∑

i=1

Yi(u)X̂r
i (u) exp

{
bT
0 X̂i(u) + bT

1 (u − t)X̂i(u) −
1

2
bT Σi(u, u − t)b

}
,

Ĝ∗
CD,r(b, u, u − t) = n−1

n∑

i=1

Yi(u)S∗r
i (b, u, u − t)

× exp

{
bT
0 S∗

i (b, u, u − t) + bT
1 (u − t)S∗

i (b, u, u − t) −
1

2
bT Σi(u, u − t)b

}
,

Ĝ∗
II,r(β0, u) = n−1

n∑

i=1

Yi(u)Xr
i (u) exp

{
βT

0 (u)Xi(u)
}

,

ĜCRI,r(β, u, u − t) = n−1
n∑

i=1

Yi(u)X̂r
i (u, u − t) exp

{
βT (u)Xi(u)

}
,

Ĝ∗
CRI,r(β, u) = n−1

n∑

i=1

Yi(u)X̂r
i (u) exp

{
βT (u)Xi(u)

}
,
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Ĝ∗
Σ,r(b

#, b,u, u − t) = n−1
n∑

i=1

Yi(u)
[
Σi(u)

{
b#
0 + (u − t)b#

1

}]⊗r

× exp

{
bT X̂i(u, u − t) −

1

2
bT Σi(u, u − t)b

}
,

Ĝ∗
ΣI,r(b,β, u, u − t) = n−1

n∑

i=1

Yi(u) [Σi(u) {b0 + (u − t)b1}]
⊗r exp

{
βT (u)Xi(u)

}
,

Ĝ∗
XΣ(b,u, u − t) = n−1

n∑

i=1

Yi(u)X̂i(u) [Σi(u) {b0 + (u − t)b1}]
T

× exp

{
bT X̂i(u, u − t) −

1

2
bT Σi(u, u − t)b

}
,

Ĝ∗
XΣI(b,β, u, u − t) = n−1

n∑

i=1

Yi(u)X̂i(u) [Σi(u) {b0 + (u − t)b1}]
T exp

{
βT (u)Xi(u)

}
.

The corresponding expectations are represented by the same notations with Ĝ replaced by G.

To derive the asymptotical properties, we assume the following regularity conditions.

A1. P (V ≥ L) > 0.

A2. P (V = u) = 0 for u ∈ [0, L].

A3. K(·) has a compact support, say [−1, 1], and is bounded and has a continuous derivative on [−1, 1].

Assume |K(u)| ≤ MK , and Qµ is positive definite.

A4. X(u) has a continuous derivative X ′(u) for u ∈ [0, L].

A5. There exists a random variable B such that supu∈N (t) ‖X(u)‖ ≤ B, supu∈N (t) ‖eX(u)‖ ≤ B, and

supu∈N (t) ‖Σ(u)‖ ≤ B, E
[
exp

{
4 supu∈N (t)(‖β(u)‖ + ‖β′(u)‖ + ‖β(u)‖2 + ‖β′(u)‖2 + 1)B

}]
< ∞.

A6. G∗
I,r(b, u, u − t), G∗

II,r(β0, u), G∗
CR,r(b, u, u − t), G∗

CRI,r(β, u), G∗
Σ,r(b

#, b,u, u − t), G∗
XΣ(b,u, u − t),

G∗
XΣI(b,β, u, u− t) are continuous at u ∈ N (t), a compact neighborhood around t, for b ∈ N (b0) and

r = 0, 1, 2.

A7. β(u) has a continuous second derivative β′′(u) for u ∈ N (t).
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A8.
∫ L
0 λ0(u)du < ∞, λ0(t) > 0, and λ0(u) is continuous for u ∈ N (t).

A9. The matrix Γ∗
0(t) = G∗

II,2(β0, t) − G∗⊗2
II,1(β0, t)/G∗

II,0(β0, t) is positive definite.

A10. h = o(1), nh5 = O(1), and nh → ∞ as n → ∞.

First, we give some lemmas. Let Wik(u) = {Wik(tikj) : tikj ≤ u}, and Wi(u) = {Wi1(u), . . . , Wip(u)}.

Define Fi(u) = {Ni(s), Yi(s), Xi(s), Wi(s) : s ≤ u}. Then Mi(u) = Ni(u)−
∫

λ0(s)Yi(s)×exp{β0(s)Xi(s)}ds

is a martingale with respect to Fi(u). Write c′(u, b) as the partial derivative of c(u, b) with respective to

u, and Ê be the empirical average operator such that Êc = Êci = n−1
∑n

i=1 ci.

Lemma 1. Suppose that gi(u) is a predictable process with respect to the filtration Fi(u) and has a deriva-

tive g′i(u) for u ∈ N (t). If supu∈N (t) E
[
g2
i {u} + g′2i {u}

]
< ∞, then

E′ [gi(t)Ni(t)] − E
{
g′i(t)Ni(t)

}
= λ0(t)E [gi(t)Yi(t) exp {(β0(t)Xi(t)}] .

Specifically, if gi(t) = 1, E′ [Ni(t)] = λ0(t)G
∗
II,0(β0, t).

Proof. Note that Mi(u) is a martingale with respect to the filtration Fi(u), and

E [gi(u)Mi(u)|Fi(u−)] = gi(u)E [Mi(u)|Fi(u−)] = 0

E
[
g′i(u)Mi(u)|Fi(u−)

]
= g′i(u)E [Mi(u)|Fi(u−)] = 0.

Hence

0 = E [gi(t)Mi(t)] = E {gi(t)Ni(t)} − E

{
gi(t)

∫ t

0
λ0(u)Yi(u) exp {(β0(u)Xi(u)} du

}
(A.1)

and

0 = E
[
g′i(t)Mi(t)

]
= E

{
g′i(t)Ni(t)

}
− E

{
g′i(t)

∫ t

0
λ0(u) exp {(β0(u)Xi(u)} du

}
. (A.2)

16 http://biostats.bepress.com/uwbiostat/paper273



Taking derivative with respect to t in equation (A.1), under Condition A8, we have

E′ [gi(t)Ni(t)] = E

{
g′i(t)

∫ t

0
λ0(u) exp {(β(u)Xi(u)} du

}
+ E [gi(t)λ0(t)Yi(t) exp {(β0(t)Xi(t)}] .

This, together with (A.2), completes the proof.

In the following lemmas, let ci(u, w, b) be a random process for the ith subject on R = {(u, w, b) : u ∈

N (t), w ∈ [−1, 1], b ∈ N (b0)}, and gn(u, w, b) be a random process on R and g(u, w, b) be a non-random

process on R.

From the functional strong law of large number of Anderson and Gill (1982), we have the following

lemma.

Lemma 2. Suppose sup(u,w,b)∈R E ‖ci(u, w, b)‖ < ∞. Then

sup
(u,w,b)∈R

∥∥∥∥∥n−1
n∑

i=1

Yi(u)ci(u, w, b) − E {Yi(u)ci(u, w, b)}

∥∥∥∥∥
a.s.
→ 0.

Lemma 3. Suppose sup(u,w,b)∈R |gn (u, w, b) − g (u, w, b)|
a.s.
→ 0 and sup(u,w,b)∈R |g (u, w, b)| < ∞. Then, for

r ≥ s ≥ 0,

sup
b∈N (b0)

∣∣∣∣
∫ L

0
Kh(u − t)h−s(u − t)rgn

{
u, h−1(u − t), b

}
du − I(r = s)

∫ L

0
K(w)hr−swrg(t + hw, w, b)dw

∣∣∣∣
a.s.
→ 0.

In the special case when gn(u, w, b) = gn(u, b) and g(u, w, b) = g(u, b), if g(u, b) is continuous at u = t, then

sup
b∈N (b0)

∣∣∣∣
∫ L

0
Kh(u − t)h−s(u − t)rgn(u, b)du − I(r = s)

∫ L

0
K(w)hr−swrdwg(t, b)

∣∣∣∣
a.s.
→ 0.

Proof.
∫

Kh(u− t)h−s(u− t)rgn

{
u, h−1(u − t), b

}
du =

∫
K(w)hr−swrgn(t + hw, w, b)dw. And for n large
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enough, under Condition A3,

sup
b∈N (b0)

∣∣∣∣
∫ L

0
K(w)hr−swrgn(t + hw, w, b)dw −

∫ L

0
K(w)hr−swrg(t + hw, w, b)dw

∣∣∣∣

≤ sup
(u,w,b)∈R

|gn (u, w, b) − g (u, w, b)|

∫ L

0
K(w)hr−swrdw

= sup
(u,w,b)∈R

|gn (u, w, b) − g (u, w, b) |hr−s

∫ L

0
K(w)wrdw

a.s.
→ 0.

If supu∈N (t),w∈[−1,1],b∈N (b0) ‖g (u, w, b) ‖ < ∞, for r > s,

sup
b∈N (b0)

∣∣∣∣
∫ L

0
K(w)hr−swrg(t + hw, w, b)dw

∣∣∣∣

≤ sup
(u,w,b)∈R

|g (u, b)|hr−s

∫ L

0
K(w)wrdw

→ 0.

In the special case when gn(u, w, b) = gn(u, b) and gn(u, w, b) = gn(u, b), if g(u, b) is continuous at u = t,

sup
b∈N (b0)

∣∣∣∣
∫ L

0
K(w)hr−swrg(t + hw, b)dw −

∫ L

0
K(w)hr−swrg(t, b)dw

∣∣∣∣

≤ sup
(u,b)∈N (t)×N (b0)

|g (u, b)|

∫ L

0
K(w)hr−swr−sdw

→ 0.

Thus the result follows.

Lemma 4. If g(u, w, b) has bounded and continuous partial derivatives with respect to u and w for u ∈ N (t)

and w ∈ [−1, 1], and sup(u,w,b)∈R |g(u, w, b) − g(t, w, b)|→0, then for r ≥ s ≥ 0,

sup
b∈N (b0)

∣∣∣∣
∫ L

0
Kh(u − t)h−s(u − t)rg

{
u, h−1(u − t), b

}
dÊN(u)

−I(r = s)

∫ L

0
K(w)wrg(t, w, b)dwE′N(t)

∣∣∣∣
a.s.
→ 0.
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Proof. Let g′1(u, w, b) and g′2(u, w, b) be the derivatives g(u, w, b) with respect to u and w, respectively.

By integration by parts, for r ≥ s and n large enough,

sup
b∈N (b0)

∣∣∣∣
∫ L

0
Kh(u − t)h−s(u − t)rg

{
u, h−1(u − t), b

}
d
ˆ̂
EN(u)

−

∫ L

0
Kh(u − t)h−s(u − t)rg(u, h−1(u − t), b)dEN(u)

∣∣∣∣

≤ sup
b∈N (b0)

Kh(u − t)h−s(u − t)rg
{
u, h−1(u − t), b

} ∣∣∣ˆ̂EN(u) − EN(u)
∣∣∣
∣∣∣
u=t+h

u=t−h

+ sup
b∈N (b0)

∫ L

0

∣∣∣ÊN(u) − EN(u)
∣∣∣

×
([

K
′

h

{
h−1(u − t)

}
h−s−2(u − t)r + Kh(u − t)h−sr(u − t)r−1

] ∣∣g
{
u, h−1(u − t), b

}∣∣

+Kh(u − t)h−s(u − t)r
[
g′1

{
u, h−1(u − t), b

}
+ h−1 g′2

{
u, h−1(u − t), b

}])
du

≤ sup
u∈N (t)

∣∣∣ÊN(u) − EN(u)
∣∣∣

×

(
sup

(u,w,b)∈R

{
|g(u, w, b)| +

∣∣g′1(u, w, b)
∣∣ +

∣∣g′2(u, w, b)
∣∣}

×

[
MKO(hr−s+1) +

∫ L

0

{∣∣K ′(w)
∣∣ hr−s−1wa + K(w)hr−s−1rwr−1

}
+ K(w)

(
hr−swr + hr−s−1wr

)
dw

])

= sup
u∈N (t)

∣∣∣ÊN(u) − EN(u)
∣∣∣ sup
(u,w,b)∈R

{
|g(u, w, b)| +

∣∣g′1(u, w, b)
∣∣ +

∣∣g′2(u, w, b)
∣∣} O(hr−s−1)

= op(1),

where the last step follows from supu∈N (t)

∣∣∣ˆ̂EN(u) − EN(u)
∣∣∣ = Op(n

−1/2) and assumptions A3. Note that

∫
Kh(u − t)h−s(u − t)rg(u, h−1(u − t), b)dEN(u) =

∫
Kh(u − t)h−s(u − t)rg(u, h−1(u − t), b)E′N(u)du

=

∫
K(w)hr−swrg(t + hw, w, b)E′N(t + hw)dw.

For r = s,

sup
b∈N (b0)

∣∣∣∣
∫

K(w)wrg(t + hw, w, b)E′N(t + hw)dw −

∫
K(w)wrg(t, w, b)E′N(t)dw

∣∣∣∣

≤ sup
w∈[−1,1],b∈N (b0)

∣∣∣∣
∫

K(w)wrg(t + hw, w, b)E′N(t + hw)dw −

∫
K(w)wrg(t + hw, w, b)E′N(t)dw

∣∣∣∣
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+ sup
w∈[−1,1],b∈N (b0)

∣∣∣∣
∫

K(w)wrg(t + hw, w, b)E′N(t)dw −

∫
K(w)wrg(t, w, b)E′N(t)dw

∣∣∣∣

≤ sup
(u,w,b)∈R

|g(u, w, b)| sup
w∈[−1,1]

∣∣E′N(t + w) − E′N(t)
∣∣
∫

K(w)wrdw

+ sup
w∈[−1,1],b∈N (b0)

|g(t + hw, w, b) − g(t, w, b)| |E′N(t)|

∫
K(w)wrdw

→ 0

For r > s,

sup
b∈N (b0)

∣∣∣∣
∫

K(w)hr−swrg(t + hw, w, b)E′N(t + hw)dw

∣∣∣∣

≤ sup
(u,w,b)∈R

|g(u, w, b)|hr−s

∫
K(w)wrdw

→ 0.

The result then follows.

Lemma 5. If sup(u,w,b)∈R |gn (u, w, b) − g (u, w, b)|
a.s.
→ 0, then for r ≥ s ≥ 0,

sup
b∈N (b0)

∣∣∣∣
∫ L

0
Kh(u − t)h−s(u − t)r

[
gn

{
u, h−1(u − t), b

}
− g

{
u, h−1(u − t), b

}]
dÊN(u)

∣∣∣∣
a.s.
→ 0.

Proof.

sup
b∈N (b0)

∣∣∣∣
∫ L

0
Kh(u − t)h−s(u − t)r

[
gn

{
u, h−1(u − t), b

}
− g

{
u, h−1(u − t), b

}]
dÊN(u)

∣∣∣∣

= sup
b∈N (b0)

∣∣∣∣
∫ L

0
K(w)hr−swr {gn (u, w, b) − g (u, w, b)} dÊN(t + hw)

∣∣∣∣

≤ sup
(u,w,b)∈R

|gn (u, w, b) − g (u, w, b)|hr−s

∫ L

0
K(w)dÊN(t + hw)

= sup
(u,w,b)∈R

|gn (u, w, b) − g (u, w, b)|hr−s

∫ L

0
Kh(u − t)dÊN(u)

a.s.
→ 0,

with the last step follows from Lemma 4.
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Lemma 6. If sup(u,w,b)∈R |gn (u, w, b) − g (u, w, b)|
a.s.
→ 0, and sup(u,w,b)∈R |g (u, w, b)| < ∞, then for r ≥

s + 1 ≥ 0, then

sup
b∈N (b0)

∣∣∣∣
∫ L

0
K2

h(u − t)h−s(u − t)rgn(u, h−1(u − t), b)du

−I(r = s + 1)

∫ L

0
K2(w)wrg(t + hw, w, b)dw

∣∣∣∣
a.s.
→ 0.

In the special case when gn(u, w, b) = gn(u, b), and g(u, w, b) = g(u, b), if g(u, b) is continuous at u = t,

sup
b∈N (b0)

∣∣∣∣K
2
h(u − t)h−s(u − t)rgn(u, b)du − I(r = s + 1)

∫ L

0
K(w)wrdwg(t, b)

∣∣∣∣
a.s.
→ 0.

The proof is similar to that for Lemma 3 and is thus omitted.

Lemma 7. Suppose that ci(u, w, b) is predictable with respect to Fi(u) and has a continuous partial deriva-

tive c′i(u, w, b) with respect to u almost everywhere for u ∈ [0, L]. If for some η > 0,

sup
u∈N (t),w∈[−η,η],b∈N (b0)

E

[∣∣∣∣ci(u, u − t, b)

∣∣∣∣ +

∣∣∣∣
∂ci(u, u − t, b)

∂u

∣∣∣∣

]
< ∞,

then for r ≥ s ≥ 0,

sup
b∈N (b0)

∣∣∣∣∣

∫ L

0
Kh(u − t)h−s(u − t)rn−1

n∑

i=1

ci(u, u − t, b)dN(u)

−I(r = s)

∫ L

0
K(w)wrdwλ0(t)E [ci(t, 0, b)Yi(t) exp {(β0(t)Xi(t)}]

∣∣∣∣
a.s.
→ 0.

Proof. Note that

∫ L

0
Kh(u − t)h−s(u − t)rÊc(b, u, u − t)dN(u)

=

∫ L

0
Kh(u − t)h−s(u − t)rdÊc(b, u, u − t)N(u) −

∫ L

0
Kh(u − t)h−s(u − t)rÊ

∂c(b, u, u − t)

∂u
N(u)du.

With similar arguments as those for Lemma 4, we have

sup
b∈N (b0)

∣∣∣∣
∫ L

0
Kh(u − t)h−s(u − t)rdÊc(b, u, u − t)N(u) − I(r = s)

∫ L

0
K(w)wrdwE′{c(b, u, u − t)N(u)}

∣∣∣∣
a.s.
→ 0,
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where E′{c(b, u, u− t)N(u)} is the partial derivative of E{c(b, u, u− t)N(u)} with respect to u. And from

Lemma 3, we have

sup
b∈N (b0)

∣∣∣∣
∫

Kh(u − t)h−s(u − t)rÊ
∂c(b, u, u − t)

∂u
N(u)du − I(r = s)

∫
K(w)wrdwE{

∂c(b, u, u − t)

∂u
N(u)}

∣∣∣∣
a.s.
→ 0.

Then the result follows from Lemma 1.

We now show the asymptotic properties for the corrected score estimator b̂ = (b̂0, b̂1).

Consistency

Let α = (αT
0 , αT

1 )T = H (b − bT ). Then α̂ = H(b̂− bT ) is a solution to ŨCR(α) = ÛCR(H−1α + bT ) and

α̂I = H(b̂I − bT ) is a solution to ŨI(α) = ÛI(H
−1α + bT ). Let H∗ = diag(1, h). Note that ŨCR(α) can be

rewritten as

∫ L

0
Kh(u − t)

(
H∗−1ut

)
⊗

{
ÊX̂i(u)dNi(u) + ÊΣi(u)(ut ⊗ Ip)

T
(
H−1α + bT

)
dNi(u)

−
G∗

CR,1(H
−1α + bT , u, u − t)

G∗
CR,0(H

−1α + bT , u, u − t)
ÊdNi(u)

}
(A.3)

+

∫ L

0
Kh(u − t)

(
H∗−1ut

)
⊗

{
Ĝ∗

CR,1(H
−1α + bT , u, u − t)

Ĝ∗
CR,0(H

−1α + bT , u, u − t)

−
G∗

CR,1(H
−1α + bT , u, u − t)

G∗
CR,0(H

−1α + bT , u, u − t)

}
ÊdNi(u). (A.4)

Condition A1 implies that G∗
CR,0(H

−1α + bT , u, u− t) is uniformly bounded below. Then under Condition

A5, by Lemma 2, (A.4) converges almost surely to 0 uniformly for α ∈ N (0). With an application of

Lemmas 2, 4 and 7, Conditions A4–A6 imply that (A.3) converges uniformly to

(µ0, µ1)
T ⊗ λ0(t)G

∗
CRI,1(β0, t) +

∫ L

0
K(w)(1, w)T ⊗ λ0(t)G

∗
ΣI,1(α + b∗T , β0, t, w)dw

−

∫ L

0
K(w)(1, w)T ⊗

G∗
CR,1(α + b∗T , t, w)

GCR,0(α + b∗T , t, w)
λ0(t)G

∗
II,0(β0,, t, 0)dw, (A.5)
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where b∗T = (βT
0 (t), 0T

p )T . With some algebra, we can show that

G∗
CR,0(b, u, u − t) = G∗

I,0(b, u, u − t),

G∗
CR,1(b, u, u − t) = G∗

I,1(b0, u, u − t) + E [Σ(u) {b0 + (u − t)b1}] G
∗
I,0(b, u, u − t),

G∗
CR,2(b, u, u − t) = G∗

I,2(b, u, u − t) + G∗
I,1(b, u, u − t)ET {Σ(u) {b0 + (u − t)b1}}

+E {Σ(u) {b0 + (u − t)b1}}G∗T
I,1(b, u, u − t) (A.6)

+G∗
I,0(b, u, u − t)E⊗2 {[Σ(u) {b0 + (u − t)b1}] + Σ(u)} ,

G∗
ΣI,1(α + b∗T , β0, t, w) = E {Σ(t) (α0 + bT0 + wα1)}G∗

II,0(β0,, t),

G∗
CRI,r(β0, t) = G∗

I,r(bT , t, 0) = G∗
II,r(β0, t).

Using these equations, (A.5) can be simplified as

U(α) = (µ0, µ1)
T

⊗λ0(t)

{
G∗

II,1(β0, t) −

∫ L

0
K(w)(1, w)T ⊗

G∗
I,1(α + b∗T , t, w)

G∗
I,0(α + b∗T , t, w)

dwG∗
II,0(β0, t)

}
.

Thus ŨCR(α) converges almost surely to U(α) uniformly for α ∈ N (0). It is easy to see that U(α) is the

derivative of a concave function and is equal to zero at α = 0. Therefore α̂
p
→ 0; that is, H

(
b̂ − bT

)
p
→ 0.

Since U(α) is the derivative of a concave function, the asymptotic uniqueness of the corrected score

estimator follows.

Asymptotic Normality

We first consider (nh)1/2 ÛCR(βT ). It is easy to see that

(nh)1/2 ÛCR(βT ) =

(nh)1/2 n−1
n∑

i=1

∫ L

0
H−1Kh(u − t)

{
X̂i(u, u − t) + Σi(u, u − t)bT

−
ĜCR,1(bT , u, u − t)

ĜCR,0(bT , u, u − t)

}
dMi(u) (A.7)
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+ (nh)1/2 n−1
n∑

i=1

∫ L

0
H−1Kh(u − t)

{
X̂i(u, u − t) + Σi(u, u − t)bT

−
ĜCR,1(bT , u, u − t)

ĜCR,0(bT , u, u − t)

}
λ0(u)Yi(u) exp

{
βT

0 (u)Xi(u)
}

du. (A.8)

Note that (A.8) can be written as ξn1(βT ) + ξn2(βT ), where

ξn1(βT ) = (nh)1/2
∫ L

0

(
H∗−1ut

)
⊗ Kh(u − t)λ0(u)

{
G∗

CRI,1(β0, u)

+G∗
ΣI,1(bT , β0, u, u − t) −

G∗
CR,1(bT , u, u − t)

G∗
CR,0(bT , u, u − t)

G∗
CRI,0(β0, u)

}
du,

ξn2(βT ) = h1/2

∫ L

0

(
H∗−1ut

)
⊗ Kh(u − t)λ0(u)n1/2Jn(bT , u, u − t)du,

and

Jn(bT , u, u − t) =
{

Ĝ∗
CRI,1(β0, u) − G∗

CRI,1(β0, u)
}

+
{

Ĝ∗
ΣI,1(bT , β0, u, u − t) − G∗

ΣI,1(bT , β0, u, u − t)
}

+

{
Ĝ∗

CR,1(bT , u, u − t)

Ĝ∗
CR,0(bT , u, u − t)

Ĝ∗
CRI,0(β0, u) −

G∗
CR,1(bT , u, u − t)

G∗
CR,0(bT , u, u − t)

G∗
CRI,0(β0, u)

}
.

By the functional delta method, the empirical process n1/2Jn(bT , u, u− t) converges to a Gaussian process

J . Now, using the strong embedding theorem (Shorack and Wellner, 1986, p. 47–48), there exists a

new probability space such that it converges to W almost surely. Together with that h = o(1), we have

ξn2(βT ) = op(1). Using (A.6), with some algebra, we can show that

ξn1(βT ) = (nh)1/2
∫ L

0

(
H∗−1ut

)
Kh(u − t)λ0(u)

[
G∗

II,1(β0, u) − G∗
I,1(bT , u, u − t)

+
G∗

I,1(bT , u, u − t)

G∗
I,0(bT , u, u − t)

{
G∗

I,0(bT , u, u − t) − G∗
II,0(β0, u)

} ]
du. (A.9)

With an application of the Taylor series expansion, under Condition A7, we can show that, for r = 1, 2,

G∗
II,r(β0, u) − G∗

I,r(bT , u, u − t) =
1

2
(u − t)2G∗

II,r+1(β0, u)β′′
0 (t) + op(h

2).
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Substituting this into equation (A.9) gives that

ξn1(βT ) = (nh)1/2 1

2
h2(µ2, µ3)

T ⊗ λ0(t)Γ
∗
0(t)β

′′
0 (t) + op(1).

Then we only need to show that ςn(v) = (A.7) converges to a Gassian process. This can be proved by

Rebolledo’s central limit theorem. Using Lemmas 2 and 6, we can show that the predictable variation

process

〈ςn, ςn〉 = n−1h
n∑

i=1

∫ L

0

[
K2

h(u − t)
(
H∗−1ut

)⊗2
⊗

{
X̂i(u) + Σi(u) {bT0 + (u − t)bT1} −

Ĝ∗
CR,1(bT , u, u − t)

Ĝ∗
CR,0(bT , u, u − t)

}⊗2

×λ0(u)Yi(u) exp {β0(u)Xi(u)}

]
du

= Qν ⊗ λ0(t)

[
G∗

CRI,2(β0, t) + G∗
ΣI,2(bT , t, 0) +

G∗⊗2
CR,1(bT , t, 0)

G∗2
CR,0(bT , t, 0)

G∗
II,0(β0, t)

+G∗
XΣI(bT , β0, t, 0) + G∗T

XΣI(bT , β0, t, 0)

−G∗
CRI,1(β0, t)

G∗T
CR,1(bT , t, 0)

G∗
CR,0(bT , t, 0)

−
G∗

CR,1(bT , t, 0)

G∗
CR,0(bT , t, 0)

G∗T
CRI,1(β0, t)

− G∗
ΣI,1(bT , β0, t, 0)

G∗T
CR,1(bT , t, 0)

G∗
CR,0(bT , t, 0)

−
G∗

CR,1(bT , t, 0)

G∗
CR,0(bT , t, 0)

G∗T
ΣI,1(bT , β0, t, 0)

]

+op(1). (A.10)

With some straightforward algebra, it can be shown that

G∗
CRI,2(β0, t) = G∗

II,2(β0, t) + G∗
II,0(β0, t)E {Σ(t)} ,

G∗
ΣI,2(b, t, 0) = G∗

II,0(β0, t, 0)E
[
Σ(t)bbT ΣT (t)

]
, (A.11)

G∗
XΣI(b,β0, t, 0) = G∗

II,1(β0, t)E
T [Σ(t)b0] .

Applying (A.6), (A.11) and Lemma 1, (A.10) can be written as

〈ςn, ςn〉 = Ω(t) + op(1), (A.12)
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where

Ω(t) = Q(ν) ⊗ λ0(t)

(
G∗

II,2(β0, t) −
G∗⊗2

II,1(β0, t)

G∗
II,0(β0, t)

+ G∗
II,0(β0, t) [E {Σ(t)} + var {Σ(t)bT }]

)
.

Then we just need to verify the Lindeberg Condition. Let

ςni(u) = X̂i(u) + Σi(u) {bT0 + (u − t)bT1} −
Ĝ∗

CR,1(bT , u, u − t)

Ĝ∗
CR,0(bT , u, u − t)

.

Given any ε > 0, the Lindeberg Condition can be written as

n−1h
n∑

i=1

∫ L

0

[
K2

h(u − t)ς2
ni(u)I

{
n−1/2h1/2Kh(u − t) |ςni(u)| > ε

}

×λ0(u)Yi(u) exp
{
βT

0 (u)Xi(u)
}]

du
p
→ 0, (A.13)

n−1h
n∑

i=1

∫ L

0

[
(h−1ut)

2K2
h(u − t)ς2

ni(u)I
{

n−1/2h1/2h−1utKh(u − t) |ςni(u)| > ε
}

×λ0(u)Yi(u) exp
{
βT

0 (u)Xi(u)
}

du
] p
→ 0. (A.14)

Note that (A.13) implies (A.14). Therefore it is sufficient to show (A.13). This follows from

Pr

(
sup

u∈N (t)

∣∣∣n−1/2h1/2Kh(u − t)ςni(u)
∣∣∣ > ε

)
≤ Pr

(
sup

u∈N (t)
|ςni(u)| >

n1/4ε

MK

)
,

which, for n large enough, is equal to 0 from Condition A5 and Lemma 2. Therefore we have

(nh)1/2

[
ÛCR(bT ) −

1

2
h2 (µ2, µ3)

T ⊗ λ0(t)Γ
∗
0(t)β

′′
0 (t)

]
d
→ N(0,Ω(t)). (A.15)

By a Taylor series expansion,

0 = (nh)1/2 ÛCR(b̂) = (nh)1/2 ŨCR(α̂) = (nh)1/2 ŨCR(0) + (nh)1/2 ∂ŨCR(α∗)

∂αT
α̂,

where α∗ lies between 0 and α̂. This implies that

(nh)1/2 H
(
b̂ − b0

)
=

{
−

∂ŨCR(α∗)

∂αT

}−1

(nh)1/2 ÛCR(b0). (A.16)
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Note that ∂ŨCR(α)/∂αT can be written as

n−1
n∑

i=1

∫ L

0
Kh(u − t)

(
H∗−1ut

)⊗2
⊗ Σi(u)dMi(u) (A.17)

−

∫ L

0
Kh(u − t)

(
H∗−1ut

)⊗2
⊗ λ0(u)Ĝ∗

ΣI,1(β0,u, u − t)du (A.18)

−

∫ L

0
Kh(u − t)

(
H∗−1ut

)⊗2

⊗

[
Ĝ∗

CR,2(H
−1α + bT , u, u − t) − Ĝ∗

XΣ(H−1α + bT,u, u − t)

Ĝ∗
CR,0(H

−1α + bT , u, u − t)

−
Ĝ∗

CR,1(H
−1α + bT , u, u − t)

Ĝ∗2
CR,0(H

−1α + bT , u, u − t)

×
{

ĜT∗
CR,1(H

−1α + bT , u, u − t) − Ĝ∗T
Σ,1(H

−1α + bT,u, u − t)
} ]

dÊN(u)

(A.19)

+op(1).

By the Lenglart’s Inequality, we can show that the martingale (A.17) converges to 0 as its predictable

variation process converges to 0. Moreover, uniformly for α ∈ N (0),

(A.18)
p
→ Qµ ⊗ λ0(t)G

∗
II,0(β0, t, 0)E [Σ(t)] ,

and

(A.19)
p
→ −

∫ L

0
K(w)




1 w

w w2



 ⊗

[
G∗

CR,2(α + b∗T , t, w) − G∗
XΣ(α + b∗T , t, w)

Ĝ∗
CR,0(α + b∗T , t, w)

−
G∗

CR,1(α + b∗T , t, w)

G∗2
CR,0(α + b∗T , t, w)

{
GT∗

CR,1(α + b∗T , t, w) − G∗T
Σ,1(α + b∗T , t, w)

}
]
dwE′ {N(t)} .

(A.20)

From (A.6), the right side of (A.20) can be simplified as

−Γ (α, t) − Qµ ⊗ λ0(t)G
∗
II,0(β0, t, 0)E [Σ(t)] ,
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where

Γ (α, t) =

∫ L

0
K(w)




1 w

w w2





⊗

[
G∗

I,2(α + b∗T , t, w)

Ĝ∗
I,0(α + b∗T , t, w)

−
G∗

I,1(α + b∗T , t, w)G∗T
I,1(α + b∗T , t, w)

G∗2
I,0(α + b∗T , t, w)

]
dw

×λ0(t)G
∗
II,0(β0, t, 0).

Hence

∂ŨCR(α)

∂αT

p
→ −Γ (α, t)

uniformly for α ∈ N (0). This, coupled with the consistency of α̂ and the continuity of Γ (α, t) at α obtained

from Condition A6, implies that

∂ŨCR(α∗)

∂αT

p
→ Γ0(t) = Γ (0, t) = Qµ ⊗ λ0(t)Γ

∗
0(t). (A.21)

Combining (A.15), (A.16) and (A.21) and the Conditions A3, A8, A9 and A10, we have

(nh)1/2

[
H

(
b̂ − b0

)
−

1

2
h2

{
Q−1

µ (µ2, µ3)
T
}
⊗ β′′

0 (t)

]
d
→ N

(
0, Γ−1

0 (t)Ω(t)
{
Γ−1

0 (t)
}T

)
.

Note that Ω(t) = Γ0(t) + Γ1(t), where

Γ1(t) = Qµ ⊗ G∗
II,0(b0, t, 0) [E {Σ(t)} + var {Σ(t)b0}] .

Therefore

Γ−1
0 (t)Ω(t)

{
Γ−1

0 (t)
}T

= Γ−1
0 (t) + Γ−1

0 (t)Γ1(t)
{
Γ−1

0 (t)
}T

.

Note that Γ−1
0 (t) is the asymptotic variance for the ideal estimator when there is no measurement error.

Hence the corrected score estimator has a larger variance than that of the ideal estimator as we expect.
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A consistent estimator of Ω(t) is

Ω̂(t, b̂) = n−1
n∑

i=1

∫ L

0
hK2

h(u − t)
(
H∗−1ut

)⊗2

⊗

{
X̂i(u) + Σi(u)

{
b̂0 + (u − t)b̂1

}
−

Ĝ∗
CR,1(b̂, u, u − t)

Ĝ∗
CR,0(b̂, u, u − t)

}⊗2

dNi(u).

The consistency of Ω̂(t, b̂) follows from (A.12) and Ω̂(t, bT ) − 〈ςn, ςn〉 = χn + op(1), where

χn = n−1
n∑

i=1

∫ L

0
hK2

h(u − t)
(
H∗−1ut

)⊗2

⊗

{
X̂i(u) + Σi(u) {bT0 + (u − t)bT1} −

Ĝ∗
CR,1(bT , u, u − t)

Ĝ∗
CR,0(bT , u, u − t)

}⊗2

dMi(u).

We can show the martingale χn = op(1) by the Lenglart’s Inequality. In addition, Ω(t, b̂)−Ω(t, bT ) = op(1)

follows from H(b̂ − bT ) = op(1). Likewise, we can show that a consistent estimator for Γ0(t) is Γ̂(t) =

−∂ŨCR(α∗)/∂αT = −∂ÛCR(b̂)/∂bT H−1. Therefore a consistent estimator for the variance of n−1(β̂ − βT )

is Γ̂−1(t)Ω̂(t, b̂)
{

Γ̂−1(t)
}T

.

APPENDIX B: PROOF OF THEOREM 3

First we show that

(nh)1/2
{

ÛCD(b, t) − ÛCR(b, t)
}

= op(1) (A.22)

uniformly for b ∈ N (b0). Note that under Condition A2, G∗
CD,r(b, u, u− t) = G∗

CR,r(b, u, u− t) for r = 0, 1.

Thus

(nh)1/2
{

ÛCD(b, t) − ÛCR(b, t)
}

= −(nh)1/2(nH)−1
n∑

i=1

∫ L

0
Kh(u − t)

×

{
ĜCD,1(b, u, u − t)

ĜCD,0(b, u, u − t)
−

ĜCR,1(b, u, u − t)

ĜCR,0(b, u, u − t)

}
dNi(u)

= −h1/2

∫ L

0
Kh(u − t)

(
H∗−1ut

)
⊗

{
Ĝ∗

CD,1(b, u, u − t)

Ĝ∗
CD,0(b, u, u − t)

−
G∗

CD,1(b, u, u − t)

G∗
CD,0(b, u, u − t)

}
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×n1/2dÊM(u) (A.23)

+h1/2

∫ L

0
Kh(u − t)

(
H∗−1ut

)
⊗

{
Ĝ∗

CR,1(b, u, u − t)

Ĝ∗
CR,0(b, u, u − t)

−
G∗

CR,1(b, u, u − t)

G∗
CR,0(b, u, u − t)

}

×n1/2dÊM(u) (A.24)

−h1/2

∫ L

0
Kh(u − t)

(
H∗−1ut

)

⊗n1/2

{
Ĝ∗

CD,1(b, u, u − t)

Ĝ∗
CD,0(b, u, u − t)

−
G∗

CD,1(b, u, u − t)

G∗
CD,0(b, u, u − t)

}
du (A.25)

−h1/2

∫ L

0
Kh(u − t)

(
H∗−1ut

)

⊗n1/2

{
Ĝ∗

CR,1(b, u, u − t)

Ĝ∗
CR,0(b, u, u − t)

−
G∗

CR,1(b, u, u − t)

G∗
CR,0(b, u, u − t)

}
du. (A.26)

Note that under Condition A5, supu∈N (t),b∈N (b0) ‖Ĝ
∗
CD,r(b, u, u − t) − G∗

CD,r(b, u, u − t)‖ = op(1), and

n1/2dÊM(u) converges to a Gaussian process. By the strong embedding theorem and Lemma 6, we have

supb∈N (bT ) ‖(A.23)‖ = op(1). Similarly, we can show that supb∈N (bT ) ‖(A.24)‖ = op(1), supb∈N (bT ) ‖(A.25)‖ =

op(1), and supb∈N (bT ) ‖(A.26)‖ = op(1). Therefore, supb∈N (bT )‖(A.22)‖ = op(1).

Likewise, we can show that

{
∂UCD(b, t)

∂b
−

∂UCR(b, t)

∂b

}
H−1 = op(1). (A.27)

Then (nh)1/2H(b̃ − b̂) = op(1) follows from (A.22), (A.27) and a Taylor series expansion.
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Table 1. Simulation results in the case of a single time-dependent covariate with β0(t) = 1 and σ2 = 0.1. I, “ideal” approach;

NR, naive regression; CD, conditional score; CR, corrected score; B, bias; SD, empirical standard deviation across simulated

data sets ; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald confidence interval.

t 10 20 30 40
B SD SE CP B SD SE CP B SD SE CP B SD SE CP

h = 20 I −0.006 0.334 0.310 0.926 −0.008 0.101 0.096 0.940 −0.013 0.095 0.086 0.931 −0.022 0.126 0.113 0.928
NR 0.035 0.319 0.297 0.923 0.047 0.096 0.092 0.897 0.036 0.090 0.083 0.897 0.015 0.120 0.110 0.912
CD −0.010 0.364 0.334 0.922 −0.012 0.114 0.107 0.945 −0.017 0.107 0.097 0.930 −0.027 0.137 0.123 0.924
CR −0.011 0.371 0.343 0.929 −0.017 0.116 0.109 0.945 −0.023 0.110 0.099 0.930 −0.034 0.141 0.126 0.927

h = 40 I −0.006 0.184 0.169 0.932 −0.009 0.097 0.092 0.939 −0.012 0.075 0.073 0.947 −0.015 0.092 0.086 0.930
NR 0.053 0.183 0.163 0.910 0.044 0.096 0.089 0.889 0.034 0.074 0.070 0.890 0.022 0.091 0.083 0.907
CD −0.011 0.212 0.186 0.919 −0.014 0.114 0.103 0.931 −0.016 0.087 0.081 0.936 −0.019 0.104 0.093 0.931
CR −0.014 0.216 0.191 0.921 −0.019 0.116 0.105 0.931 −0.022 0.089 0.082 0.933 −0.026 0.107 0.095 0.929

h = 60 I −0.002 0.142 0.137 0.932 −0.006 0.094 0.089 0.928 −0.010 0.077 0.071 0.927 −0.015 0.089 0.082 0.935
NR 0.062 0.140 0.132 0.912 0.050 0.091 0.086 0.885 0.037 0.074 0.068 0.865 0.023 0.088 0.080 0.904
CD −0.004 0.164 0.152 0.931 −0.009 0.106 0.100 0.937 −0.014 0.086 0.079 0.935 −0.020 0.100 0.089 0.937
CR −0.007 0.166 0.156 0.937 −0.013 0.108 0.102 0.938 −0.019 0.088 0.081 0.936 −0.026 0.103 0.091 0.936

33

Hosted by The Berkeley Electronic Press



Table 2. Simulation results in the case of a single time-dependent covariate with β0(t) = 1 and σ2 = 0.2. I, “ideal” approach;

NR, naive regression; CD, conditional score; CR, corrected score; B, bias; SD, empirical standard deviation across simulated

data sets ; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald confidence interval.

t 10 20 30 40
B SD SE CP B SD SE CP B SD SE CP B SD SE CP

h = 20 I −0.006 0.334 0.310 0.926 −0.008 0.101 0.096 0.940 −0.013 0.095 0.086 0.931 −0.022 0.126 0.113 0.928
NR 0.074 0.308 0.286 0.913 0.093 0.093 0.089 0.773 0.076 0.087 0.081 0.789 0.047 0.117 0.107 0.871
CD −0.011 0.401 0.361 0.925 −0.019 0.131 0.120 0.946 −0.023 0.122 0.108 0.934 −0.023 0.122 0.108 0.934
CR 0.006 0.584 0.426 0.920 −0.027 0.139 0.125 0.941 −0.042 0.199 0.118 0.933 −0.052 0.197 0.147 0.919

h = 40 I −0.006 0.184 0.169 0.932 −0.009 0.097 0.092 0.939 −0.012 0.075 0.073 0.947 −0.015 0.092 0.086 0.930
NR 0.105 0.179 0.158 0.863 0.091 0.095 0.086 0.759 0.074 0.073 0.068 0.750 0.055 0.090 0.081 0.823
CD −0.015 0.241 0.205 0.915 −0.020 0.132 0.116 0.922 −0.022 0.101 0.091 0.938 −0.024 0.116 0.101 0.924
CR −0.018 0.253 0.238 0.933 −0.030 0.136 0.121 0.926 −0.034 0.105 0.095 0.931 −0.039 0.123 0.110 0.935

h = 60 I −0.002 0.142 0.137 0.932 −0.006 0.094 0.089 0.928 −0.010 0.077 0.071 0.927 −0.015 0.089 0.082 0.935
NR 0.115 0.137 0.128 0.837 0.096 0.088 0.083 0.745 0.077 0.072 0.066 0.742 0.056 0.087 0.078 0.826
CD −0.008 0.186 0.169 0.919 −0.014 0.122 0.112 0.933 −0.019 0.097 0.089 0.931 −0.026 0.111 0.097 0.934
CR −0.015 0.202 0.196 0.955 −0.024 0.127 0.118 0.937 −0.031 0.101 0.092 0.933 −0.039 0.115 0.105 0.947
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Table 3. Simulation results in the case of a single time independent covariate with β0(t) = t and σ2 = 0.1. I, “ideal” approach;

NR, naive regression; CD, conditional score; CR, corrected score; B, bias; SD, empirical standard deviation across simulated

data sets ; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald confidence interval.

t 0.25 0.5 0.75 1.0
B SD SE CP B SD SE CP B SD SE CP B SD SE CP

h = 0.4 I 0.007 0.087 0.086 0.947 0.011 0.104 0.100 0.937 0.025 0.164 0.149 0.934 0.062 0.301 0.262 0.911
NR −0.006 0.084 0.084 0.953 −0.017 0.100 0.097 0.936 −0.025 0.157 0.144 0.919 −0.021−0.021 0.251 0.896
CD 0.007 0.088 0.089 0.954 0.011 0.109 0.104 0.939 0.030 0.179 0.160 0.930 0.085 0.356 0.294 0.916
CR 0.007 0.088 0.089 0.954 0.012 0.109 0.105 0.938 0.034 0.181 0.162 0.930 0.061 1.374 0.313 0.923

h = 0.8 I 0.000 0.085 0.083 0.937 0.004 0.086 0.084 0.941 0.012 0.131 0.124 0.938 0.032 0.224 0.204 0.935
NR −0.013 0.083 0.081 0.938 −0.024 0.082 0.081 0.932 −0.037 0.125 0.120 0.923 −0.046 0.217 0.195 0.908
CD 0.000 0.088 0.085 0.942 0.006 0.089 0.088 0.958 0.016 0.140 0.133 0.936 0.043 0.251 0.222 0.928
CR 0.000 0.088 0.085 0.942 0.008 0.090 0.089 0.957 0.021 0.142 0.135 0.938 0.061 0.264 0.231 0.936

h = 1.2 I 0.002 0.084 0.083 0.943 0.009 0.082 0.081 0.945 0.017 0.124 0.121 0.937 0.028 0.183 0.178 0.951
NR −0.010 0.082 0.081 0.946 −0.020 0.081 0.079 0.938 −0.031 0.125 0.117 0.912 −0.041 0.186 0.172 0.913
CD 0.003 0.087 0.085 0.946 0.012 0.090 0.086 0.939 0.024 0.142 0.130 0.942 0.040 0.211 0.192 0.933
CR 0.003 0.087 0.085 0.946 0.015 0.091 0.087 0.938 0.031 0.145 0.133 0.939 0.054 0.219 0.198 0.934
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Table 4. Simulation results in the case of a single time independent covariate with β0(t) = t and σ2 = 0.2. I, “ideal” approach;

NR, naive regression; CD, conditional score; CR, corrected score; B, bias; SD, empirical standard deviation across simulated

data sets ; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald confidence interval.

t 0.25 0.5 0.75 1.0
B SD SE CP B SD SE CP B SD SE CP B SD SE CP

h = 0.4 I 0.007 0.087 0.086 0.947 0.011 0.104 0.100 0.937 0.025 0.164 0.149 0.934 0.062 0.301 0.262 0.911
NR −0.017 0.082 0.082 0.954 −0.042 0.097 0.095 0.916 −0.069 0.151 0.140 0.879 −0.094 0.281 0.240 0.866
CD 0.008 0.091 0.091 0.951 0.013 0.113 0.109 0.944 0.036 0.196 0.172 0.930 0.114 0.428 0.332 0.924
CR 0.008 0.091 0.091 0.951 0.014 0.114 0.110 0.942 0.048 0.269 0.178 0.926 0.058 2.476 0.486 0.801

h = 0.8 I 0.000 0.085 0.083 0.937 0.004 0.086 0.084 0.941 0.012 0.131 0.124 0.938 0.032 0.224 0.204 0.935
NR −0.024 0.081 0.079 0.926 −0.050 0.079 0.079 0.895 −0.080 0.121 0.116 0.858 −0.113 0.210 0.188 0.855
CD 0.000 0.090 0.087 0.944 0.008 0.094 0.093 0.956 0.020 0.151 0.142 0.941 0.055 0.282 0.242 0.930
CR 0.001 0.090 0.087 0.943 0.011 0.096 0.094 0.954 0.031 0.157 0.147 0.943 0.028 1.649 0.273 0.905

h = 1.2 I 0.002 0.084 0.083 0.943 0.009 0.082 0.081 0.945 0.017 0.124 0.121 0.937 0.028 0.183 0.178 0.951
NR −0.022 0.080 0.079 0.944 −0.047 0.080 0.077 0.892 −0.074 0.123 0.114 0.858 −0.102 0.183 0.166 0.864
CD 0.003 0.089 0.087 0.947 0.015 0.097 0.091 0.937 0.030 0.157 0.140 0.933 0.050 0.237 0.207 0.919
CR 0.003 0.089 0.088 0.947 0.021 0.100 0.093 0.935 0.045 0.165 0.146 0.936 0.079 0.251 0.222 0.926
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Figure 1. Trajectories of log CD4 for 10 randomly selected subjects.
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(a) h = 60
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(b) h = 72
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(c) h = 84

Figure 2. Estimation of β(t) for the ACTG 175 data including CD4 and treatment with h = 60, 72 and 80.

For each h, the left panel is for β1(t), and the right panel is for β2(t). NR, naive regression; CD, conditional

score. 95% confidence bands are shown with the outer curves, the estimates themselves are shown with

the center curves.
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