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Semi-parametric maximum likelihood estimates

for ROC curves of continuous-scale tests

Xiao Hua Zhou † ∗ and Hua Zhen Lin ∗‡

Summary

In this paper, we propose a semi-parametric maximum likelihood estimate of an ROC curve that

satisfies the property of invariance of the ROC curve. In our simulation studies, we demonstrate that

the proposed estimator has the best performance among all the existing semi-parametric estimators

considered here. Finally, we illustrate the application of the proposed estimator using a real data

set.

Key words: ROC curves; Sensitivity and specificity; Semi-parametric maximum likelihood

estimators.

1 Introduction

When the response of a diagnostic test is continuous, its diagnostic accuracy is best represented by

the receiver operating characteristic (ROC) curve (Pepe, 2003; Zhou et al., 2002). Let F1 and F0

denote distribution functions of the test result Y1 for a diseased subject and the test result Y0 for a

non-diseased subject, respectively. Then, the ROC curve of the test can be written as

ROC(u) = 1− F1(F−1
0 (1− u)), (1)

where F−1
0 is the inverse function of F0, and u is the false positive rate (FPR) corresponding to

a cut-off point for positivity. It is well-known that the ROC curve of a test must be invariant to

any monotone increasing transformation of test results, a fundamental property of an ROC curve.

Hence, any sensible estimation methods should have this property. In the statistical literature,
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many parametric, semi-parametric, and non-parametric methods have been proposed for estimating

an ROC curve. In general, pure parametric methods do not possess the invariance property; the

empirical non-parametric and smoothing non-parametric methods have the property of invariance

(Hsieh and Turnbull, 1996; Peng and Zhou, 2004). However, the jagged form of the empirical

ROC curve estimator can result in underestimating the true ROC curve as the true ROC curve

is a smooth function, and the intensive computation and challenging bandwidth selection of the

smoothing non-parametric estimators may effect their application in practice.

An intermediate strategy between pure parametric and non-parametric methods is a semi-

parametric approach. The most commonly used semi-parametric method is to assume a parametric

form for the ROC curve, but avoid making any additional parametric assumptions about the dis-

tributions of test results. This type of semi-parametric methods has the property of invariance. In

this paper, we focus on this type of semi-parametric methods.

We assume that the ROC curve has the parametric form,

ROC(u) = G(α0 + α1H
−1(u)), (2)

where G and H are some known cumulative distribution functions. The most common choice for G

and H is the binormal form, G = H = Φ, where Φ is the cumulative distribution function of the

standard normal random variable.

Under the binormal model, several methods have been proposed by Metz et al. (1998), Alonzo

and Pepe (2002), Pepe and Cai (2004), Zou et al. (2000), and Cai and Moskowitz (2004), respectively.

The first approach, proposed by Metz et al. (1998) and denoted by MHS, is to first categorize

continuous test data into ordinal-scale categorical data and then to apply the maximum likelihood

method to estimate the parameters in the binormal model by assuming the ordinal-scale data follow

a multinomial distribution. The second approach, proposed by Alonzo and Pepe (2002) and denoted

by AP, is to estimate the ROC curve by using procedures for fitting generalized linear models to

binary data. The third approach, proposed by Pepe and Cai (2004) and denoted by PC, is to first

write the ROC curve as the distribution of placement values and then to estimate the ROC curve by

maximizing the pseudo likelihood function of the estimated placement values. The fourth method,

proposed by Zou et al. (2000) and denoted by ZH, is to use rank data to estimate the ROC curve
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by assuming semi-parametric distributions for test results of diseased and non-diseased subjects.

One limitation of these methods is that none are a truly maximum likelihood (ML) estimator, and

hence they do not possess the optimal property associated with ML estimators. Recently, Cai and

Moskowitz (2004), denoted by CM, have proposed a maximum profile likelihood approach to estimate

the ROC curve; however, their computation algorithm requires an input of initial values of a large

number of nuisance parameters, which may be difficult in practice when the sample size is large.

In this paper, we propose a new profile likelihood approach to estimate the ROC curve. Our

method has a smaller number of nuisance parameters to estimate and hence may be more efficient

than the Cai and Moskowitz method. Furthermore, our estimator can be computed by using an

algorithm that is based on a recursive relationship among the nuisance parameters, without speci-

fying initial values for a large number of nuisance parameters. Our MLE is asymptotically normal,

and our extensive simulation studies show the proposed method is more efficient, more robust, and

simpler to compute than the existing estimators.

Since the binormal model is the most commonly used form for an ROC curve, from now on we

assume that the true ROC curve is defined by

ROC(u) = Φ(α0 + α1Φ−1(u)), (3)

where Φ−1(·) is the inverse of the cumulative distribution of the standard normal distribution.

Equivalently, we can derive model (3) by assuming there exists an unknown monotone increasing

function g(.) such that g(Y0) has the standard normal distribution and g(Y1) has a normal distri-

bution with mean µ and standard deviation σ. The resulting ROC curve satisfies model (3) with

α0 = µ/σ and α1 = 1/σ.

This paper is organized as follows. In Section 2, we propose a semi-parametric maximum like-

lihood estimator of an ROC curve and an algorithm for computing it. In Section 3, we develop

asymptotic properties for the resulting estimator. In Section 4, we perform simulation studies to

asses efficiency and robustness of our estimator relative to the existing semi-parametric estimators

and to verify the validity of the asymptotic inferences in finite samples. In Section 5, we illustrate

the application of our method in a real example.
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2 Semi-parametric maximum likelihood estimate

Data available for making inferences consist of a random sample of size n1 from the diseased pop-

ulation with the unknown cumulative distribution function F1, {Y1j , j = 1, · · · , n1}, and a random

sample of size n0 from the non-diseased population, {Y0i, i = 1, · · · , n0}, with the unknown cumu-

lative distribution function F0. Denote n = n0 + n1.

Let f0 and f1 be the density functions of F0 and F1, respectively. Then, the likelihood function

of observations Y0i, i = 1, · · · , n0, and Y1j , j = 1, · · · , n1, is given by

L =
n0∏

i=1

f0(Y0i)
n1∏

j=1

f1(Y1j). (4)

Under model (3), we know that there exists a unknown monotone increasing function g(.) such

that g(Y0) has the standard normal distribution and g(Y1) has a normal distribution with mean

µ and standard deviation σ. Therefore, we have that f0(y) = φ(g(y))g′(y) and f1(y) = φ(−α0 +

α1g(y))α1g
′(y). Hence we can write the likelihood function (4) as

L =
n0∏

i=1

φ(g(Y0i))g′(Y0i)
n1∏

j=1

φ(−α0 + α1g(Y1j))α1g
′(Y1j), (5)

where φ(x) is the standard normal density function. Consequently, the ML estimation of ROC curve

parameters α0 and α1 requires simultaneous estimation of the unknown function g. In what follows

we write 4g(x) as the jump of g(·) at x if g is discrete at x and the derivative of g(·) at x if g(·) is

continuous at x. We seek to maximize the function Ln given by

Ln =
n0∏

i=1

φ(g(Y0i))4g(Y0i)
n1∏

j=1

φ(−α0 + α1g(Y1j))α14g(Y1j). (6)

Using a standard argument in the nonparametric maximum likelihood estimation (Murphy and Van

der Vaart, 2000), we can restrict the MLE, ĝ, of g to be the maximiser of the likelihood function

Ln over all discrete functions g and show that the MLE, ĝ, has to be a discrete function that only

jumps at observations Y0i, i = 1, · · · , n0, and Y1j , j = 1, · · · , n1. Denote the distinct ordered test

results from the combined sample, Y0i’s and Y1j ’s, by Y ∗
(1) < · · · < Y ∗

(I∗n), where I∗n is the number of

distinct values among Y0i’s and Y1j ’s. Then MLE ĝ of g jumps only at Y ∗
(1) < · · · < Y ∗

(I∗n), and we

can write the likelihood function (6) as follows:

Ln =
I∗n∏

r=1

(
φ(g(Y ∗

(r)))4g(Y ∗
(r))

)k∗r (
φ(−α0 + α1g(Y ∗

(r)))α14g(Y ∗
(r))

)`∗r
, (7)
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where frequency counts k∗r = #{Y0i = Y ∗
(r), i = 1, · · · , n0} and `∗r = #{Y1j = Y ∗

(r), j = 1, · · · , n1},

corresponding to non-diseased and diseased subjects at distinct ordered test results.

When g = ĝ, g jumps only at Y ∗
(1) < · · · < Y ∗

(I∗n), for r = 1, . . . , I∗n, we have 4Φ(g(Y ∗
(r))) =

Φ(g(Y ∗
(r)))−Φ(g(Y ∗

(r−1))) and 4Φ(−α0 +α1g(Y ∗
(r))) = Φ(−α0 +α1g(Y ∗

(r)))−Φ(−α0 +α1g(Y ∗
(r−1))),

where g(Y ∗
(0)) = −∞. In addition, 4Φ(g(Y ∗

(r))) = φ(g(Y ∗
(r)))4g(Y ∗

(r)) and 4Φ(−α0 + α1g(Y ∗
(r))) =

φ(−α0 + α1g(Y ∗
(r)))α14g(Y ∗

(r)). Hence, with C∗r = g(Y ∗
(r)), C∗0 = −∞, and C∗I∗n = +∞, we can write

(7) as

Ln =
I∗n∏

r=1

(
Φ(C∗r )− Φ(C∗r−1)

)k∗r (
Φ(−α0 + α1C

∗
r )− Φ(−α0 + α1C

∗
r−1)

)`∗r (8)

when g = ĝ. Therefore ML estimation of ROC curve parameters α0 and α1, which are of primary in-

terest, requires simultaneous estimation of the I∗n−1 number of nuisance parameters, C∗1 , · · · , C∗I∗n−1.

Using the same idea as in Metz (1998), we note that some of the jump points of ĝ, Y ∗
(r)’s, can

be ignored for estimating α0 and α1, which means we can obtain ML estimates of α0 and α1 with

fewer nuisance parameters. We state the results in Conclusion 1 below.

Denote

D(Y ∗
(r)) =





2 if #{Y0i = Y ∗
(r), i = 1, · · · , n0} > 0 and #{Y1j = Y ∗

(r), j = 1, · · · , n1} > 0

1 if #{Y0i = Y ∗
(r), i = 1, · · · , n0} > 0 and #{Y1j = Y ∗

(r), j = 1, · · · , n1} = 0

0 if #{Y0i = Y ∗
(r), i = 1, · · · , n0} = 0 and #{Y1j = Y ∗

(r), j = 1, · · · , n1} > 0

and

< =
{

Y ∗
(r) : D(Y ∗

(r)) = D(Y ∗
(r+1)) ≤ 1, 1 ≤ r ≤ I∗n − 2

}
.

Each jump point in < has the same disease status as its next contiguous jump point. Here, <

includes all jump points of a contiguous sequence with the same disease status except the last point

in the sequence.

Conclusion 1. The maximum likelihood estimates of α0 and α1 can be determined by some

estimating equations that don’t depend on those nuisance parameters C∗r = g(Y ∗
(r))’s whose Y ∗

(r)

belongs to <.

See Appendix A.1 for a proof of Conclusion 1. A practical consequence of the conclusion is that

we can ignore the jump points in < for estimating α0 and α1.

5

Hosted by The Berkeley Electronic Press



After deleting the points in <, we denote the remaining jump points of ĝ by Y(1) < · · · < Y(In−1)

and let Cr = g(Y(r)) for 1 ≤ r ≤ In − 1, C0 = −∞ and CIn
= +∞. The MLE of θ = (α0, α1)T and

C = (C1, · · · , CIn−1)T can be obtained by maximizing

Ln(θ,C) =
In∏

r=1

(Φ(Cr)− Φ(Cr−1))
kr (Φ(−α0 + α1Cr)− Φ(−α0 + α1Cr−1))

`r , (9)

which is essentially (8) with I∗n replaced by In. Here, for 2 ≤ r ≤ In − 1, kr = #{Y(r−1) < Y0i ≤

Y(r), i = 1, · · · , n0} and `r = #{Y(r−1) < Y1j ≤ Y(r), j = 1, · · · , n1}; k1 = #{Y0i ≤ Y(1), i =

1, · · · , n0}, `1 = #{Y1j ≤ Y(1), j = 1, · · · , n1}, kIn
= #{Y0i > Y(In−1), i = 1, · · · , n0}, and `In

=

#{Y1j > Y(In−1), j = 1, · · · , n1}.

It should be noted that the function (9) is the same as the likelihood proposed by Metz et al

(1998). However, Metz et al. (1998) have obtained the likelihood from a parametric viewpoint

by assuming that test results could be partitioned into a contingency table with a fixed number

of categories and that the resulting contingency table follows a multinomial distribution. In fact,

the number of categories, In, increases with the sample size, and as a result, the assumed standard

multinomial distribution does not hold. Therefore, although Metz et al. (1998) have derived a correct

likelihood function form, their justification is not right. Furthermore, to maximize the likelihood

function (9) with respect to θ and C, Metz et al. (1998) have used the standard Newton-Raphson

iterative method that requires inversion of an (In + 1) × (In + 1) matrix; this computation can

become a problem if In is large. Due to this concern, they have proposed an alternative algorithm

by reducing the number of jump points, In− 1, in an ad hoc way. Hence, their resulting estimate of

θ is no longer a ML estimate, and our simulation studies show the ad hoc computation method can

lead to some loss of efficiency.

We propose a new algorithm for finding ML estimates based on the function (9). We propose a

two-stage iterative procedure for estimating θ and C, alternating the parametric and nonparametric

estimation steps. Our idea is from Kvam and Samaniego (1994) on the nonparametric estimation.

Given θ, we can find the MLE of C by maximizing the likelihood function (9) with respect to

6
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C. The MLE of C must satisfy the following (In − 1) score equations:

∂ log{Ln(θ,C)}
∂C1

= k1
φ(C1)
Φ(C1)

− k2
φ(C1)

Φ(C2)− Φ(C1)

+α1`1
φ(−α0 + α1C1)
Φ(−α0 + α1C1)

− α1`2
φ(−α0 + α1C1)

Φ(−α0 + α1C2)− Φ(−α0 + α1C1)
= 0,

∂ log{Ln(θ,C)}
∂Cr

= kr
φ(Cr)

Φ(Cr)− Φ(Cr−1)
− kr+1

φ(Cr)
Φ(Cr+1)− Φ(Cr)

+α1`r
φ(−α0 + α1Cr)

Φ(−α0 + α1Cr)− Φ(−α0 + α1Cr−1)

−α1`r+1
φ(−α0 + α1Cr)

Φ(−α0 + α1Cr+1)− Φ(−α0 + α1Cr)
= 0, 2 ≤ r ≤ In − 2,

∂ log{Ln(θ,C)}
∂CIn−1

= kIn−1
φ(CIn−1)

Φ(CIn−1)− Φ(CIn−2)
− kIn

φ(CIn−1)
1− Φ(CIn−1)

+α1`In−1
φ(−α0 + α1CIn−1)

Φ(−α0 + α1CIn−1)− Φ(−α0 + α1CIn−2)

−α1`In

φ(−α0 + α1CIn−1)
1− Φ(−α0 + α1CIn−1)

= 0. (10)

Given θ, the existence and uniqueness of the MLE of C are established in the following result,

and a proof is given in the Appendix A.2.

Conclusion 2. Given θ, the Ĉ that satisfies the score equations in (10) is unique.

Inspection of (10) shows that finding the MLE of C in a closed form is a challenge. Hence, an

iterative algorithm is required. However, the standard Newton-Raphson iteration requires inversion

of an (In − 1)× (In − 1) matrix, and this computation can become a problem if In is large.

Now we make use of the uniqueness in Conclusion 2 to solve the equations (10). Note that

`rkr = 0, for 1 ≤ r ≤ In; `r`r+1 = 0 and krkr+1 = 0 for 1 ≤ r ≤ In − 1. Suppose that we have

selected an initial value of C1, Č1. Then from the first equation of (10), we obtain an estimate, Č2,

of C2,

Č2 =





α0
α1

+ 1
α1

Φ−1
(
Φ(−α0 + α1Č1) + α1`2φ(−α0+α1Č1)Φ(Č1)

k1φ(Č1)

)
if k2 = 0

Φ−1
(
Φ(Č1) + k2Φ(−α0+α1Č1)φ(Č1)

α1`1φ(−α0+α1Č1)

)
if `2 = 0

.

For r = 2, · · · , In − 2, using the latest estimates, Čr−1 and Čr, of Cr−1 and Cr, we solve the rth

equation of (10) to obtain the following estimate of Cr+1:

Čr+1 =





α0
α1

+ 1
α1

Φ−1

(
Φ(−α0 + α1Čr) +

α1`r+1φ(−α0+α1Čr)(Φ(Čr)−Φ(Čr−1))
krφ(Čr)

)
if kr+1 = 0

Φ−1

(
Φ(Čr) +

kr+1φ(Čr)(Φ(−α0+α1Čr)−Φ(−α0+α1Čr−1))
α1`rφ(−α0+α1Čr)

)
if `r+1 = 0

.
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Hence, given the initially chosen value of C1, Č1, we can obtain the estimates, Č2, . . . , ČIn−1, of

C2, . . . , CIn−1 by solving the first In − 2 equations in (10). Now we are left to check whether these

estimates also satisfy the last equation in (10),

Λ(ČIn−2, ČIn−1) = 0, (11)

where Λ(CIn−2, CIn−1) = ∂
∂CIn−1

log{Ln(θ,C)}. If Λ(ČIn−2, ČIn−1) = 0, the estimates, Čr, r =

1, . . . , In − 1, are the unique solution to equation (10). If Λ(ČIn−2, ČIn−1) 6= 0, we need to update

the initially chosen value estimate, Č1, and repeat the whole estimation process until the last equation

in (10) is satisfied.

Let θ0 be the true value of θ and g0 be the true function of g. Denote Cr0 = g0(limn→∞ Y(r)) and

C0 = (C10, · · · , C(In−1)0)T . In the following Conclusion 3, we establish the relationship between

C1 and Λ(CIn−2, CIn−1) to help in updating the initially chosen value, Č1. We provide a proof for

Conclusion 3 in the Appendix A.3.

Conclusion 3. Let θn = θ0+op(1). For any initially chosen value Č1 of C1, we let Č2, . . . , ČIn−1

be the corresponding solution to the first (In − 2) equations in (10). Then, when n is large enough,

1. if Č1 < C10, then Čr < Cr0 for r = 2, · · · , In − 1, and

Λ(ČIn−2, ČIn−1) =
∂

∂CIn−1
log{Ln(θ,C)}|C=Č,θ=θn

> 0;

2. if Č1 > C10, then Čr > Cr0 for r = 2, · · · , In − 1, and

Λ(ČIn−2, ČIn−1) =
∂

∂CIn−1
log{Ln(θ,C)}|C=Č,θ=θn

< 0,

where Č = (Č1, . . . , ČIn−1).

The results of Conclusion 3 provide a mechanism for updating the initially chosen value Č1.

If Λ(ČIn−2, ČIn−1) > 0, we should increase our initially chosen value, Č1. On the other hand, if

Λ(ČIn−2, ČIn−1) < 0, we should decrease our initially chosen value, Č1.

Given C, we can estimate θ by maximizing (9). We next outline the two-stage iterative procedure

for estimating θ and C.

• Step 1. We combine data from the diseased and non-diseased samples and order test results

in the combined sample, replace each test result by its true disease status. As a result, we
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create a sequence of disease statuses for the combined sample. Denote the number of different

sequences with the same consecutive disease status by In. Then, count the number of elements

in each sequence, denoted by k = {k1, · · · , kIn
|∑In

r=1 kr = n0} for non-diseased subjects

and ` = {`1, · · · , `In
|∑In

s=1 `s = n1} for diseased subjects. For example, if we have data

{5.38, 2.1, 4.5} for non-diseased subjects and {12.5, 10.4, 16.8, 5.1, 13.5} for diseased subjects,

the ordered test results in the combined sample are {2.1, 4.5, 5.1, 5.38, 10.4, 12.5, 13.5, 16.8}, and

their corresponding disease statuses are {no, no, di, no, di, di, di, di}, where no and di indicate

a non-diseased and diseased subject, respectively. Thus, in the above notation, we have In = 4

and k1 = 2, k2 = 0, k3 = 1, k4 = 0 and `1 = 0, `2 = 1, `3 = 0, `4 = 4.

• Step 2. Given values of α0, α1, we estimate C1, · · · , CIn−1 by solving (10).

• Step 3. Given estimates of C1, · · · , CIn−1, we estimate α0 and α1 by maximizing (9) with

respect to α0 and α1.

• Step 4. Repeat Steps 2 and 3 until two successive values for (α0, α1, C1, · · · , CIn−1) converge.

The convergent values α̂0, α̂1, Ĉ1, · · · , ĈIn−1 are the estimates of α0, α1, C1, · · · , CIn−1.

3 Asymptotic distribution theory

Our final estimate θ̂ of θ is a profile likelihood estimate, which maximizes the profile likelihood for

θ given by

PL(θ) = Ln(θ, Ĉ(θ)),

where Ĉ(θ) maximizes the likelihood Ln(θ,C) for a fixed value of θ. This estimator is a function

of the test values only through their ranks. Using the results on the properties of maximum profile

likelihood estimates derived by Murphy and Van der Varrt (2000), we can show that θ̂ is fully

efficient and n1/2(θ̂ − θ0) converges in distribution to a zero-mean bivariate normal random vector

with covariance matrix Σ, where

Σ =
{
− lim

n→∞
∂2 logLn(θ,C)

n∂θ∂θ′
+

(
lim

n→∞
∂2 logLn(θ,C)

n∂θ∂C′

)

×
(

lim
n→∞

∂2 logLn(θ,C)
n∂C∂C′

)−1 (
lim

n→∞
∂2 logLn(θ,C)

n∂C∂θ′

)}−1

|θ=θ0,C=C0 . (12)

9
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Based on the estimates of α0 and α1, we can estimate the ROC curve by R̂OC(u) = Φ(α̂0 +

α̂1Φ−1(u)). Using the Taylor series expansion and the asymptotically normal result of θ̂, we can show

that n1/2
(
R̂OC(u)−ROC(u)

)
converges in distribution to a zero-mean normal random variable

with variance

φ2(α00 + α10Φ−1(u))


 1

Φ−1(u)




T

Σ


 1

Φ−1(u)


 ,

where Σ is defined by (12), α00, and α10 are the true values of α0 and α1, respectively.

4 Numerical studies

In this section we conduct several simulation studies to (1) determine if our estimator is more efficient

than the five existing estimators, (2) assess the robustness of our estimator against the departure

from the binormal model, and (3) evaluate the accuracy of the asymptotical variance estimator of

our estimator in finite sample sizes.

4 · 1 Efficiency

In this subsection we investigate the statistical efficiency of the six methods: the proposed method

(MLE), CM, MHS, AP, PC and ZH methods for estimating α0 and α1 in the binormal model and

for estimating the corresponding ROC curve by numerical studies. We use the root of mean squared

error (RMSE) to measure the performance of the various estimators for α0 and α0 and the sum

of RMSEs for α0 and α1 as an overall performance measure. We evaluate the performance of an

estimator R̂OC(·) for the ROC curve using the average of squared errors (ASE), defined by

ASE =
1

ngrid

ngrid∑

k=1

{
R̂OC(uk)−ROC(uk)

}2

, (13)

where {uk, k = 1, · · · , ngrid} are the grid points at which the functions ROC(·) are estimated. In

the simulation studies, we choose ngrid = 100 and uk’s to be uniformly distributed over (0, 1). We

choose 500 simulations for each scenario. Data for non-diseased subjects are generated from the

standard normal distribution, and data for diseased subjects are generated from N(2, 1.44). We

choose sizes of the diseased and non-diseased samples to be both equal and unequal, (n0, n1) =

10
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{(100, 100), (200, 100), (200, 200)}, to investigate the effect of the sample sizes on the performance

of the estimates.

Table 1 gives bias, SD, RMSE and SRMSE of the resulting estimators for α0 and α1 by the six

methods. From Table 1 we see that in all cases, our new MLE has the smallest SRMSE and is the

best choice. Specifically, our MLE consistently has smaller bias, standard error, and RMSE than

the CM estimator due to a smaller number of nuisance parameters to estimate. Although the PC

can have the smallest variance, its bias is also large and can even be larger than its variance, which

means that the bias is significant and could not be ignored; the AP estimator is less biased than the

PC estimator but has a larger variance than the PC estimator. The ZH estimator has the largest

RMSE and bias.

Figure 1 depicts the distribution of the estimated ASE for the ROC curve over the 500 replications

for each method. The MLE and CM estimators have comparable ASE, which is smaller than the

other existing methods. The performance of the estimators MHS and AP is close to that of our

MLE in this setting. Further simulation study (not reported here) shows that when the accuracy of

a diagnostic test is not too high or the sample size is large so that In can be large, the computation

algorithm in the MHS method, which collapses too many jump points, can lead to some loss of

efficiency. The AP estimator has smaller ASE than the PC estimator, and the ZH estimator has the

largest ASE.

In summary, the existing CM, MHS, and AP estimators have similar efficiency as our ML estima-

tor with the ML estimators being slightly better. The ZH estimators have the worst performance.

4 · 2 Robustness

In the subsection, we compare the robustness of the six methods against the departure from the

binormal assumption.

One anonymous reviewer has suggested that it may be reasonable to expect a transforma-

tion to result in approximate normal data for non-diseased subjects, but since the population of

diseased subjects is often a mixture of subpopulations of subjects in different stages of the dis-

ease/infection, it seems much more reasonable to expect that transformation would result in a

11
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Table 1: Estimates of (α0, α1) compared with their actual values over the 500 replications

α0 = 2/1.2 α1 = 1/1.2

n0 n1 method Bias SD RMSE Bias SD RMSE SRMSE

100 100 MLE 0.038 0.209 0.212 0.012 0.137 0.137 0.349

CM 0.074 0.213 0.226 0.043 0.141 0.148 0.373

MHS 0.002 0.212 0.212 -0.033 0.142 0.146 0.358

AP 0.025 0.225 0.226 0.041 0.164 0.169 0.395

PC -0.105 0.169 0.199 -0.163 0.088 0.185 0.384

ZH 0.126 0.205 0.241 0.367 0.095 0.379 0.620

200 100 MLE 0.028 0.180 0.182 0.009 0.113 0.113 0.295

CM 0.039 0.184 0.188 0.022 0.115 0.117 0.305

MHS 0.022 0.208 0.209 -0.014 0.142 0.143 0.352

AP 0.027 0.191 0.193 0.034 0.131 0.136 0.328

PC -0.105 0.142 0.177 -0.129 0.092 0.158 0.335

ZH 0.128 0.168 0.211 0.288 0.063 0.295 0.506

200 200 MLE 0.016 0.140 0.141 0.002 0.093 0.093 0.234

CM 0.024 0.142 0.144 0.012 0.094 0.095 0.239

MHS -0.009 0.137 0.137 -0.014 0.102 0.103 0.240

AP 0.009 0.144 0.145 0.017 0.103 0.104 0.249

PC -0.108 0.123 0.164 -0.132 0.087 0.158 0.322

ZH 0.049 0.152 0.160 0.305 0.078 0.315 0.475

12
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mixture of normals rather than a single normal for diseased subjects. So, to investigate the robust-

ness of the binormal model, we simulate test responses of non-diseased subjects from N(0, 1), but

test responses of diseased subjects from the mixture of the two normal distributions, N(1.2, 1.22)

and N(2.2, 1.52), with the corresponding mixing proportions of 1/2 and 1/2, respectively. We set

(n0, n1) = {(100, 100), (200, 200)} to investigate the effect of the sample sizes on the performance of

the estimates.

Figures 2(A) and 3(A) plot the average of the estimated ROC curves over the 500 replications

for each method when the sample sizes are (100, 100) and (200, 200), respectively. Our MLE has the

smallest ASE and hence is the most robust estimate among the six ones considered here. The CM,

MHS and AP also have good robustness properties. The PC and ZH estimators have larger bias.

Figures 2(B) and 3(B) depict the distribution of the ASE for the estimated ROC curves over the

500 replications for each method when the sample sizes are (100, 100) and (200, 200), respectively.

The AP estimator has better ASE than the PC estimator, which means the AP estimator is more

robust than the PC estimator. The ZH estimator has the largest ASE.

We also conduct numerical studies with a larger number of the components in a normal mixture.

We generate test results of non-diseased subjects from the standard normal distribution but test re-

sults of diseased subjects from a mixture of the three normal distributions, N(1.2, 1.22), N(2.2, 1.52)

and N(2.2, 1), with the corresponding mixing proportions of 1/3, 1/3, and 1/3, respectively. The

results (not reported here) are similar to those in Figures 2 and 3 except that the PC estimator

seems to have the largest bias and ASE, suggesting that the robustness of the PC estimator may

decrease as the number of components in normal mixtures increases.

In summary, the existing CM, MHS, and AP estimators have similar robustness as our ML

estimators even though the ML estimators are slightly better.

4 · 3 Asymptotic inference in finite sample

Finally, we assess the accuracy of our variance estimator given in Section 3 in finite sample sizes. We

investigate the performance of our variance estimator using the simulated data in Sections 5.1 and

5.2. Based on 500 simulated data sets, we obtain 500 estimates of α̂0 and α̂1 and their corresponding

13
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Table 2: Average (SEave) and standard deviation (SEstd) of the standard error estimates over the

500 replications for the binormal simulated data in Section 4.1

α0 = 2/1.2 α1 = 1/1.2

n0 n1 SD SEave(SEstd) Coverage SD SEave(SEstd) Coverage

50 100 0.230 0.226(0.049) 0.939 0.160 0.161(0.043) 0.917

100 100 0.209 0.202(0.040) 0.920 0.137 0.133(0.031) 0.922

200 100 0.180 0.186(0.035) 0.931 0.113 0.113(0.024) 0.933

200 200 0.140 0.140(0.020) 0.947 0.093 0.091(0.015) 0.929

Table 3: Average (SEave) and standard deviation (SEstd) of the standard error estimates over the

500 replications for the mixture normal data in Section 4.2

α0 α1

n0 n1 k* SD SEave(SEstd) SD SEave(SEstd)

50 50 3 0.239 0.244(0.034) 0.159 0.167(0.036)

100 100 3 0.164 0.168(0.016) 0.111 0.113(0.018)

100 100 2 0.155 0.161(0.014) 0.097 0.105(0.015)

200 200 2 0.106 0.112(0.006) 0.068 0.071(0.007)

*where k is the number of terms in the mixture of normals for the diseased data.

standard error estimates using our method. From ML estimates of α0 and α1, we form the empirical

standard deviations, denoted by SD, which can be regarded as an approximation to the true standard

deviations. We denote the average and the standard deviation of 500 estimated standard errors for

the estimated α̂0 and α̂1 by SEave and SEstd, respectively, which summarize the overall performance

of the standard error estimator. We report our results in Table 2 for the simulated binormal data

and in Table 3 for the simulated mixture normal data, respectively. The standard error estimators

are very close to the ”true” sample standard errors. The empirical CI coverage probabilities are

close to their nominal levels.
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Figure 1: The distribution of ASE for the estimated ROC curves from the binormal model over the
500 replications.
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Figure 2: The diseased data are from a mixture of two normal distributions, but modeled with
the binormal model when n0 = n1 = 100. (A) The average of the estimated ROC curves; (B) the
distribution of ASE for the estimated ROC curves over the 500 replications.
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Figure 3: The diseased data are from a mixture of two normal distributions, but modeled with
the binormal model when n0 = n1 = 200. (A) The average of the estimated ROC curves; (B) the
distribution of ASE for the estimated ROC curves over the 500 replications.
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5 A real data example

In this section we illustrate the application of our newly proposed method in a real example on the

accuracy of biomarkers for detecting pancreatic cancer (Wieand et al., 1989). This study exam-

ined two biomarkers, the antigenic determinant, designated as CA125, and carbohydrate antigen

designated as CA19-9. The data consist of 51 measurements on subjects free of disease and 90

measurements on diseased subjects using the two biomarkers. Here, we used the results with CA125

to illustrate the application of our methodology.

Although the binormal ROC model (3) possesses a certain degree of robustness against normal

mixtures, as shown in the simulation study, it is also important to assess whether the binormal

model (3) is appropriate for the data before we make inferences on the ROC curve of the CA125

using the binormal model. Here, we present a graphical method to test model (3).

To detect any large discrepancies in fit, we compare the empirical ROC curve with the MLE of

the ROC curve obtained by substituting ML estimates of α0, α1 into model (3).

Figure 6(a) plots the empirical ROC curve, the maximum likelihood estimate of the ROC curve

and its 95% pointwise confidence intervals (denoted CI in Figure 6(a)), showing no obvious difference

between the empirical ROC curve and the estimated ROC curve based on the binormal model. So,

the binormal model is reasonable.

Table 4 lists the estimates for the coefficients α0 and α1 using the six methods. Both the PC

and ZH estimates are different from the others for the estimation of α0; ZH is very different with

the other for estimation of α1. These results are consistent with the simulation results, which have

shown that the PC and ZH estimates have large bias. Figure 6(b) plots the estimated ROC curves

using the six methods. The MLE, CM, and MHS estimates are quite similar and are distinct from

the others. We also note that the ZH estimate is substantially different from the rest.

6 Discussion

In this paper we have proposed a semi-parametric MLE for the ROC curve under the binormal ROC

curve model (3). The ML estimator is asymptotically normal. The asymptotic results also hold for
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Table 4: Estimates of (α0, α1) for CA125 as a diagnostic market of pancreatic cancer

method α̂0(SD) α̂1(SD)

MLE 1.192(0.158) 0.431(0.081)

MHS 1.177(0.160) 0.399(0.082)

CM 1.235(0.129) 0.480(0.074)

AP 1.142(0.153) 0.468(0.110)

PC 1.343(0.192) 0.490(0.040)

ZH 1.240(0.161) 0.911(0.048)

a more general specification of the parametric ROC curve model given by (2), for example, when G

and H are symmetric distributions and when H belongs to a location-scale family. Our simulation

results have indicated that the proposed ML estimators also have good finite-sample properties and

have similar efficiency and robustness as the existing CM, MHS, and AP estimators with the ML

estimators being slightly better than all the existing estimators considered here.

Hanley (1988) has shown that the binormal ROC curve model for ordinal-scale tests enjoys a

certain degree of robustness against departure from the bi-normality assumption. Our own sim-

ulation studies have also demonstrated this result. However, given limitations of any simulation

study, we want to emphasize that it is important to check the assumption of the bi-normality in any

application; for example one may use the graphical method suggested in Section 5.
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Appendix

We first define some additional notations that are needed to prove Conclusions 1-3. Define Dr =

(−1, Cr)T , D∗
r = (−1, C∗r )T , Dr0 = (−1, Cr0)T , Ďr = (−1, Čr)T and b0 = lim n1/(n0 + n1).
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Figure 4: Estimated ROC curves using MLE, CM, MHS, AP, PC, and ZH for CA125 as a diagnostic
marker of pancreatic cancer.
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A.1 Proof of Conclusion 1

Let λn(θ,C∗) = 1
n log Ln, where Ln is defined by (8), C∗ = (C∗1 , · · · , C∗I∗n−1)

T , C∗r = g(Y ∗
(r)), and

Y ∗
(1) < · · · < Y ∗

(I∗n) are distinct ordered test results of Y0i, i = 1, · · · , n0 and Y1j , j = 1, · · · , n1. It can

be shown that the MLE of θ and C∗ must satisfy the following equations:

∂λn(θ,C∗)
∂C∗r

=
1
n

(
k∗r

Φ(C∗r )− Φ(C∗r−1)
− k∗r+1

Φ(C∗r+1)− Φ(C∗r )

)
φ(C∗r )

+
1
n

(
`∗r

Φ(θT D∗
r )− Φ(θT D∗

r−1)
− `∗r+1

Φ(θT D∗
r+1)− Φ(θT D∗

r)

)
α1φ(θT D∗

r ) = 0, (14)

for 1 ≤ r ≤ I∗n − 1, and

∂λn(θ,C∗)
∂θ

=
1
n

I∗n∑
r=1

`∗r
φ(θT D∗

r )D∗
r − φ(θT D∗

r−1)D
∗
r−1

Φ(θT D∗
r )− Φ(θT D∗

r−1)

+
1
n

`∗1
φ(θT D∗

1)D∗
1

Φ(θT D∗
1)

− 1
n

`∗I∗n
φ(θT D∗

I∗n−1)D
∗
I∗n−1

1− Φ(θT D∗
I∗n−1)

= 0, (15)

where k∗r = #{Y0i = Y ∗
(r), i = 1, · · · , n0} and `∗r = #{Y1j = Y ∗

(r), j = 1, · · · , n1}. If both Y ∗
(r) and

Y ∗
(r+1) correspond to non-diseased subjects, then `∗r = `∗r+1 = 0 , k∗r > 0 and k∗r+1 > 0. Hence,

from (14), we have k∗r
Φ(C∗r )−Φ(C∗r−1)

= k∗r+1
Φ(C∗r+1)−Φ(C∗r ) . Extending this argument to a sequence of M

contiguous jump points which only involve non-diseased subjects, we have

k∗r
Φ(C∗r )− Φ(C∗r−1)

= · · · = k∗r+M−1

Φ(C∗r+M−1)− Φ(C∗r+M−2)
,

which is equal to ∑r+M−1
j=r k∗j

Φ(C∗r+M−1)− Φ(C∗r−1)
.

Similar arguments indicate that for a sequence of M contiguous jump points which only involves

diseased subjects, we have

`∗r
Φ(θT D∗

r )− Φ(θT D∗
r−1)

= · · · = `∗r+M−1

Φ(θT D∗
r+M−1)− Φ(θT D∗

r+M−2)
,

which is equal to ∑r+M−1
j=r `∗j

Φ(θT D∗
r+M−1)− Φ(θT D∗

r−1)
.

Therefore, if we denote Y(1) < · · · < Y(In−1) to be the last points of contiguous sequences with same

disease statuses, and Cr = g(Y(r)), r = 1, · · · , In − 1, for 1 ≤ r ≤ In − 1, we can write (14) and (15)
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as

∂λn(θ,C∗)
∂Cr

=
1
n

(
kr

Φ(Cr)− Φ(Cr−1)
− kr+1

Φ(Cr+1)− Φ(Cr)

)
φ(Cr)

+
1
n

(
`r

Φ(θT Cr)− Φ(θT Cr−1)
− `r+1

Φ(θT Cr+1)− Φ(θT Cr)

)
α1φ(θT Cr) = 0 (16)

and

∂λn(θ,C∗)
∂θ

=
1
n

In−1∑
r=2

`r
φ(θT Dr)Dr − φ(θT Dr−1)Dr−1

Φ(θT Dr)− Φ(θT Dr−1)

+
1
n

`1
φ(θT D1)D1

Φ(θT D1)
− 1

n
`In

φ(θT DIn−1)DIn−1

1− Φ(θT DIn−1)
= 0, (17)

respectively, where kr and `r are defined in Section 2. Note that (16) and (17) do not depend on

the nuisance parameters C∗r = g(Y ∗
(r))’s with Y ∗

(r) ∈ <. Hence Conclusion 1 follows.

A.2 Proof of Conclusion 2

The Hessian matrix corresponding to the log-likelihood function is tridiagonal; that is, the Hessian

matrix has nonzero entries only along its diagonal and in elements adjacent to its diagonal. If we

denote Q to be the (In − 1)× (In − 1) Hessian matrix, and z to be any (In − 1) dimensional vector,

we have

zT Qz =
1
n

In−1∑
r=1

z2
r

{
kr

φ′(Cr) (Φ(Cr)− Φ(Cr−1))− φ2(Cr)
(Φ(Cr)− Φ(Cr−1))

2 − kr+1
φ′(Cr) (Φ(Cr+1)− Φ(Cr)) + φ2(Cr)

(Φ(Cr+1)− Φ(Cr))
2

+α2
1`r

φ′(θT Dr)
(
Φ(θT Dr)− Φ(θT Dr−1)

)− φ2(θT Dr)

(Φ(θT Dr)− Φ(θT Dr−1))
2

−α2
1`r+1

φ′(θT Dr)
(
Φ(θT Dr+1)− Φ(θT Dr)

)
+ φ2(θT Dr)

(Φ(θT Dr+1)− Φ(θT Dr))
2

}

+
1
n

In−2∑
r=1

zrzr+1

{
kr+1

φ(Cr)φ(Cr+1)
(Φ(Cr+1)− Φ(Cr))

2 + α2
1`r+1

φ(θT Dr)φ(θT Dr+1)

(Φ(θT Dr+1)− Φ(θT Dr))
2

}

+
1
n

In−1∑
r=2

zrzr−1

{
kr

φ(Cr)φ(Cr−1)
(Φ(Cr)− Φ(Cr−1))

2 + α2
1`r

φ(θT Dr)φ(θT Dr−1)

(Φ(θT Dr)− Φ(θT Dr−1))
2

}

= $1 + $2 −$3.
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Some computations show that

$1 =
1
n

In−1∑
r=1

z2
rφ′(Cr)

{
kr

Φ(Cr)− Φ(Cr−1)
− kr+1

Φ(Cr+1)− Φ(Cr)

}
,

$2 =
1
n

In−1∑
r=1

z2
rφ′(θT Dr)

{
α2

1`r

Φ(θT Dr)− Φ(θT Dr−1)
− α2

1`r+1

Φ(θT Dr+1)− Φ(θT Dr)

}
,

$3 =
1
n

{
In−1∑
r=1

(zrφ(Cr)− zr−1φ(Cr−1))
2
kr

(Φ(Cr)− Φ(Cr−1))
2 +

In−1∑
r=1

(
zrφ(θT Dr)− zr−1φ(θT Dr−1)

)2
α2

1`r

(Φ(θT Dr)− Φ(θT Dr−1))
2

+
z2
In−1kIn

φ2(CIn−1)

(1− Φ(CIn−1))
2 + z2

In−1

α2
1`In

φ2(θT DIn−1)

(1− Φ(θT DIn−1))
2

}
.

Note that kr =
∑n0

i=1 I(Cr−1 < g(Y0i) ≤ Cr) and `r =
∑n1

j=1 I(Cr−1 < g(Y1j) ≤ Cr), by the central

limit theorem, we can show that $1 = O(n−1/2) and $2 = O(n−1/2). Since $3 ≥ 0 and equals zero

if and only if z = 0, zT Qz ≤ 0 and equals zero if and only if z = 0 when n is large enough. Therefore,

given θ, the log-likelihood function is a concave function of C, which implies that a unique maximum

exists.

A.3 Proof of Conclusion 3

Let Č1 = C10 + ε for any ε > 0 and Č2, · · · , ČIn−1 be the solution to the first In− 2 score equations

in (10) given C1 = Č1. Define Φ̌r = Φ(Čr) for r = 1, · · · , In − 1. Let Φ̌In be the solution to the

following equation:

Gn(x) ≡ kIn−1
φ(ČIn−1)

Φ(ČIn−1)− Φ(ČIn−2)
− kIn

φ(ČIn−1)
x− Φ(ČIn−1)

+α1`In−1
φ(θT ĎIn−1)

Φ(θT ĎIn−1)− Φ(θT ĎIn−2)
− α1`In

φ(θT ĎIn−1)
x− Φ(θT ĎIn−1)

= 0.

Since

kr

n
− (1− b0)

[
Φ(Cr0)− Φ(C(r−1),0)

]
= Op(n−1/2) (18)

and

`r

n
− b0

[
Φ(θT

0 Dr0)− Φ(θT
0 Dr−1,0)

]
= Op(n−1/2), (19)

for 1 ≤ r ≤ In, we have

Gn(x) = gn(x) (1 + op(1)) , (20)
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where

gn(x) = (1− b0)φ(ČIn−1)
[
Φ(CIn−1,0)− Φ(CIn−2,0)
Φ(ČIn−1)− Φ(ČIn−2)

− 1− Φ(CIn−1,0)
x− Φ(ČIn−1)

]

+b0α1φ(θT ĎIn−1)
[
Φ(θT DIn−1,0)− Φ(θT DIn−2,0)
Φ(θT ĎIn−1)− Φ(θT ĎIn−2)

− 1− Φ(θT DIn−1,0)
x− Φ(θT ĎIn−1)

]
. (21)

Since Gn(Φ̌In
) = 0, we have

gn(Φ̌In
) = op(1). (22)

Furthermore, we have,

1
n

∂

∂CIn−1
log{Ln}|C=Č

=
{

(1− b0)φ(ČIn−1)
[
Φ(CIn−1,0)− Φ(CIn−2,0)
Φ(ČIn−1)− Φ(ČIn−2)

− 1− Φ(CIn−1,0)
1− Φ(ČIn−1)

]

+b0α1φ(θT ĎIn−1)
[
Φ(θT DIn−1,0)− Φ(θT DIn−2,0)
Φ(θT ĎIn−1)− Φ(θT ĎIn−2)

− 1− Φ(θT DIn−1,0)
1− Φ(θT ĎIn−1)

]}
(1 + op(1))

= gn(1) (1 + op(1)) = gn(Φ(CIn,0)) (1 + op(1)) ,

where Č = (Č1, . . . , ČIn−1). Hence, if the assumption that

Φ̌r > Φ(Cr0) (23)

holds for r = In, by (22) and the fact that gn(x) is a strict increasing function of x, we obtain

1
n

∂

∂CIn−1
log{Ln}|C=Č < 0

for any given ε > 0. Hence the second part of Conclusion 3 follows.

Now we prove that the assumption (23) holds for r = 2, · · · , In. We use the inductive method

to prove (23). The inductive method relies on In − 1 steps. The first step consists of an conclusion

for r = 2. From (10), we see that Č2 satisfies

G1(x) =
1
n

∂

∂C1
log{Ln(θ,C)}|C1=Č1,C2=x

=
k1

n

φ(Č1)
Φ(Č1)

− k2

n

φ(Č1)
Φ(x)− Φ(Č1)

+α1
`1
n

φ(θT Ď1)
Φ(θT Ď1)

− α1
`2
n

φ(θT Ď1)
Φ(θT x̃)− Φ(θT Ď1)

= 0. (24)
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By (18) and (19), we have

G1(x) = g1(x) (1 + op(1)) (25)

where

g1(x) = (1− b0)φ(Č1)
{

Φ(C10)
Φ(Č1)

− Φ(C20)− Φ(C10)
Φ(x)− Φ(Č1)

}

+b0α1φ(θT Ď1)
{

Φ(θT D10)
Φ(θT Ď1)

− Φ(θT D20)− Φ(θT D10)
Φ(θT x̃)− Φ(θT Ď1)

}
,

and Dr = (−1, Cr)T . Thus by (24) and (25), we have g1(Č2) = op(1). In addition, g1(C2) is an

increasing function of C2 and g1(C20) < 0 since Č1 > C10. Hence

Č2 > C20,

and (23) holds for r = 2.

The step j consists of showing that the conclusion (23) for r = j + 1 is true given that the

conclusions from the step 1, · · · , j. Using the same argument as before with r = 2, we can prove

(23) hold for r = j + 1 given Φ̌r > Φ(Cr0), r = 2, · · · , j. Hence (23) hold for r ≤ In.

Using the same argument as before with Č1 = C10 +ε, we can obtain the first part of Conclusion

3.
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