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2 X.H. Zhou et al.

1. Introduction

1.1. Motivating Example

Researchers are often interested in comparing the difference of some measures between two
groups, e.g., drug effect between treatment and control groups, a health outcome between inter-
vention A and intervention B. For health services researchers, interest is also on the comparison of
cost between two groups, e.g., cost incurs from diagnostic testing between depressed patients and
non-depressed patients. Diagnostic testing is a costly and discretionary practice that is largely
driven by the physician’s judgments and patient’s demands; some patients may equate quality
of care with the intensity and novelty of diagnostic testing. The overuse of diagnostic testing
could lead to inappropriately high diagnostic charges among older adults with depression and
ill-defined symptoms (Callahan et al., 1997). One question of interest from Callahan’s study is
to compare medical charges between depressed and non-depressed patients. The focus of the
statistical analysis is on the mean of diagnostic charges because the mean can be used to recover
the total charge, which reflects the entire diagnostic expenditure in a given patient population.

We have patients level data from this study. Summary statistics of the two samples are
presented in table 1. It can be seen from the table that the two samples are highly skewed
with skewness coefficient 5.41 and 2.55. The 95% confidence interval for the difference in means
based on the t-statistic is (-552.37, 1156.27) (interval width 1708.64) and based on bootstrap-t is
(-338.57, 1476.24) (interval width 1864.81). Given that the two samples are highly skewed, one
could ask whether the two above confidence intervals cover the true parameters at the specified
level and that they are as narrow as possible. In the remaining of this paper, we will try to
answer this question.

1.2. Existing Methods

Let X1, . . . , Xn be an i.i.d. sample from a population with mean M and variance V . The
commonly used interval for M is based on the one-sample t-statistic, proposed by ”Student”
(1908) and is given by

t =
X̄ −M

S/
√

n
(1.1)

where X̄ =
∑n

i=1 Xi/n, and S =
√

1
n−1

∑n
i=1(Xi − X̄)2.

The corresponding t-statistic based (t-based) confidence interval for the mean M is
(

X̄ − tα/2,n−1
S√
n

, X̄ + tα/2,n−1
S√
n

)
(1.2)

and for large sample, the corresponding confidence interval based on central limit theorem (CLT)
is (

X̄ − zα/2
S√
n

, X̄ + zα/2
S√
n

)
(1.3)

It is well known that the above interval has exact 1− α coverage when the data come from a
normal distribution and approximate 1 − α coverage for nonnormal data. Several authors have
investigated the effect of skewness and sample size on the coverage accuracy of the above interval.
These include, among many others, Gayen (1949), Barrett and Goldsmith (1976), Johnson (1978),
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Nonparametric Confidence Intervals 3

Table 1. Descriptive statistics for the data set

Group n mean std. dev. skewness coef. Âm coef. Âm/
√

N

Non-depressed 108 1646.53 4103.84 5.41 5.52 0.38

Depressed 103 1344.58 1785.54 2.55

All units are in U.S. dollars

Chen (1995), Boos and Hughes-Oliver (2000). They found that the coverage accuracy of the t-
interval: (1) can be poor with skewed data; (2) depends on the magnitude of the population
skewness; and (3) improves with increasing n (Boos and Hughes-Oliver, 2000).

When dealing with skewed data, several nonparametric solutions have been proposed for testing
the mean of a distribution. The first relies on asymptotic results providing that the sample size
n is sufficiently large. The central limit theorem (CLT) states that for a random sample from
a distribution with mean M and finite variance V , the distribution of the sample mean X̄ is
approximately normal with mean M and variance V/n for sufficiently large n. This theorem
can be used to justify the confidence intervals (1.3). The second approach is to transform the
observed data. The logarithm is typically used. Inferences then will be made on the mean of
the transformed data. The third approach is to use standard nonparametric methods like the
Wilcoxon test.

Similarly, for the two-sample case, the ordinary-t statistic is given by

T =
Ȳ1 − Ȳ2 − (M1 −M2)√

S2
1

n1
+ S2

2
n2

· (1.4)

The corresponding t-based confidence interval for M1 −M2 is
(

Ȳ1 − Ȳ2 − tα/2,ν

√
S2

1

n1
+

S2
2

n2
, Ȳ1 − Ȳ2 + tα/2,ν

√
S2

1

n1
+

S2
2

n2

)
, (1.5)

and for large samples, the corresponding CLT based confidence interval for M1 −M2 is

(
Ȳ1 − Ȳ2 − zα/2

√
S2

1

n1
+

S2
2

n2
, Ȳ1 − Ȳ2 + zα/2

√
S2

1

n1
+

S2
2

n2

)
(1.6)

where M1 and M2 are the population means of the two samples, {Y11, . . . , Y1n1} and {Y21, . . . , Y2n2}.
Here Ȳ1 and Ȳ2 are their corresponding sample means, and S2

1 and S2
2 are their corresponding

sample variances. The degree of freedom, ν, in the t-based confidence interval (1.5) can be
approximated (see, for example, Scheffé, (1970)).

Similarly nonparametric approaches are also available for the two-sample case. The first
approach involves the use of the CLT based on large sample theory to justify the confidence
interval given in equation (1.6). The second approach involves transformation of observations to
reduce the effect of skewness; inference then will be made on the means of transformed data. The
third approach uses standard nonparametric methods like the Wilcoxon test.

1.3. Limitations of existing methods

Each of the aforementioned methods have their own weaknesses. The t-based approach is
not very robust under extreme deviations from normality (Boos and Hughes-Oliver, 2000). For
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4 X.H. Zhou et al.

the two-sample problem, our simulations indicate that coverage of confidence intervals given in
equation (1.5) depends on the relative skewness of the two samples, and may be different from
the true coverage by a substantial amount.

The CLT does not give any indication on how large n has to be for approximations in equa-
tion (1.3) and (1.6) to be reasonable. How large n has to be depends on the skewness, and to
less extent, the kurtosis of the distribution of the observations (Barrett and Goldsmith, 1976;
Boos and Hughes-Oliver, 2000). Gayen (1949), citing Pearson’s work, stated that ”the effect of
universal ’excess’ and of ’skewness’ on ’Student’s’ ratio z (which is related to t by t = z

√
n− 1)

may be considerable.” (Gayen, 1949, p.353).
The transformation of observations approach can be inappropriate since testing the mean (for

the one-sample problem) and difference in means (for the two-sample problem) on transformed-
scale is not always equivalent to testing on the original scale (Zhou et al., 1997).

The standard nonparametric Wilcoxon test is not the test for means. For one sample, Wilcoxon
test can be used as a test for median. For two sample, the Wilcoxon test is a test for equality of
distributions, and is not the test for equality of means unless the two distributions have the same
shapes. In addition, it is not easy to construct confidence intervals based on the Wilcoxon test.

1.4. Proposed methods

Another approach is to modify the t-statistic to remove the effect of skewness. The method
is based on the Edgeworth expansion (Hall, 1992a). For one sample, this method has been
investigated by Johnson (1978), Hall (1992b), and Chen (1995). They showed that when the
sample size is small and the parent distribution is asymmetrical, the t-statistic should be replaced
by (Johnson, 1978; Chen, 1995):

t1 =
{

(X̄ −M) +
µ̂3

6nS2
+

µ̂3

3S4
(X̄ −M)2

}
(S2/n)−1/2

where µ̂3 is an estimate of the population third central moment. This is the approach that we
will pursue in this paper.

The remaining of this paper will be organized as following: in Section 2, we will revisit the
one-sample problem; in Section 3, we will derive an Edgeworth expansion for a two-sample t-
statistic; in Section 4, we will demonstrate the method via a simulation study; in Section 5, we
apply our method to existing cost data sets; in Section 6, we will summarize the methods and
provide our recommendation.

2. One-sample Problem

Let U = (X̄−M)/S. The distribution of a statistic U admits the Edgeworth expansion (Hall,
1992b),

P (n1/2U ≤ x) = Φ(x) + n−1/2γ(ax2 + b)φ(x) + O(n−1) (2.1)

where a = 1/3 and b = 1/6, γ is the population skewness that needs to be estimated, and Φ and
φ are the standard normal cumulative distribution function and density function. Hall (1992b)
proposed two transformations:

T1 = T1(U) = U + aγ̂U2 +
1
3
a2γ̂2U3 + n−1bγ̂ (2.2)
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T2 = T2(U) = (2an−1/2γ̂)−1{exp(2an−1/2γ̂U)− 1}+ n−1bγ̂ (2.3)

Skewness can be thought of as produced by a reshaping function of a normal random variable
that affects positive values differently from negative values. In addition, the appearance of skew-
ness is often greater away from the median (Hoaglin, 1985). Therefore, to reduce skewness, we
need to find a transformation with T (U) ≈ U for U near zero and T(0) = 0 (except for a shifting
factor of n−1bγ̂). See Hoaglin (1985) for a more detailed discussion on this idea. Following this
idea, we introduce a new, simpler transformation:

T3 = T3(U) = U + U2 +
1
3
U3 + n−1bγ̂ (2.4)

The (1− α)100% confidence interval for the mean M is given by

X̄ − T−1
i (n−1/2ξ1−α/2)S ≤ M ≤ X̄ − T−1

i (n−1/2ξα/2)S (2.5)

where ξα = Φ(α) and T−1
i (·), i=1, 2, 3, is the inverse function of Ti(·), can be solved analytically,

and has the following expressions:

T−1
1 (t) =

(
1
3
γ̂

)−1{
1 + 3

1
3
γ̂(t− n−1 1

6
γ̂)

}1/3

−
(

1
3
γ̂

)−1

,

T−1
2 (t) =

(
2
1
3
n−1/2γ̂

)−1

log
{

2
1
3
n−1/2γ̂

(
t− n−1 1

6
γ̂

)
+1

}
,

T−1
3 (t) =

{
1 + 3(t− n−1 1

6
γ̂)

}1/3

−1·

The validity of the transformation method has been investigated by several authors (Hall
(1992b), Zhou and Gao (2000)). Here we report a simulation study on the finite-sample perfor-
mance of the transformation methods in comparison with other methods. Table 2 summarizes
our results based on 10,000 simulations from 3 log-normal distribution LN(µ, σ2) where µ and
σ2 are the mean and variance of the log-transformed observations, respectively. In the table,
the ordinary-t interval is denoted by ”Ord t.” The bootstrap-t percentile interval is denoted by
”Boot t.” BCa denotes biased corrected acceleration confidence interval. T1(γ̂), T2(γ̂), and T3(γ̂)
denote confidence intervals based on three transformations T1, T2, and T3 given in equation (2.5),
respectively. The details of the bootstrap methods are described in Efron and Tibshirani (1993).
For the bootstrap resampling, we used 1,000 bootstrap samples for each generated data set.
From the table, it can be seen that the bootstrap-t intervals give good results. Our method using
T3 transformation or Hall’s T1 transformation is comparable with the bootstrap-t interval and
sometimes better, but requires less computing in term of bootstrap resampling. For sample size
greater than 100, our interval based on T3 transformation gives tighter coverage in term of aver-
age confidence interval length compared to the bootstrap-t interval and the transformed interval
based on T1. We also found that the ordinary-t interval is inadequate when the coeffcient γ̂/

√
n

is greater than 0.3. Thus for data coming from highly skewed distribution and the sample size
is relatively small (γ̂/

√
n ≥ 0·3), confidence intervals based on T1 or T3 transformation or ones

based on the bootstrap-t interval are recommended over the ordinary-t interval.
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Table 2. Coverage of 95% 2-sided confidence intervals for the mean of the log-normal M = exp(µ + 1
2σ2)

n σ2 γ̂√
n

Ord t Boot t BCa T1(γ̂) T2(γ̂) T3(γ̂)

25 0.5 0.326 0.9186 (0.81) 0.9382 (0.97) 0.9067 (0.79) 0.9255 (1.07) 0.9121 (0.77) 0.9576 (1.84)

25 1.0 0.432 0.8823 (1.56) 0.9284 (2.30) 0.8865 (1.60) 0.9159 (2.51) 0.8813 (1.50) 0.9732 (3.59)

25 1.5 0.501 0.8380 (2.59) 0.9125 (5.03) 0.8583 (2.73) 0.9038 (4.56) 0.8459 (2.51) 0.9774 (5.97)

25 2.0 0.548 0.7933 (4.01) 0.8940 (9.84) 0.8310 (4.31) 0.8913 (7.35) 0.8042 (3.89) 0.9827 (9.25)

100 0.5 0.224 0.9368 (0.40) 0.9455 (0.43) 0.9333 (0.41) 0.9403 (0.44) 0.9368 (0.40) 0.9498 (0.43)

100 1.0 0.325 0.9180 (0.81) 0.9363 (0.95) 0.9201 (0.85) 0.9324 (1.08) 0.9193 (0.81) 0.9442 (0.88)

100 1.5 0.395 0.8919 (1.39) 0.9311 (1.83) 0.9070 (1.49) 0.9286 (2.13) 0.8965 (1.38) 0.9354 (1.51)

100 2.0 0.454 0.8749 (2.26) 0.9240 (3.47) 0.8955 (2.48) 0.9215 (3.86) 0.8815 (2.24) 0.9232 (2.46)

500 0.5 0.120 0.9496 (0.18) 0.9501 (0.18) 0.9475 (0.18) 0.9516 (0.18) 0.9501 (0.18) 0.9517 (0.18)

500 1.0 0.200 0.9380 (0.37) 0.9443 (0.39) 0.9371 (0.38) 0.9419 (0.40) 0.9387 (0.37) 0.9463 (0.38)

500 1.5 0.271 0.9282 (0.67) 0.9409 (0.74) 0.9284 (0.69) 0.9406 (0.81) 0.9298 (0.66) 0.9391 (0.68)

500 2.0 0.332 0.9118 (1.11) 0.9281 (1.34) 0.9144 (1.18) 0.9272 (1.53) 0.9135 (1.11) 0.9247 (1.13)

µ is chosen to be 0

Ti(γ̂) denotes Ti(·) transformation intervals given in equation (2.5), for i = 1, 2, 3.

Values in the parenthesis are average confidence interval lengths

3. Edgeworth Expansion for the Two-sample t-Statistic

In this section we extend the three transformation methods T1, T2, and T3 presented above to
the two-sample problem. We show that the confidence interval based on the two-sample t-statistic
can be modified to obtain better coverage when observations come from skewed distributions.

Let Y11, Y12, ···, Y1n1 and Y21, Y22, ···, Y2n2 be independently and identically distributed from
some distributions F with mean M1, variance V1, skewness γ1 and G with mean M2, variance V2,
skewness γ2, respectively. Let Ȳi = 1

ni

∑ni

j=1 Yij and S2
i = 1

ni−1

∑ni

j=1(Yij − Ȳi)2 for i = 1, 2. We
are interested in constructing confidence intervals for the difference M1 −M2.

Proposition 1. Let λN = n1/(n1 + n2) = n1/N . Assume λN = λ + O(N−r) for some r ≥ 0.
Under regularity conditions (Hall, 1992a), the distribution of the t-statistic given in equation (1.4)
has the following expansion,

P (T ≤ x) = P (N1/2U ≤ x) = Φ(x) +
1√
N

A

6
(2x2 + 1)φ(x) + O(N−min(1,r+1/2)) (3.1)

where φ(·) and Φ(·) are the probability density function and cumulative distribution function of
the standard normal variable, and

A =
{

V1

λ
+

V2

1− λ

}−3/2{
V

3/2
1 γ1

λ2
− V

3/2
2 γ2

(1− λ)2

}

For a proof, see appendix A.
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Similar to the one-sample case with a = 1/3, b = 1/6, and γ = A, we can define the three
transformations Ti, i = 1, 2, 3, given by Equation (2.2), (2.3), and (2.4), respectively. Hence,
we can derive three transformation-based confidence intervals for M1 − M2 as following: Let

ξα = Φ(α) and σ̂ =
√

S2
1

n1
+ S2

2
n2

, and the (1 − α)100% confidence interval for the difference
M1 −M2 is given by:

Ȳ1 − Ȳ2 −N1/2T−1
i (N−1/2ξ1−α/2)σ̂ ≤ M1 −M2 ≤ Ȳ1 − Ȳ2 −N1/2T−1

i (N−1/2ξα/2)σ̂, (3.2)

where T−1
i (t) is the inverse function of Ti, can be solved analytically, and has the following

expressions:

T−1
1 (t) =

(
1
3
Â

)−1{
1 + 3

1
3
Â(t−N−1 1

6
Â)

}1/3

−
(

1
3
Â

)−1

,

T−1
2 (t) =

(
2
1
3
N−1/2Â

)−1

log
{

2
1
3
N−1/2Â

(
t−N−1 1

6
Â

)
+1

}
,

T−1
3 (t) =

{
1 + 3(t−N−1 1

6
Â)

}1/3

−1·

Here Â is a moment estimator for the coefficient A and is defined as follows:

Â ≡ Âm =
(N/n1)2S3

1 γ̂1 − (N/n2)2S3
2 γ̂2{

(N/n1)S2
1 + (N/n2)S2

2

}3/2
, (3.3)

where, for i = 1, 2,

S2
i =

1
ni − 1

ni∑

j=1

(Yij − Ȳi)2, γ̂i =
ni

(ni − 1)(ni − 2)

ni∑

j=1

{
Yij − Ȳi

Si

}3

(3.4)

4. A Simulation Study

In this section, we conduct a simulation study to assess the coverage accuracy of two-sided
confidence intervals given in section 3 for the difference in means of two positively skewed distri-
butions. The two families that we considered are the log-normal family and the gamma family.
To keep the sampling variation small, we used 10,000 simulated samples for each parameter set-
ting and each sample size. For the bootstrap resampling, we used 1,000 bootstrap samples for
each generated data set.

Table 3 and 4 summarize the design for our simulations. The two log-normal distributions
are LN(µ1, σ2

1) and LN(µ2, σ2
2) where µ1(µ2) and σ2

1(σ2
2) are the mean and variance of the log-

transformed sample 1 (2), accordingly. For convenience, we set µ1 = µ2 = 0. The gamma family
G(s, r) has two parameters: shape (s) and rate (r). Its mean is given by s/r, variance is given by
s/r2. Of course, when s=1, it reduces to an exponential family, and when r = 1/2, it reduces to
a χ2 family.

Figure 1 and 2 summarize the distributions that we conduct for our simulations. Figure 1 has
seven panels representing seven pairs of log-normal densities. In this figure, first panel represents
simulation design L1a to L6a. The second panel is design L1b to L6b. The third panel is design

http://biostats.bepress.com/uwbiostat/paper233
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Table 3. Setup parameters for the lognormal
simulations

Design n1 n2 σ2
1 σ2

2 γ1 γ2

L1a 25 25 0.51 0.5 2.99 2.94

L1b 25 25 1.00 0.5 6.18 2.94

L1c 25 25 1.50 0.5 12.09 2.94

L1d 25 25 2.00 0.5 23.73 2.94

L1e 25 25 2.50 0.5 47.43 2.94

L1f 25 25 3.00 0.5 96.49 2.94

L2a 50 50 0.51 0.5 2.99 2.94

L2b 50 50 1.00 0.5 6.18 2.94

L2c 50 50 1.50 0.5 12.09 2.94

L2d 50 50 2.00 0.5 23.73 2.94

L2e 50 50 2.50 0.5 47.43 2.94

L2f 50 50 3.00 0.5 96.49 2.94

L3a 100 100 0.51 0.5 2.99 2.94

L3b 100 100 1.00 0.5 6.18 2.94

L3c 100 100 1.50 0.5 12.09 2.94

L3d 100 100 2.00 0.5 23.73 2.94

L3d 100 100 2.50 0.5 47.43 2.94

L3f 100 100 3.00 0.5 96.49 2.94

L4a 500 500 0.51 0.5 2.99 2.94

L4b 500 500 1.00 0.5 6.18 2.94

L4c 500 500 1.50 0.5 12.09 2.94

L4d 500 500 2.00 0.5 23.73 2.94

L4e 500 500 2.50 0.5 47.43 2.94

L4f 500 500 3.00 0.5 96.49 2.94

L5b 100 25 1.00 0.5 6.18 2.94

L5c 100 25 1.50 0.5 12.09 2.94

L5d 100 25 2.00 0.5 23.73 2.94

L5e 100 25 2.50 0.5 47.43 2.94

L5f 100 25 3.00 0.5 96.49 2.94

L6a 25 100 0.51 0.5 2.99 2.94

L6b 25 100 1.00 0.5 6.18 2.94

L6c 25 100 1.50 0.5 12.09 2.94

L6d 25 100 2.00 0.5 23.73 2.94

L6e 25 100 2.50 0.5 47.43 2.94

L6f 25 100 3.00 0.5 96.49 2.94

L7a 25 25 2.01 2.0 24.06 23.73

L7b 100 100 2.01 2.0 24.06 23.73

L7c 25 100 2.01 2.0 24.06 23.73

Hosted by The Berkeley Electronic Press



Nonparametric Confidence Intervals 9

Fig. 1. Distribution of lognormal simulations
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Fig. 2. Distribution of gamma simulations
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Table 4. Setup parameters for the Gamma simulations

Design n1 n2 s1 r1 s2 r2 γ1 γ2

G1a 25 25 1.01 1.0 1.00 1.0 1.99 2.00

G1b 25 25 1.00 2.0 0.10 2.0 2.00 6.33

G1c 25 25 1.00 3.0 0.01 3.0 2.00 20.00

G2a 50 50 1.01 1.0 1.00 1.0 1.99 2.00

G2b 50 50 1.00 2.0 0.10 2.0 2.00 6.33

G2c 50 50 1.00 3.0 0.01 3.0 2.00 20.00

G3a 100 100 1.01 1.0 1.00 1.0 1.99 2.00

G3b 100 100 1.00 2.0 0.10 2.0 2.00 6.33

G3c 100 100 1.00 3.0 0.01 3.0 2.00 20.00

G4a 25 100 1.01 1.0 1.00 1.0 1.99 2.00

G4b 25 100 1.00 2.0 0.10 2.0 2.00 6.33

G4c 25 100 1.00 3.0 0.01 3.0 2.00 20.00

G5a 25 25 2.10 0.5 2.00 0.5 1.38 1.41

G5b 25 25 6.00 0.5 2.00 0.5 0.82 1.41

G5c 25 25 10.00 0.5 2.00 0.5 0.63 1.41

G5d 25 25 14.00 0.5 2.00 0.5 0.54 1.41

G6a 25 25 1.00 0.1 1.00 1.0 2.00 2.00

G6b 25 25 1.00 0.2 1.00 2.0 2.00 2.00

G6c 25 25 1.00 0.3 1.00 3.0 2.00 2.00

G6d 25 25 1.00 0.4 1.00 4.0 2.00 2.00

G7a 50 50 1.00 0.1 1.00 1.0 2.00 2.00

G7b 50 50 1.00 0.2 1.00 2.0 2.00 2.00

G7c 50 50 1.00 0.3 1.00 3.0 2.00 2.00

G7d 50 50 1.00 0.4 1.00 4.0 2.00 2.00

G8a 25 50 1.00 0.1 1.00 1.0 2.00 2.00

G8b 25 50 1.00 0.2 1.00 2.0 2.00 2.00

G8c 25 50 1.00 0.3 1.00 3.0 2.00 2.00

G8d 25 50 1.00 0.4 1.00 4.0 2.00 2.00

L1c to L6c. The fourth panel is design L1d to L6d. The fifth panel is design L1e to L6e. The
sixth panel is design L1f to L6f. The last panel is design L7a-L7c.

Figure 2 presents the gamma distribution for the simulation. In figure 2, the first panel is
simulation design G1a to G4a. The second panel is design G1b to G4b. The third panel is design
G1c to G4c. The next 4 panels are designs G5a-G5d (χ2 case). The last 4 panels in figure 2 are
designs G6a-G6d (exponential case). This setup is repeated for designs G7a-G7d and G8a-G8d
where the sample sizes will change.

Table 5 summarizes our simulation results for the lognormal family. Values presented in the
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Table 5. Coverage of 95% 2-sided confidence intervals for M1 −M2 for lognormal family

Design Âm√
N

Ord t Boot t BCa T1(Âm) T2(Âm) T3(Âm)

L1a 0.005 0.9553 (1.15) 0.9242 (1.20) 0.9016 (1.12) 0.9120 (1.27) 0.9383 (1.12) 0.9342 (1.35)

L1b 0.233 0.9283 (1.77) 0.9124 (2.09) 0.8874 (1.77) 0.9011 (2.38) 0.9193 (1.72) 0.9634 (2.13)

L1c 0.377 0.8693 (2.77) 0.8899 (4.44) 0.8597 (2.86) 0.8805 (4.43) 0.8679 (2.68) 0.9483 (3.38)

L1d 0.462 0.8151 (4.04) 0.8641 (8.49) 0.8321 (4.26) 0.8586 (7.04) 0.8178 (3.90) 0.9121 (4.96)

L1e 0.531 0.7722 (6.07) 0.8536 (18.27) 0.8062 (6.55) 0.8511 (11.13) 0.7799 (5.87) 0.8821 (7.51)

L1f 0.573 0.7146 (8.43) 0.8273 (34.80) 0.7654 (9.24) 0.8375 (15.79) 0.7272 (8.15) 0.8346 (10.4)

L2a 0.004 0.9531 (0.81) 0.9307 (0.83) 0.9207 (0.81) 0.9271 (0.85) 0.9456 (0.80) 0.9445 (0.87)

L2b 0.226 0.9321 (1.27) 0.9182 (1.41) 0.9029 (1.29) 0.9123 (1.59) 0.9263 (1.25) 0.9499 (1.36)

L2c 0.366 0.8873 (2.01) 0.9069 (2.70) 0.8853 (2.12) 0.9013 (3.10) 0.8894 (1.97) 0.9326 (2.16)

L2d 0.455 0.8486 (3.12) 0.8907 (5.49) 0.8642 (3.40) 0.8871 (5.39) 0.8519 (3.07) 0.9011 (3.37)

L2e 0.510 0.8023 (4.63) 0.8706 (10.70) 0.8327 (5.18) 0.8728 (8.53) 0.8113 (4.55) 0.8598 (5.01)

L2f 0.552 0.7628 (6.87) 0.8639 (26.36) 0.8151 (7.80) 0.8692 (13.02) 0.7739 (6.77) 0.8307 (7.45)

L3a 0.006 0.9543 (0.58) 0.9373 (0.58) 0.9303 (0.57) 0.9350 (0.59) 0.9501 (0.57) 0.9489 (0.59)

L3b 0.204 0.9354 (0.91) 0.9265 (0.98) 0.9180 (0.93) 0.9245 (1.07) 0.9330 (0.90) 0.9465 (0.94)

L3c 0.336 0.9058 (1.47) 0.9221 (1.83) 0.9041 (1.56) 0.9195 (2.11) 0.9069 (1.46) 0.9321 (1.52)

L3d 0.418 0.8656 (2.30) 0.9075 (3.38) 0.8835 (2.51) 0.9062 (3.76) 0.8722 (2.28) 0.9010 (2.38)

L3e 0.481 0.8441 (3.54) 0.9010 (6.44) 0.8722 (3.97) 0.9000 (6.37) 0.8515 (3.51) 0.8805 (3.68)

L3f 0.520 0.8056 (5.18) 0.8873 (11.57) 0.8499 (5.90) 0.8909 (9.70) 0.8153 (5.15) 0.8475 (5.39)

L4a 0.003 0.9526 (0.26) 0.9487 (0.26) 0.9450 (0.26) 0.9477 (0.26) 0.9513 (0.26) 0.9536 (0.26)

L4b 0.135 0.9446 (0.42) 0.9435 (0.43) 0.9380 (0.42) 0.9428 (0.43) 0.9443 (0.42) 0.9501 (0.42)

L4c 0.240 0.9358 (0.69) 0.9394 (0.75) 0.9318 (0.71) 0.9381 (0.81) 0.9353 (0.69) 0.9418 (0.70)

L4d 0.314 0.9145 (1.12) 0.9300 (1.32) 0.9155 (1.19) 0.9281 (1.51) 0.9171 (1.12) 0.9238 (1.13)

L4e 0.373 0.8932 (1.78) 0.9237 (2.34) 0.9026 (1.93) 0.9218 (2.69) 0.8965 (1.78) 0.9076 (1.80)

L4f 0.418 0.8760 (2.78) 0.9182 (4.58) 0.8969 (3.10) 0.9192 (4.55) 0.8825 (2.78) 0.8923 (2.81)

L5b 0.010 0.9527 (1.15) 0.9247 (1.20) 0.9100 (1.15) 0.9196 (1.27) 0.9438 (1.13) 0.9465 (1.20)

L5c 0.204 0.9350 (1.64) 0.9171 (1.88) 0.9005 (1.69) 0.9114 (2.11) 0.9282 (1.63) 0.9514 (1.74)

L5d 0.331 0.8906 (2.42) 0.8978 (3.25) 0.8754 (2.59) 0.8926 (3.64) 0.8912 (2.40) 0.9279 (2.57)

L5e 0.425 0.8539 (3.60) 0.8931 (6.07) 0.8672 (3.98) 0.8902 (6.12) 0.8592 (3.58) 0.9046 (3.85)

L5f 0.489 0.8139 (5.27) 0.8773 (10.83) 0.8435 (5.98) 0.8772 (9.66) 0.8231 (5.24) 0.8698 (5.65)

L6a 0.197 0.9296 (0.91) 0.9195 (0.98) 0.9032 (0.89) 0.9126 (1.06) 0.9228 (0.88) 0.9416 (0.94)

L6b 0.363 0.8870 (1.60) 0.9105 (2.12) 0.8833 (1.62) 0.9011 (2.38) 0.8840 (1.54) 0.9187 (1.65)

L6c 0.460 0.8398 (2.61) 0.8952 (4.51) 0.8546 (2.72) 0.8876 (4.44) 0.8392 (2.50) 0.8845 (2.69)

L6d 0.525 0.7969 (4.00) 0.8784 (9.26) 0.8261 (4.25) 0.8775 (7.24) 0.7994 (3.83) 0.8444 (4.13)

L6e 0.571 0.7571 (5.98) 0.8636 (20.23) 0.8020 (6.47) 0.8691 (11.15) 0.7628 (5.73) 0.8125 (6.18)

L6f 0.602 0.7230 (8.55) 0.8528 (41.27) 0.7787 (9.37) 0.8630 (16.20) 0.7286 (8.20) 0.7779 (8.85)

L7a 0.010 0.9688 (6.17) 0.8931 (10.35) 0.8375 (6.54) 0.8690 (9.67) 0.9417 (6.00) 0.9346 (7.25)

L7b 0.009 0.9590 (3.37) 0.8975 (3.95) 0.8670 (3.62) 0.8888 (4.67) 0.9474 (3.35) 0.9453 (3.46)

L7c 0.198 0.9163 (4.88) 0.8645 (7.67) 0.8343 (5.14) 0.8569 (7.60) 0.9012 (4.75) 0.9470 (5.07)

Ti(Âm) denotes Ti(·) transformation intervals given in equation (3.2), for i = 1,2,3

Values in the parenthesis are average confidence interval lengths
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Table 6. Coverage of 95% 2-sided confidence intervals for M1 −M2 for Gamma family

Design Âm√
N

Ord t Boot t BCa T1(Âm) T2(Âm) T3(Âm)

G1a -0.001 0.9523 (1.12) 0.9287 (1.15) 0.9125 (1.08) 0.9202 (1.14) 0.9378 (1.09) 0.9347 (1.32)

G1b 0.236 0.9337 (0.42) 0.9341 (0.46) 0.9120 (0.40) 0.9242 (0.48) 0.9242 (0.40) 0.9494 (0.50)

G1c 0.292 0.9252 (0.27) 0.9471 (0.30) 0.9172 (0.26) 0.9347 (0.32) 0.9187 (0.25) 0.9478 (0.32)

G2a 0.002 0.9508 (0.79) 0.9357 (0.80) 0.9290 (0.78) 0.9327 (0.79) 0.9442 (0.78) 0.9451 (0.84)

G2b 0.185 0.9405 (0.29) 0.9389 (0.31) 0.9268 (0.29) 0.9324 (0.31) 0.9350 (0.29) 0.9443 (0.31)

G2c 0.231 0.9331 (0.19) 0.9462 (0.20) 0.9301 (0.18) 0.9400 (0.20) 0.9304 (0.18) 0.9467 (0.20)

G3a 0.001 0.9486 (0.56) 0.9413 (0.56) 0.9362 (0.55) 0.9403 (0.56) 0.9457 (0.55) 0.9460 (0.57)

G3b 0.141 0.9440 (0.21) 0.9470 (0.21) 0.9390 (0.20) 0.9425 (0.21) 0.9433 (0.20) 0.9489 (0.21)

G3c 0.177 0.9435 (0.13) 0.9480 (0.14) 0.9400 (0.13) 0.9456 (0.14) 0.9422 (0.13) 0.9473 (0.14)

G4a 0.188 0.9342 (0.89) 0.9317 (0.94) 0.9128 (0.86) 0.9247 (0.95) 0.9264 (0.86) 0.9413 (0.92)

G4b 0.281 0.9242 (0.40) 0.9417 (0.45) 0.9134 (0.39) 0.9311 (0.47) 0.9185 (0.38) 0.9326 (0.41)

G4c 0.301 0.9201 (0.27) 0.9439 (0.31) 0.9157 (0.26) 0.9330 (0.32) 0.9131 (0.25) 0.9330 (0.27)

G5a 0.002 0.9536 (3.23) 0.9422 (3.27) 0.9260 (3.10) 0.9341 (3.19) 0.9441 (3.14) 0.9383 (3.81)

G5b 0.053 0.9532 (4.54) 0.9481 (4.60) 0.9342 (4.32) 0.9404 (4.45) 0.9444 (4.39) 0.9418 (5.35)

G5c 0.058 0.9481 (5.57) 0.9449 (5.66) 0.9281 (5.27) 0.9352 (5.43) 0.9375 (5.37) 0.9371 (6.54)

G5d 0.060 0.9487 (6.47) 0.9479 (6.57) 0.9308 (6.10) 0.9390 (6.29) 0.9395 (6.22) 0.9389 (7.57)

G6a 0.295 0.9267 (8.00) 0.9446 (9.12) 0.9174 (7.71) 0.9347 (9.52) 0.9212 (7.63) 0.9500 (9.50)

G6b 0.294 0.9259 (4.02) 0.9447 (4.58) 0.9147 (3.87) 0.9311 (4.78) 0.9194 (3.84) 0.9494 (4.77)

G6c 0.294 0.9224 (2.67) 0.9448 (3.04) 0.9176 (2.57) 0.9329 (3.18) 0.9176 (2.54) 0.9482 (3.16)

G6d 0.295 0.9209 (2.00) 0.9439 (2.28) 0.9153 (1.93) 0.9311 (2.39) 0.9171 (1.91) 0.9476 (2.37)

G7a 0.235 0.9373 (5.59) 0.9508 (5.99) 0.9353 (5.52) 0.9447 (5.98) 0.9347 (5.46) 0.9521 (5.95)

G7b 0.233 0.9367 (2.80) 0.9474 (3.00) 0.9343 (2.77) 0.9430 (2.99) 0.9342 (2.74) 0.9471 (2.98)

G7c 0.236 0.9317 (1.87) 0.9464 (2.01) 0.9285 (1.85) 0.9385 (2.01) 0.9298 (1.83) 0.9426 (1.99)

G7d 0.233 0.9345 (1.40) 0.9490 (1.50) 0.9334 (1.38) 0.9434 (1.49) 0.9319 (1.37) 0.9497 (1.49)

G8a 0.295 0.9246 (7.98) 0.9460 (9.08) 0.9218 (7.68) 0.9356 (9.43) 0.9172 (7.60) 0.9413 (8.58)

G8b 0.296 0.9206 (3.98) 0.9428 (4.54) 0.9148 (3.84) 0.9331 (4.73) 0.9123 (3.79) 0.9395 (4.29)

G8c 0.297 0.9215 (2.66) 0.9466 (3.03) 0.9187 (2.56) 0.9360 (3.17) 0.9173 (2.53) 0.9430 (2.86)

G8d 0.296 0.9247 (1.99) 0.9492 (2.27) 0.9186 (1.92) 0.9365 (2.36) 0.9185 (1.90) 0.9443 (2.15)

Ti(Âm) denotes Ti(·) transformation intervals given in equation (3.2), for i = 1,2,3

Values in the parenthesis are average confidence interval lengths
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table are confidence intervals based on the ordinary t statistic (denoted by Ord t), the bootstrap-t
interval (denoted by Boot t), the bias-corrected accelerated confidence interval (BCa), the three
transformation intervals (denoted by T1, T2, T3). Values in the parenthesis are the average lengths
of the corresponding intervals. Here we also saw that the bootstrap-t intervals give good results.
The T1 and T3 transformation intervals also give consistent results. The T1 intervals, in few cases,
outperform T3 intervals, while for other cases, the reverse is true. The ordinary-t intervals are
certainly inadequate when the coefficient Âm/

√
N is large (≥ 0·3). Here we also found that the

intervals based on T3 transformation gives tighter coverage in term of interval lengths compared
to the bootstrap-t and T1 intervals.

Table 6 shows our simulation results for the gamma family. Our simulation indicates that
the ordinary-t intervals are relatively good. Similar to our observation previously, the ordinary-t
intervals can be improved upon by the bootstrap-t, the T1, or the T3 intervals. The tightness of
these intervals measured in term of interval lengths are relatively comparable. The ordinary-t
intervals give very good coverage for the chi-square family that we considered in this simulation
study and so are the bootstrap-t and the three transformation intervals. For the exponential
family that we considered, the 95% ordinary-t intervals give coverage above 92% in all cases
considered. However, they can be improved upon by using the bootstrap-t, the T1, or the T3

intervals.
It is clear from Proposition 1 (equation (3.1)) that the coefficient A/

√
N (in absolute value)

plays an important role in determining how good the normal approximation will be. In our
simulation, when Âm/

√
N is small (< 0·3), the ordinary t-interval will be quite satisfactory.

On the contrary, when Âm/
√

N ≥ 0·3, intervals based on bootstrap-t, T1, or T3 should be
recommended. Our simulation also shows that skewness alone is not a big factor. It is the
relative skewness that affects the ordinary t-interval. In fact, if both samples are skewed, but
their relative skewness cancels each other and yields small coefficient A (like in design L7a and
L7b), the ordinary-t interval is quite good.

In summary of our simulation, when dealing with data from skewed distributions, confidence
intervals based on T1 or T3 transformation or ones based on the bootstrap-t interval are recom-
mended over the ordinary-t interval. Intervals based on T3 transformation have several advan-
tages including tighter coverage compared to T1 and the bootstrap-t intervals and require less
computing than bootstrap-t intervals.

5. Application to a Cost Data

5.1. Medical charges in mental health patients

In this section we revisited the motivating application presented in the introductory section.
As mentioned previously, we are interested in comparing the mean of diagnostic charges between
depressed and non-depressed patients.

Figure 3 represents the histograms and the Q-Q Plots of the two samples. It is clear that both
samples are positively skewed with the estimated coefficient Âm/

√
N of 0.38.
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Fig. 3. Histograms and Q-Q Plots of the two samples

Table 7. 95% Confidence intervals for the difference in average costs between depressed and
non-depressed groups

Interval Interval length

Ordinary-t interval (-552.37, 1156.27) 1708.64

T1 interval (-374.99, 1619.49) 1994.48

T2 interval (-504.75, 1192.41) 1697.16

T3 interval (-429.51, 1338.22) 1767.72

Bootstrap-t interval (-388.57, 1476.24) 1864.81

BCA interval (-338.64, 1593.15) 1931.79

All units are in U.S. dollars

The resulting confidence intervals for the difference in average medical charges between the de-
pressed and non-depressed patients are given in table 7.

It can be seen that the T1, T3, and the bootstrap-t interval are relatively similar. T2 interval
resembles the ordinary-t interval the most. As anticipated, T3 interval has shortest interval
length compared to T1 and the bootstrap-t intervals. All intervals include zero indicating that
the difference in average costs between depressed and non-depressed patients are not statistically
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Table 8. Descriptive statistics for the data set

Group n mean std. dev. skewness coef. Âm coef. Âm/
√

N

Caucasian 66 2431.95 2188.58 1.16 3.03 0.31

others 28 4047.01 4351.32 1.95

All units are in U.S. dollars

significant. Based on our simulation study, either T1, T3, or the bootstrap-t interval should be
reported.

5.2. Medical charges from computer-based interventions study

In 2001, the Institute of Medicine documented the gap between recommended and actual
practice of medicine in the United States. Many proven interventions were not routinely being
used for common diseases that are morbid and costly. Reactive air ways diseases, asthma and
chronic obstructive pulmonary disease (COPD), are examples. It has also been demonstrated that
computer-based interventions can increase preventive care and reduce costs. Recently, Tierney
et al. (2004) conducted a randomized, controlled trial to assess whether guideline-based care
suggestions delivered via physicians’ and pharmacists’ computer workstations could improve the
outpatient management and outcomes among patients with asthma or COPD. In this section, we
reanalyze a subset of the real data set in Tierney’s study to compare indirect health care charges
between Caucasian patients and others. As in previous example, the focus will be on the average
costs since the means can be used to recover the total charges. We are interested in comparing
average costs between female Caucasian patients and female patients of other races with chronic
obstructive pulmonary disease in this study.

Summary statistics of the two samples are presented in the table 8. Figure 4 represents the
histograms and the Q-Q Plots of the two samples. It can be seen that both samples are positively
skewed with the estimated coefficient Âm/

√
N of 0.31.

The resulting confidence intervals for the difference in average indirect medical charges between
the Caucasian and other patients are given in table 9.

It can be seen that the T1 and T3 are very similar. The bootstrap-t interval is also relatively
similar. The ordinary-t interval includes zero indicating the difference in average costs between
the two groups is insignificant. However, all T1, T3, and bootstrap-t intervals indicate a significant
difference between Caucasian patients and other patients with Caucasian patients having less
average indirect costs. Based on our simulation, the conclusion of insigifincant difference based
on the ordinary-t interval would be incorrect. Instead, the significant difference based on T1, T3,
or the bootstrap-t interval should be reported.

6. Discussion

Our study shows that the coefficient γ/
√

n (for the one-sample case) and coefficient A/
√

N
(for two-sample case) play an important role in the normal approximation for constructing con-
fidence intervals. In our simulation study, we found that when γ̂/

√
n (respectively, Âm/

√
N) is

small (< 0·3), confidence interval based on ordinary t is quite good. On the contrary, when γ̂/
√

n
(respectively, Âm/

√
N) is large (≥ 0·3), the ordinary-t intervals can be improved upon by the

bootstrap-t, T1, or T3 intervals. When dealing with confidence intervals for the means of skewed
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Fig. 4. Histograms and Q-Q plots of the two samples

Table 9. 95% Confidence intervals for the difference in average costs between Caucasian patients
and other patients

Interval Interval length

Ordinary-t interval (-145.56, 3375.68) 3521.24

T1 interval (213.61, 3950.95) 3737.34

T2 interval (-2.99, 3394.83) 3397.82

T3 interval (211.86, 3941.67) 3729.81

Bootstrap-t interval (175.94, 4082.93) 3906.99

BCA interval (251.99, 3649.84) 3397.86

All units are in U.S. dollars
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data, our simulations show that the bootstrap-t interval gives consistent and best coverage. Con-
fidence intervals based on T1 and T3 transformations are comparable to the bootstrap-t intervals
but require much less computing in term of bootstrap resampling. Among the bootstrap-t, the
T1, and the T3 intervals, intervals based on T3 transformation give tightest coverage measured
in term of interval lengths, and should be recommended over the ordinary-t interval for skewed
data. Standard textbook recommendation of sample size 30 is apparently inadequate for highly
skewed data.

In our extensive simulation, we also found that our transformations intervals work best when
coefficient A is positive. This won’t be a problem in practice since we can always arrange the
two samples to yield positive value of A.

A. Proof of Proposition 1

The two-sample t-statistic is given by:

T =
Ȳ1 − Ȳ2 − (M1 −M2)√

S2
1

n1
+ S2

2
n2

Let Y ∗
ij = Yij−Mi

V
1/2

i

, Ȳ ∗
i = 1

ni

∑ni

j=1 Y ∗
ij and S∗2i = 1

ni−1

∑ni

j=1(Y
∗
ij − Ȳ ∗

i )2, for i=1,2 and j=1,...,ni.

Then,

T =
V

1/2
1 Ȳ ∗

1 − V
1/2
2 Ȳ ∗

2√
V1S∗21

n1
+ V2S∗22

n2

=
√

N
V

1/2
1 Ȳ ∗

1 − V
1/2
2 Ȳ ∗

2√
V1S∗21

λN
+ V2S∗22

1−λN

where λN = n1/N = n1/(n1 + n2). Let X ≡ (X1, X2, X3, X4) where

X1 = Ȳ ∗
1 , X2 = n−1

1

n1∑

j=1

Y ∗2
1i , X3 = Ȳ ∗

2 , X4 = n−1
2

n2∑

j=1

Y ∗2
2j

h(X) =
V1S

∗2
1

λN
+

V2S
∗2
2

1− λN
=

V1

λN
(X2 −X2

1 ) +
V2

1− λN
(X4 −X2

3 )

g(X) =
V

1/2
1 X1 − V

1/2
2 X3

h(X)1/2

Then, T =
√

Ng(X).
By Taylor expansion, with EX ≡ U ≡ (U1, U2, U3, U4) = (0, 1, 0, 1), we obtain

g(X) = g(U) +
∂g(U)
∂U

(X − U) +
1
2

∂2g(U)
∂U2

(X − U)2 + ···

T =
√

N

{
∂g(U)
∂U

(X − U)′ +
1
2
(X − U)′

∂2g(U)
∂U2

(X − U) + ···
}

Note that T =
√

Ng(X) and g(U) = 0. Let

WN =
√

N

{
∂g(U)
∂V

(X − U)′ +
1
2
(X − U)′

∂2g(U)
∂U2

(X − U)
}
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We can show under some regularity conditions that

T = WN + O(N−1)

If we assume EY 6
ij < ∞, we can show that the first three moments of WN are given as follows:

EWn = −1
2
AN−1/2 + O(N−min(1,r+1/2)), EW 2

n = 1 + O(N−1)

EW 3
n = −7

2
AN−1/2 + O(N−min(1,r+1/2)),

where

A = h0(V )−3/2

{
V

3/2
1 γ1

λ2
− V

3/2
2 γ2

(1− λ)2

}
,

and

h0(V ) =
{

V 2
1

λ
+

V 2
2

(1− λ)

}

Let K1N , K2N , K3N be the first three cumulants of Wn. Then,

K1N = −1
2
AN−1/2 + O(N−min(1,r+1/2))

K2N = EW 2
n − (EWn)2 = 1 + O(N−min(1,r+1/2))

K3N = E(Wn − EWn)3 = −2AN−1/2 + O(N−min(1,r+1/2))·

Let χN (t) be the characteristic function of Wn. Then

χN (t) = exp{K1N (it) + K2N
(it)2

2
+ K3N

(it)3

6
+ ···}

= exp{(−1
2
AN−1/2)(it)− t2

2
+ (−2A)

(it)3

6
N−1/2 + O(N−min(1,r+1/2))}

= exp(− t2

2
)exp

{
N−1/2

(
−1

2
A(it)− 2A

6
(it)3

)
+O(N−min(1,r+1/2))

}
·

By Taylor expansion, we obtain

χN (t) = exp(− t2

2
)
{

1 + N−1/2(−1
2
A(it)− 2A

6
(it)3) + O(N−min(1,r+1/2))

}

Letting r1(it) = (− 1
2A(it)− 2A

6 (it)3), we can write

χN (t) = exp(− t2

2
)
{

1 + N−1/2r1(it) + O(N−min(1,r+1/2))
}

(∗)

Since χN (t) =
∫∞
−∞ eitxdp(Wn ≤ x) and e−t2/2 =

∫∞
−∞ eitxdΦ(x), expression (*) suggests that

P (Wn ≤ x) = Φ(x) + N−1/2R1(X) + O(N−min(1,r+1/2)),

http://biostats.bepress.com/uwbiostat/paper233
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where R1(X) is such a function that is Fourier-Stieltjes transform equals to r1(it)e−t2/2,
∫ ∞

−∞
eitxdR1(x) = r1(it)e−t2/2

This idea of inverting an expansion of characteristic function was first proposed by Hall (1992b) for
a one-sample i.i.d. mean. Applying integration by part to the identity (characteristic function):
e−t2/2 =

∫
eitxφ(x)dx, we obtain

R1(x) =
[
A

2
+

2A

6
(x2 − 1)

]
φ(x) =

A

6
(2x2 + 1)φ(x)

Therefore,

P (Wn ≤ x) = Φ(x) + N−1/2q(x)φ(x) + O(N−min(1,r+1/2))

where

q(x) =
A

6
(2x2 + 1), A =

{
V1

λ
+

V2

1− λ

}−3/2{
V

3/2
1 γ1

λ2
− V

3/2
2 γ2

(1− λ)2

}

Since T = WN + O(N−1), Proposition 1 follows.
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