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1 INTRODUCTION

Case-cohort (Prentice [1]) and nested case-control (Thomas [2]) study designs are highly useful to estimate
the covariate effects on survival times within a cohort, without having to collect data on covariates for
each member of the cohort. In the Nordic region, there are several population-based registers (e.g. the
national cancer registers, the Swedish Multi-Generation Register, The Medical Birth Register of Norway
and Statistics Norway) which routinely store information on both diseases and possible covariates. By
combining information from different registers, one can construct databases which include survival times
and times of onset of specific diseases for millions of individuals. By use of the personal identification
numbers, the data can be linked into families, providing a great opportunity to study whether a disease
shows a significant familial aggregation, and if this aggregation can be explained by some covariates.
However, using traditional cohort methods for multivariate survival analysis when handling such vast
amounts of data would be computationally extremely time consuming. It would also not be time-efficient,
since the diseases of interest are very rare, and one might be interested in including other covariates those
readily available in the registers. Since more and more information is stored in today’s society, routine
registers should also be expected to appear in countries outside the Nordic region. Hence, sampling
methods for handling this type of data are needed.
Commonly, models for handling multivariate survival data fall into one of the following two cate-

gories: Marginal models and frailty models. When using marginal models, measuring the dependence
of individuals within families is not of interest, and the dependence is treated as a nuisance parameter.
Instead, one estimates the population average effect of the covariates under the working assumption that
all individuals, both within and between families, are independent. One then corrects the standard errors
of the parameter estimates by using a variance estimator which takes the dependence into account. In
frailty models, both measuring the covariate effects and the the level of dependence is of interest. A frailty
variable (which can be constructed as a sum or product of several variables) describes the unobserved
random variation and creates dependence between lifetimes. It is usually assumed to act multiplicatively
on the hazard function for an individual,

Individual hazard rate = Z × λ(t) (1)

where Z is the frailty variable, and λ(t) is the baseline hazard. Conditional on the frailty variable,
individuals within a family are assumed to be independent. The models may be formulated conditional
on the frailty variable, or by means of the marginal distributions, where the frailty is usually integrated
out. The latter approach is often called copula models. For copula models, one assumes proportional
hazards in the marginal distributions instead of proportional hazards in the conditional distribution. One
important difference between the two parameterizations, is that one gets population average effects for
the covariates in a copula model (corresponding e.g. to a univariate Cox analysis), while in a frailty
model, the regression coefficients are calculated conditional on the value of the frailty variable. For a
review of the methods for multivariate survival data, see [3].
For marginal models for multivariate survival data, Lu and Wang [4] propose a case-control method

for semi-parametric Cox models. In this case, the challenge is to sample controls in a way that secures
independence between the cases and the controls in each sampled cases-control set. If one wishes to
measure the strength of the dependence empirically, without any modelling assumptions, Hsu et al. ([5]
and [6]) propose a case-control method for family data based on the cross-ratio ([7] and [8]). The method
is easily implemented in standard software, such as S-Plus. Pfeiffer et al. [9] present a marginal survival
model for the analysis of first degree relatives of case and control probands sampled from a population
register. These methods enable estimation of the population average effect of the proband’s risk status
on the hazard of disease in the relatives.
If one wishes to model the dependence by a specific probability distribution, Li et al. [10] propose

a case-control method for parametric copula models. In the paper, they use a gamma distribution for
the copula (corresponding to a shared gamma frailty model). Shih and Chatterjee [11] propose a semi-
parametric counterpart to the method.
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An important question is whether to do the sampling on an individual or family level. In the papers
mentioned so far, sampling is done on an individual level, but with the exception of [9], they deal with
situations where family registers are unavailable. The sampling of families is done conditional upon
first sampling case and control probands. In the case of population based registers, however, we have
information on all families, regardless of whether they contain any cases. Here, it would clearly be more
logical to sample families instead of individuals. Two papers by Andersen ([12] and [13]) propose a nested
case-control method for copula models applied to family register data, illustrated by simulations.
We present two case-cohort alternatives to frailty models, and an extensive simulation study to ex-

amine the results. Since one knows the size of the cohort, one can base the case-cohort method on
pseudo-likelihoods. The method should be flexible enough to allow for an arbitrary number of members
in each family and different kinds of frailty models, including multivariate frailty models for analyzing
more general pedigrees with complicated dependence structures. Although frailty models frequently yield
quite complicated likelihood functions, the resulting case-cohort likelihood should not be much more com-
plex than it is for cohort data. One should also get a good efficiency compared to a cohort analysis by
just sampling a very small (say, 10% or below) proportion of the control families. The idea behind this
paper is to apply existing methodology on case-cohort methods for univariate survival data, where all
individuals are assumed to be independent, to family data, where families are assumed to be indepen-
dent, but individuals within a family are dependent. We specifically use methodology from the papers
of Kalbfleisch and Lawless [14] and Borgan et al. [15]. The main difference is that we sample families
instead of individuals.
In Section 2, we present an unstratified case-cohort method with independent Bernoulli sampling

(with replacement). A case-cohort method without replacement and stratified sampling is presented in
Section 3. Using a different combination (Stratified Bernoulli sampling/ unstratified sampling without
replacement) is straightforward. In Section 4 the simulation study is presented, and a small application
to data from the Medical Birth Registry of Norway is given in Section 5. A discussion is given in the
final Section 6, while derivations of some of the results in Sections 2 and 3 are given in an Appendix. The
paper deals with fully parametric models, and a conditional parametrization of the frailty. One should
be able to use exactly the same methods for parametric copula models, since they are basically frailty
models with a different parameterization.

2 UNSTRATIFIEDCASE-COHORTWITHBERNOULLI SAM-
PLING

Following the notation in [14], let the data consist of N families. Let X1, ...,XN be independent vectors
of random variables, where Xi contains all available information on events, censorings, covariates etc. for
all members in family i, and define S = {1, 2, ..., N} as the set of all families. Let Xi have density fi(x),
the joint density for the individuals in family i, where fi(x) depends on a vector of unknown parameters
θ. This includes parameters for the frailty distribution, the covariates, and in the parametric case, for the
baseline hazard. Suppose that S can be divided into 2 mutually exclusive subspaces, S = S0 ∪ S1, where
S0 is the subspace of families with at least one case, and S1 is the subspace of control families (families
with no cases). If Xi ∈ Sj , then Xi is observed with probability pj . Corresponding to the case-cohort
scenario of Prentice [1], all case families will be included in the sample with probability p0 = 1. Control
families will be included with probability p1 < 1. Of course, one may also wish to sample case families, so
that p0 < 1. In that case, the following calculations still apply. The observed data consists {Xi, i ∈ Dj},
j = 0, 1, where Dj is the set of families sampled from Sj . If X1, ...,XN are completely observed, the log
likelihood is

l =
NP
i=1
log fi(Xi;θ) (2)
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An estimator of the full log likelihood (2) is the log pseudo-likelihood

lp =
1P

j=0

1

pj

P
i∈Dj

log fi(Xi;θ) (3)

Define the cohort history G, generated by X1, ...,XN . Let Ri = I(i ∈ D0∪D1), and assume that they are
independent Bernoulli variates corresponding to sampling with replacement. Define πi = P (Ri = 1|G).
The connection to the p’js in [14] is πi = pjI(i ∈ Sj). Notice that

lp =
1P

j=0

P
i∈Sj

Ri

pj
log fi(Xi;θ) =

NP
i=1

Ri

πi
log fi(Xi;θ)

Then (3) can be rewritten as

lp = l +
NP
i=1

µ
Ri

πi
− 1
¶
log fi(Xi;θ) (4)

Notice also that E(Ri/πi − 1|G) = 0, since E(Ri|G) = πi. Hence, E(lp|G) = l, where the expectation
is taken over the sampling. By the details in the Appendix, the maximum pseudo-likelihood estimator
of θ, bθ, follows an approximate multinormal distribution with expected value equal to the true θ0 and
covariance matrix A(θ0)−1 +A(θ0)−1B(θ0)A(θ0)−1. Here, A(θ0) is estimated by

bA(bθ) = 1P
j=0

1

pj

P
i∈Dj

Ii(bθ),
where Ii(θ) = −∂2/∂θ∂θ0 log fi(Xi;θ), the observed information matrix for family i, and B(θ0) is esti-
mated by bB(bθ) = 1P

j=0

1− pj
p2j

P
i∈Dj

si(bθ)si(bθ)0
where si(θ) = ∂/∂θ log fi(X;θ), the score function for family i. Hence, the estimator for the covariance
matrix of the parameter estimates is the same sandwich-estimator as for univariate data. This completes
the case-cohort method with Bernoulli sampling.
The results presented in this section and in the Appendix are also valid when the πi’s are allowed

to vary between the control families in S2. Specifically, to improve efficiency, one may have stratified
Bernoulli sampling. The πi’s would then stay constant within strata, but vary between them.

3 STRATIFIED CASE-COHORT WITH SAMPLING
WITHOUT REPLACEMENT

As is well-known in case-cohort methods for univariate survival data, one can improve the efficiency of
the parameter estimates by stratifying according to additional information, usually covariates, of the
members in the cohort (see e.g. [15]). In the case of family survival data, information on family size is
another important characteristic available for all. The idea is to divide S into k + 1 strata with regard
to covariate values and family size. In univariate survival data, one would do the stratification on the
covariates according to the individual values, but as we now operate on a family level, the stratification
on the covariates is done on the mean covariate values of a family. In a frailty analysis of dependent
multivariate data, the dependence in survival times is due to unknown, possibly heritable factors, and
this dependence is modeled by the frailty variable. It is important to include covariates that explain
parts of the dependence, resulting in smaller variance of the frailty variable, and thus less dependence
due to unobserved factors. Since such covariates often will have correlated values (or be common to all
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members of a family), the mean covariate values should be useful surrogate measures for the exposure
level of a family, on which to base the stratification.
As mentioned in the previous section, it is not a problem to stratify the data when doing Bernoulli

sampling. However, one may further improve the results by sampling without replacement, which is
considered here. As before, the total number of families is N . Let S = S0 ∪ S1 ∪ ...∪ Sk, where S0 is the
stratum of all case families, and S1, ..., Sk are strata of the control families based on the cohort history
G. Which stratum a control family belongs to is decided by the covariate values and the family size. One
could also divide the case families into different strata, if it is impossible to include all. We then select,
by random sampling, mj families without replacement from the nj families in stratum j in the cohort,
j = 1, ..., k. The probability pj of being sampled from stratum j will now be

pj =

½
1 if j = 0
mj

nj
if j > 0

Let D0 denote the families in the case stratum, and let D1, ...,Dk denote the sampled families from
the k control strata. Define Ri = I(i ∈ D0 ∪ D1 ∪ ... ∪ Dk), and let πi be as defined for Bernoulli
sampling. Since the sampling is done with replacement, the Ri’s are now dependent variables. With
these modifications, the log pseudo-likelihood in (4) will still apply, as this is unaffected by the sampling.
However, when calculating the covariance matrix of bθ, the fact that the Ri’s are dependent has to be
taken into consideration. From the derivations given in the Appendix, the maximum pseudo-likelihood
estimator bθ follows an approximate multinormal distribution with expected value θ0 and covariance
matrix A(θ0)−1 +A(θ0)−1Bst(θ0)A(θ0)

−1. Here, A(θ0) is estimated by

bA(bθ) = kP
j=0

nj
mj

P
i∈Dj

Ii(bθ),
and Bst(θ0) is estimated by

bBst(bθ) = kP
j=0

nj(nj −mj)

m2
j

P
i∈Dj

(si(bθ)− sj(bθ))(si(bθ)− sj(bθ))0,
where sj(θ) = m−1j

P
i∈Dj

si(bθ), the estimated average value of the score function in stratum j. This is
the same result as in [15] for univariate survival data.

4 A SIMULATION STUDY

To compare the methods, we use a shared gamma frailty model with a Weibull baseline hazard. The
standard multiplicative model in (1) is used. The frailty variable Z is gamma distributed with scale
and shape parameter δ so that E(Z) = 1, to make sure the model can be identified. The baseline
hazard corresponds to a Weibull distribution with scale parameter α and shape parameter κ, of the
form exp(α)κtκ−1. In addition, a Cox-term for one covariate is included in the model, so that λ(t) =
exp(α+βW )κtκ−1, whereW denotes a dichotomous covariate in the simulatons. To see how the methods
behave for different degrees of correlation within families, we simulate cohorts for three different values
of δ: δ =0.1, 0.6 and 2. For a measure of correlation like Kendall’s τ , this gives the values τ =0.83, 0.45
and 0.20, corresponding to high, moderate and low dependence within families. In the estimation, we
used log(δ), which is more stable. The parameter θ is then θ = {log(δ), α, κ, β}.
For each value of δ, 500 cohorts are simulated, with 10000 families in each. The number of members is

assigned randomly to the families, so that 30% have 1 member, 45% have two members, 15% have three
members, 7% have four members, 2% have five members and 1% have six members (corresponding e.g. to
sibships). Each individual is assigned a value of a binary covariate, where W = 0 with 70% probability,
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and W = 1 with 30% probability. We then simulate the survival time of each individual according to the
model mentioned above, and draw censoring times from a normal distribution with a mean of 75 and a
standard deviation of 10. This yields a range for the simulated survival times from just above zero to
128. The values of the other parameters are α = −4.50, κ = 0.46 and β = −0.693 (exp(β) = 0.5) for all
simulations. The censoring rate is 95% for δ = 0.1, 93.7% for δ = 0.6 and 93.5% for δ = 2.
There are fi members in family i. Let cli indicate whether the survival time tli for individual l in

family i is censored (cli = 0) or not (cli = 1). If we define c.i =
P

cli as the number of events in family
i, the log pseudo-likelihood is

lp =
kP

j=0

1

pj

P
i∈Dj

log

(
fiQ
l=1

£
exp(α+ βWli)κt

κ−1
li

¤cli
(−1)c.i L(c.i)Z

Ã
fiP
l=1

exp(α+ βWli)t
κ
li

!)

Here, L(c.i)Z (•) denotes the c.i-th derivative of the Laplace transform of Z, LZ(s) = [δ/ (δ + s)]
δ (see e.g.

Hougaard, 2000, p. 221-222 for details). The number of strata, k, the number of families in Dj , and the
value of the pj ’s, all depend on the sampling design. From lp one may calculate the score function and
sandwich-estimator for the different sampling methods in the simulations. For each simulated cohort,
parameters are estimated both from cohort data and from different case-cohort data. For the case-cohort
data, all case families are included, and a certain proportion of the control families. Standard errors
for the cohort estimates are calculated from the observed information matrix, and for the case-cohort
estimates, from the respective sandwich-estimator.

Table 1: Simulation results when log(δ) = −2.303, Kendall’s τ=0.83. ESE=Empirical standard error,
MSE=mean estimated standard error, Eff.=Efficiency compared to cohort estimates, 95% CP=Coverage
probability for 95% confidence intervals. Bern=Bernoulli sampling, Strat1=Stratification on family size
only, Strat2=Stratification on family size & covariate.

Parameter: Cohort 10%Bern 5%Bern 5%Strat1 2.5%Strat1 2.5%Strat2 1%Strat2
log(δ)=-2.303 -2.308 -2.306 -2.306 -2.307 -2.307 -2.307 -2.306
ESE 0.076 0.085 0.095 0.078 0.078 0.077 0.079
MSE 0.080 0.090 0.100 0.081 0.082 0.081 0.082
Eff. 100% 80.7% 64.7% 96.3% 94.7% 97.6% 93.9%
95% CP 96.6% 96.8% 96.4% 96.0% 95.8% 96.8% 95.8%
α=-4.500 -4.503 -4.501 -4.503 -4.503 -4.503 -4.503 -4.502
ESE 0.068 0.074 0.081 0.069 0.073 0.068 0.069
MSE 0.072 0.078 0.085 0.073 0.075 0.072 0.073
Eff. 100% 84.0% 70.5% 97.7% 88.1% 99.7% 98.5%
95% CP 95.6% 96.2% 95.8% 96.6% 95.8% 96.0% 95.8%
κ=0.460 0.461 0.461 0.461 0.461 0.461 0.461 0.461
ESE 0.013 0.013 0.013 0.013 0.013 0.013 0.013
MSE 0.014 0.014 0.014 0.014 0.014 0.014 0.014
Eff. 100% 98.9% 98.6% 99.8% 99.3% 100.0% 100.0%
95% CP 96.8% 97.2% 96.8% 97.0% 97.0% 96.8% 97.0%
β =-0.693 -0.700 -0.700 -0.700 -0.698 -0.697 -0.699 -0.702
ESE 0.089 0.093 0.098 0.103 0.111 0.094 0.098
MSE 0.088 0.093 0.099 0.099 0.109 0.093 0.100
Eff. 100% 91.8% 83.3% 74.8% 64.1% 90.1% 82.5%
95% CP 94.2% 95.4% 95.4% 94.2% 94.6% 95.4% 95.2%

The results are shown in Tables 1-3. There is one table for each value of log(δ). The rows of the
tables show, for each parameter, the mean value of the parameter from the simulations, the empirical
standard error (ESE), the mean estimated standard error (MSE), the efficiency compared to the cohort
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estimates, and the empirical proportion of the 95% confidence intervals (bθ ± 1.96×SE(bθ)) which cover
the true value of the parameter (95% CP). The columns of the tables show results from seven different
sampling methods: Cohort, Bernoulli sampling with 10% or 5% of the control families included (10%
Bern and 5% Bern), stratified sampling with stratification on family size only and 5% or 2.5% of the
control families included from each strata (5% Strat1 and 2.5% Strat1), and stratified sampling with
stratification on both family size and covariates and 2.5% respectively 1% of the control families included
from each strata (2.5% Strat2 and 1% Strat2).

Table 2: Simulation results when log(δ) = −0.511, Kendall’s τ=0.45. ESE=Empirical standard error,
MSE=mean estimated standard error, Eff.=Efficiency compared to cohort estimates, 95% CP=Coverage
probability for 95% confidence intervals. Bern=Bernoulli sampling, Strat1=Stratification on family size
only, Strat2=Stratification on family size & covariate.

Parameter: Cohort 10%Bern 5%Bern 5%Strat1 2.5%Strat1 2.5%Strat2 1%Strat2
log(δ)= -0.511 -0.499 -0.500 -0.488 -0.500 -0.492 -0.499 -0.502
ESE 0.147 0.164 0.189 0.149 0.158 0.151 0.157
MSE 0.142 0.159 0.178 0.146 0.150 0.146 0.150
Eff. 100% 80.2% 60.4% 97.4% 87.0% 95.5% 87.9%
95% CP 95.0% 94.8% 95.0% 95.0% 94.6% 94.8% 93.6%
α =-4.500 -4.505 -4.507 -4.504 -4.505 -4.503 -4.505 -4.506
ESE 0.062 0.069 0.079 0.063 0.069 0.064 0.064
MSE 0.063 0.070 0.077 0.065 0.067 0.064 0.065
Eff. 100% 81.2% 62.5% 97.1% 82.7% 94.4% 93.6%
95% CP 94.2% 95.2% 95.0% 94.8% 94.4% 94.2% 95.0%
κ =0.460 0.461 0.461 0.461 0.461 0.461 0.461 0.461
ESE 0.013 0.013 0.013 0.013 0.013 0.013 0.013
MSE 0.013 0.013 0.013 0.013 0.013 0.013 0.013
Eff. 100% 99.3% 99.8% 100.0% 100.0% 100.8% 97.4%
95% CP 95.0% 94.8% 95.2% 95.4% 95.4% 95.2% 94.6%
β =-0.693 -0.694 -0.692 -0.693 -0.692 -0.697 -0.695 -0.693
ESE 0.076 0.086 0.092 0.094 0.113 0.083 0.099
MSE 0.074 0.084 0.093 0.093 0.109 0.084 0.095
Eff. 100% 77.9% 68.2% 64.4% 44.6% 82.7% 58.5%
95% CP 94.6% 94.6% 95.6% 93.6% 94.6% 95.4% 94.6%

For the case-cohort method with Bernoulli sampling, the efficiency is quite good compared to the
cohort estimates for all parameters, when 10% of the control families are included in the sub-cohort.
However, it drops significantly when the sampling rate declines to 5%. Since the methods will be used
on cohorts consisting of up to millions of families, even a 10% sampling rate may be too high to allow
for a time-efficient analysis. The efficiency is also affected by the level of dependence in the data. One
gets more precise estimates when the dependence is high. However, the agreement between the empirical
standard errors and the standard errors from the sandwich-estimator is good in all cases, and the bias
is low. This indicates that the methods for univariate survival data do indeed also work for multivariate
data.
For the stratified case-cohort analyses, where the stratification is done according to family size only

(Strat1), there are four strata: Families with one, two, three and four+ members. When the sampling rate
is 5%, there is a large improvement in the efficiency for the frailty parameter δ and the scale parameter α,
compared to the corresponding Bernoulli sampling. This is expected, since these parameters are mainly
decided by the level of dependence and the prevalence of the disease. The efficiency is still very good
when the sampling rate drops to 2.5%, except for β. Again, there is a good agreement between the
empirical standard errors and the standard errors from the sandwich-estimator.
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Table 3: Simulation results when log(δ) = 0.693, Kendall’s τ=0.20. ESE=Empirical standard error,
MSE=mean estimated standard error, Eff.=Efficiency compared to cohort estimates, 95% CP=Coverage
probability for 95% confidence intervals. Bern=Bernoulli sampling, Strat1=Stratification on family size
only, Strat2=Stratification on family size & covariate.

Parameter: Cohort 10%Bern 5%Bern 5%Strat1 2.5%Strat1 2.5%Strat2 1%Strat2
log(δ)=0.693 0.723 0.740 0.745 0.726 0.742 0.731 0.739
ESE 0.339 0.393 0.417 0.357 0.367 0.360 0.362
MSE 0.331 0.379 0.419 0.343 0.359 0.345 0.357
Eff. 100% 74.6% 66.5% 90.5% 85.5% 89.0% 87.9%
95% CP 94.6% 93.8% 96.4% 94.8% 95.0% 93.6% 95.6%
α =-4.500 -4.503 -4.503 -4.504 -4.503 -4.504 -4.503 -4.502
ESE 0.062 0.068 0.074 0.062 0.065 0.061 0.066
MSE 0.061 0.069 0.077 0.064 0.066 0.062 0.064
Eff. 100% 78.1% 66.6% 93.7% 84.7% 98.2% 82.4%
95% CP 96.6% 96.8% 97.0% 96.4% 95.4% 97.0% 94.6%
κ =0.460 0.461 0.461 0.461 0.461 0.461 0.461 0.461
ESE 0.012 0.012 0.012 0.012 0.012 0.012 0.012
MSE 0.012 0.012 0.012 0.012 0.012 0.012 0.012
Eff. 100% 99.5% 99.3% 100.0% 99.1% 98.2% 96.9%
95% CP 95.2% 95.4% 95.2% 95.2% 95.2% 95.0% 95.6%
β =-0.693 -0.695 -0.693 -0.692 -0.694 -0.689 -0.694 -0.699
ESE 0.076 0.088 0.098 0.098 0.116 0.088 0.106
MSE 0.071 0.083 0.093 0.093 0.112 0.083 0.096
Eff. 100% 73.9% 59.7% 60.4% 43.2% 75.3% 51.8%
95% CP 93.4% 92.6% 93.8% 93.6% 94.0% 93.4% 92.4%

For the stratified case-cohort analyses, where the data are stratified both according to family size and
the covariate value (Strat2), there are eight strata in total. Since the mean value of the covariate in each
cohort is 0.3, stratification is done according to whether the mean value of the covariate in each family is
above or below 0.3. Stratification on family size is unchanged. This gives a large gain in the efficiency for
the regression coefficient β, compared to the analyses where stratification was done on family size only.
This gain in efficiency is expected, especially since the covariate has a significant effect on the survival.
There is also a consistent improvement in the efficiency for δ and α, which perhaps is more surprising.
The efficiency is good when just 1% of the control families are sampled.

5 APPLICATION TO DATA ON INFANT MORTALITY IN
MULTIPLE BIRTHS

This section shows some simulations on data from the Medical Birth Registry of Norway. The data set
has previously been used in [16]. It contains information on deaths during the perinatal (7-364 days)
period for all multiple births (twins, triplets etc.) in Norway since 1967. There are 48357 infants in 24077
sibships, and 443 deaths. 23 sibships have two deaths, and one sibship has three deaths.
When working with frailty models in a cohort setting, important questions arise regarding the choice

of frailty distribution, and how to model the baseline hazard. In [16], a shared gamma frailty model
and a compound Poisson-gamma model, both with Weibull baseline hazards, were fitted to the data.
In the compound Poisson-gamma model, individual heterogeneity is modelled by a compound Poisson
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distribution, while family heterogeneity is modelled by a gamma distribution. The shared gamma model
gave a bad fit to the data, whereas the compound Poisson-gamma model fitted the data quite well.
As a simpler alternative to the compound Poisson-gamma model, one may construct a gamma-gamma

model in a similar way. Both family and individual heterogeneity is then described by gamma distribu-
tions. Let the individual frailty be modelled by a gamma distribution with scale parameter ν and shape
parameter η, with Laplace transform L(s) = [ν/ (ν + s)]η. The parameter η describes family heterogene-
ity and is also gamma distributed, with scale parameter θ and shape parameter δ. Individuals within
families are independent given the value of η, and dependence is created by letting η have the same value
for individuals within a family. By standard frailty theory, the survival function given η for each individ-
ual will be S(t|η) = [ν/ (ν + Λ(t))]η, and the hazard function given η will be h(t|η) = ηλ(t)/(ν + Λ(t)).
Here, Λ(t) is the integrated baseline hazard. By using the same notation as in Section 4, and the same
likelihood construction as in [16], the log pseudo-likelihood for the gamma-gamma model is

lp =
kP

j=0

1

pj

P
i∈Dj

log

(
fiQ
l=1

µ
λ(tli)

ν + Λ(tli)

¶cli
(−1)c.i L(c.i)η

Ã
fiP
l=1

{log [ν + Λ(tli)]− log(ν)}
!)

where L(c.i)η (•) denotes the c.i-th derivative of the Laplace transform of η, Lη(s) = [δ/ (δ + s)]δ. The
gamma-gamma model is used because the compound Poisson-gamma model yielded singular information
matrices when fitted to the data. It turns out that the gamma-gamma model fits the data almost as
well as the compound Poisson-gamma model, indicating that the problem of singularity could be due to
over-parameterization (the compound Poisson-gamma has one additional parameter).
In this application, we fit a shared gamma model and a gamma-gamma model to the data, and

examine how the case-cohort estimates of the parameters compare to the cohort estimates for these two
models. The case-cohort estimates should be close to the cohort estimates regardless of whether the
model fits the data or not. Cohort estimates, and case-cohort estimates based on 200 samples from the
data, are presented. In the analysis, the scale parameter α of the Weibull baseline hazard is subsumed
in the frailty distribution. This is to simplify the derivation of the information matrix and sandwich
estimator for the gamma-gamma model. Hence, the baseline hazard λ(t) is of the form λ(t) = κtκ−1.
The gamma distribution describing family heterogeneity in both models has two parameters; a scale
parameter θ and a shape parameter δ. For the gamma-gamma model, one gets an additional parameter
from the distribution describing individual heterogeneity, the scale parameter ν. There are no covariates
in this application.

Table 4: Results from the analysis of the multiple birth data, using shared gamma and Gamma-gamma
frailty models. For the cohort analysis: Par=parameter estimates, SE=estimated standard error. For
the 200 10% Bernoulli case-cohort analyses: MPar=mean parameter estimates, MSE=mean estimated
standard error, 95%ECI=95% empirical confidence intervals of the parameters.

Cohort 10% Bernoulli case-cohort
Parameter Par SE Mpar 95%ECI MSE 95%ECI

Shared gamma model
δ 0.0679 0.0147 0.0681 (0.0656, 0.0710) 0.0148 (0.0143, 0.0155)
θ 94.38 23.72 94.49 (93.02, 95.83) 23.77 (23.32, 24.17)
κ 0.4469 0.0210 0.4469 (0.4467, 0.4471) 0.0210 (0.0210, 0.0210)

Gamma-gamma model
δ 0.0766 0.0169 0.0767 (0.0739, 0.0800) 0.0170 (0.0164, 0.0179)
θ 27.39 9.42 27.42 (26.91, 27.87) 9.43 (9.25, 9.60)
ν 7.59 1.55 7.59 (7.58, 7.61) 1.546 (1.543, 1.550)
κ 0.9367 0.1209 0.9367 (0.9361, 0.9372) 0.1209 (0.1206, 0.1211)

The results are shown in Table 4. The table shows cohort estimates of the parameters (Par) with
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standard errors from the observed information matrix (SE), as well as mean parameter estimates from
200 Bernoulli case-cohort samples (MPar) where 10% of the control sibships are included, mean standard
errors from the sandwich estimator (MSE), and 95% empirical confidence intervals (95%ECI, based on the
2.5% and 97.5% percentiles of the empirical distribution) for the parameters and the estimated standard
errors. Both the shared gamma and the gamma-gamma model are fitted to each sample. The results
show that the parameter estimates from the case-cohort analysis are very close to the cohort estimates,
whether the model used to analyze the data provides a good or a bad fit. This indicates that the problem
of choosing the "right" distribution for the frailty variable or baseline hazard in a case-cohort analysis,
should not be any harder than for a cohort analysis. Notice also that the estimates for δ are quite similar
for both models. This is expected, since it is the shape parameter of the distribution describing family
heterogeneity, and thus the dependence in the data, in both the shared gamma and the gamma-gamma
model. For the cohort application, using a shared gamma model yields a log-likelihood value of -4865.00,
whereas the log-likelihood is -4840.98 for the gamma-gamma model. For the 200 case-cohort samples,
the mean log pseudo-likelihood values are -4864.64 for the shared gamma model, and -4840.61 for the
gamma-gamma model. The minimum difference between the log-likelihood values is 23.98. Thus, even
though the likelihood ration test does not apply in the usual manner for pseudo-likelihoods, this indicates
a rejection of the shared gamma model in all 200 samples. For more details regarding the interpretation
of the cohort results from this analysis, see [16].

6 DISCUSSION

When dealing with very large multivariate data sets, sampling techniques are important to keep the
computation time manageable, or, to make computations possible at all. The case-cohort methods
presented in this paper show that one can achieve very good efficiencies by using only a small proportion
of the data set. Both methods demand fairly simple modifications to the likelihood functions and variance
estimators of parametric frailty and copula models for family data. As the results show, vast improvements
can be made in the efficiency of the parameters by stratifying according to family size and covariates.
Stratification is expected to improve efficiency both when doing Bernoulli sampling and sampling without
replacement. Stratified sampling works really well in this setting, since register cohorts are huge. This
means that one can divide the cohort into almost as many strata as one would like, without fearing that a
stratum has too few families in it. On the other hand, unstratified methods are much easier to implement
than a stratified method with a large number of strata. For several applications, one might be satisfied
with unstratified sampling.
When using the methods considered in this paper, there are four possible combinations of sampling

designs: Bernoulli sampling with/without stratification, and sampling without replacement with/without
stratification. We chose to show results for unstratified Bernoulli sampling and stratified sampling without
replacement, since the first method is expected to give the lowest efficiency, while the second is expected
to give the best efficiency out of the four combinations. To see how unstratified sampling without
replacement compares to Bernoulli sampling, we did some additional simulations on the cohorts generated
in Section 4. When sampling 5% of the control families, the efficiencies of the estimated parameters
increased from 65% to 85% for log(δ) and from 71% to 89% for α, when the true value of δ was 0.1.
When the true value of δ was 0.6, the efficiency increased from 60% to 72% for log(δ), and from 63%
to 95% for α. Hence, it is beneficial to sample without replacement, at least for the frailty and baseline
hazard parameters. There was no improvement for β.
The censoring rate in the simulations in this paper was set to 93.5%-95%. For many diseases the

censoring rate is above 99%. Other simulations indicate that the efficiency could depend on the censoring
rate. When it is 98% and δ is 0.1 (very high dependence), the efficiency of log(δ) and α for unstratified
Bernoulli sampling improves to 76% and 81% when sampling 5% of the control families, and 95% and
98% when sampling 10% of the control families. However, since the simulated cohorts consist of just
10000 families, too few familial cases are generated in data with low dependence and an censoring rate of
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98%, resulting in a large over-estimation of δ from both the cohort and case-cohort analyses (and worse
efficiency for the case-cohort estimates). This is also the reason why the bias of the estimated δ’s is larger
when the true δ = 2 in the simulations. A problem with the nested case-control method presented in
Andersen ([12] and [13]), is that no indications on the efficiency of the estimators were given when a very
small proportion of the data were used. In her simulations, the censoring rate was 90%, and one or three
control families were sampled per case family, meaning that the proportion of the data actually used in
the simulations would be too large for most practical purposes.
The value of the Weibull shape parameter in the simulation study is set to 0.46, meaning that the

hazard is decreasing as a function of time. This might appear as a bit odd. Although we have not
tried any increasing hazard, the precision of κ seems to be almost unaffected by the sampling. Also, our
experience from earlier applications of frailty models with Weibull baseline hazard says that estimating
this parameter never causes any problems.
In Borgan et al. [15], which concerns stratified case-cohort designs for univariate survival data, the

stratification was intended for one covariate of particular interest. For register data, it is not a problem
to stratify on several covariates. In the simulation study, the stratification was done on whether or
not the mean value of the covariate for a family was above or below the mean value of the empirical
covariate distribution. Other possibilities are to construct strata from the median or the quartiles of the
empirical distribution of the covariate. Even though the covariate was not correlated within families in
the simulation study, stratification on the covariate proved to have a good effect. The effect could be
even greater when the covariate value is correlated within families, as the surrogate measure (the mean
covariate value in a family) would be more precise. If one for instance considers a common covariate like
the birth year of the mother in a sibling study, stratification in the multivariate case would be the same
as in the univariate case. The simulations clearly show that one should stratify on the covariates to get
precise estimates for the β’s, especially when sampling less than 5% of the control families.
Further theoretical work would be to develop a semi-parametric counterpart to the methods presented

here. Andersen ([12] and [13]) has proposed a nested case-control method both for parametric and semi-
parametric copula models. The weights pj could enter the pseudo-likelihood in a more complicated manner
when the model is semi-parametric. In addition, getting convergence for complicated frailty models
with non-parametric baseline hazards can be a bit tricky, at least when working with the conditional
parameterization of the frailty.
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APPENDIX

In this Appendix, the derivations for the asymptotic properties of θ are reviewed. First, for case-
cohort with Bernoulli sampling of control families, and then for case-cohort where the sampling of control
families is without replacement.
From (2), the cohort score function is

s(θ) =
NP
i=1

∂

∂θ
log fi(Xi;θ) =

NP
i=1
si(θ)

For the Bernoulli sampling in Section 2, the pseudo-score function from (4) becomes

sp(θ) = s(θ) +
NP
i=1

µ
Ri

πi
− 1
¶
si(θ) (5)
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Notice that sp(θ) = 0 is an unbiased estimating equation, since the expected value s(θ0) is zero by general
likelihood theory, and, by the same argument as for (4), the expected value of the second term in (5) is
also zero. To find the covariance matrix of sp(θ0), Cov(sp(θ0)), notice that

Cov(s(θ0)) =
NP
i=1
E
µ
−∂

2 log fi(Xi;θ0)

∂θ∂θ0

¶
=

NP
i=1
Ii(θ0) = A(θ0) (6)

as usual. Furthermore,

Cov
·
NP
i=1

µ
Ri

πi
− 1
¶
si(θ0)

¸
=

NP
i=1
E

"µ
Ri

πi
− 1
¶2
si(θ0)si(θ0)

0
#

=
NP
i=1
E

(
si(θ0)si(θ0)

0E

"µ
Ri

πi
− 1
¶2 |G#) = NP

i=1
E
µ
1− πi
πi

si(θ0)si(θ0)
0
¶

=
0P

j=1

1− pj
pj

E

Ã P
i∈Sj

si(θ0)si(θ0)
0
!
= B(θ0),

exactly the same expression as in [14] for univariate data. Also, the two terms in (5) are uncorrelated,
since

E
·
s(θ)×

NP
i=1

µ
Ri

πi
− 1
¶
si(θ)

0
¸
= E

(
NP
i=1
s(θ)× si(θ)0E

"µ
Ri

πi
− 1
¶|G#) = 0

Hence, we have showed that Cov(sp(θ0))=A(θ0) +B(θ0). Let bθ solve the equation sp(θ) = 0. By the
usual Taylor expansion around the true value θ0, one gets

0 = sp(bθ) ≈ sp(θ0) + ∂

∂θ
sp(θ0)(bθ − θ0)bθ − θ0 ≈ I(θ0)

−1sp(θ0)bθ − θ0 ≈ A(θ0)
−1sp(θ0)

where I(θ0) is the observed information matrix. By the central limit theorem, sp(θ0) is approximately
normal, with expected value 0 and covariance matrix A(θ0) + B(θ0) by the previous results. The
covariance matrix of bθ then becomes

A(θ0)
−1(A(θ0) +B(θ0))A(θ0)−1 = A(θ0)−1 +A(θ0)−1B(θ0)A(θ0)−1

Now, consider the case of stratified sampling without replacement in Section 3. The pseudo-score
function in (5) still applies, the two terms in (5) will be uncorrelated, and A(θ0) will be the same as in
(6), as these results are unaffected by the sampling. However, B(θ0) is affected by the sampling. To find
B(θ0) under stratified sampling without replacement, Bst(θ0), we use the finite-population large sample
argument from Lehmann [17], as used in [18] and [15]. By using the rule of double variance and the result
of Example 3, p. 332-333 in [17] for each stratum, we get

Bst(θ0) = Cov
·
NP
i=1

µ
Ri

πi
− 1
¶
si(θ0)

¸
= E

(
Cov

"
NP
i=1

µ
Ri

πi
− 1
¶
si(θ0)|G#)+ 0

= E

(
kP

j=0
Cov

" P
i∈Sj

µ
Ri

pj
− 1
¶
si(θ0)|G#) = E( kP

j=0
Cov

" P
i∈Sj

Ri

pj
si(θ0)|G#)

=
kP

j=0

1

p2j
E
½
mj(nj −mj)

nj − 1 τ j(θ0)
2

¾
,
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where τ j(θ0)2 is given by

τ j(θ0)
2 =

1

nj

P
i∈Sj

(si(θ0)− sj(θ0))(si(θ0)− sj(θ0))0

This follows from Example 1, p. 328-329 in [17]. Here, sj(θ0) = n−1j
P

i∈Sj si(θ0), the mean value of

the score function in stratum j. The quantity τ j(θ0)2 is estimated by inserting bθ for θ0, and by using
mj instead of nj , and by taking the sum over Dj instead of Sj . Since pj = mj/nj , and by using the
approximation nj/(nj − 1) ≈ 1, Bst(θ0) can be estimated by

bBst(bθ) = kP
j=0

nj(nj −mj)

m2
j

P
i∈Dj

(si(bθ)− sj(bθ))(si(bθ)− sj(bθ))0
Assuming that the normality holds, bθ − θ0 follows an approximate normal distribution with expected
value 0 and covariance matrix A(θ0)−1 +A(θ0)−1Bst(θ0)A(θ0)

−1.
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