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Linear Regression of Censored

Length-biased Lifetimes

Abstract

Length-biased lifetimes may be collected in observational studies or sample
surveys due to biased sampling scheme. In this article, we use a linear regression
model, namely, the accelerated failure time model, for the population lifetime
distributions in regression analysis of the length-biased lifetimes. It is discovered
that the associated regression parameters are invariant under the length-biased
sampling scheme. According to this discovery, we propose the quasi partial score
estimating equations to estimate the population regression parameters. The
proposed methodologies are evaluated and demonstrated by simulation studies
and an application to actual data set.

http://biostats.bepress.com/uwbiostat/paper258



1 Introduction

Length-biased sampling schemes are usually involved in observational studies and sample

surveys due to their convenience or cost-effectiveness. When these biased sampling schemes

are used, length-biased lifetimes are observed and collected. Several examples of the length-

biased lifetimes are discussed, for example, in a recent article of Asghrian, et al. (2002). To

be specific, suppose that in a target population T̃ is a positive lifetime random variable of

p-vector covariate Z ∈ Z. Its density function is f̃(· | Z). Under the length-biased sampling

scheme, the induced density function, f(· | Z), of the actually collected lifetime at T = t is

proportional to the magnitude of t, i.e.,

f(t | Z) =
tf̃(t | Z)

µ̃(Z)
, (1)

where µ̃(Z) = E(T̃ | Z) =
∫ ∞

0
uf̃(t | Z)du < ∞. A comprehensive review on the distribu-

tional properties and historical research with f(·) can be found in Wang (1998).

Although the phenomenon of length bias has been noted and studied in statistical litera-

ture for decades, most of the methodology development has been focused on the one-sample

estimation of population distributions. In many real applications, practical interest may

be in the regression analysis of the population lifetimes to study their association with the

covariates. As an effort, Wang (1996) proposed the widely used proportional hazards model

(Cox, 1972) in such regression analysis:

λ̃(t | Z) = λ̃0(t) exp (αTZ) , (2)

where α ∈ B ⊂ Rp is the regression parameter. Here, λ̃0(·) is some unspecified baseline

hazard function, and λ̃(· | Z) is the hazard function of Z, respectively. To estimate the

parameters in model (2), however, the usual conditional probability argument on the length-

biased samples of (T,Z) does not lead to a clear decomposition of the partial likelihood. In

fact, Wang (1996) noticed this embedded difficulty with the proportional hazards model and

proposed a pseudo-likelihood approach of riskset sampling to estimate α and λ̃0(·).

One reason for such difficulty is that the proportionality in (2) does not hold in the

induced hazard functions of the length-biased lifetimes, as shown later. In this article,

we instead consider an important alternative linear regression model, also known as the

accelerated failure time model in

log T̃ = −βTZ + ε, (3)
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where β ∈ B ⊂ Rp is the regression parameter. Here, ε are the random variables with un-

specified distribution functions. The book of Kalbfleisch & Prentice (2002, Ch. 7) provides

detailed discussion on the implication, estimation and application of this regression model

for the lifetimes without length bias.

In the sections to follow, we first derive the formula of the induced hazard function of the

length-biased T . This formula sheds new light on the advantage of using the linear regression

model (3) for the population lifetimes, due to the invariance of regression parameter in the

length bias sampling. We further propose the quasi partial score estimating equations and

a Riccati ordinary differential equation to estimate the population parameters of β and the

baseline function, respectively, based on the actual length-biased samples of (T,Z). The

validity and performance of the proposed inference procedures are evaluated by Monte-

Carlo simulations. For the demonstration purpose, the data in Wang (1996) are used as well

for our proposed methods. This article is mainly methodological, while most of its theory

justification can be adapted from the references thereinafter.

2 Length-biased Hazard Functions

Let S̃(t | Z) = pr{T̃ ≥ t | Z} be the survival function, and m̃(t | Z) = E(T̃ − t | T̃ ≥ t, Z)

be the mean residual life function, respectively, for the population lifetime T̃ . According to

the inversion formula in Cox (1962, p. 128),

∫ ∞

t

S̃(u | Z)du = S̃(t | Z) · m̃(t | Z).

An integration by parts further leads to
∫ ∞

t
uf̃(u | Z)du = S̃(t | Z) {m̃(t | Z) + t}, for t > 0,

given that µ̃(Z) = E(T̃ | Z) < ∞. The survival function of the length-biased T is hence

S(t | Z) =

∫ ∞

t

f(u | Z)du =
1

µ̃(Z)

∫ ∞

t

uf̃ (u | Z)du =
1

µ̃(Z)
S̃(t | Z) {m̃(t | Z) + t} .

As a result, the induced hazard function of the length-biased T is

λ(t | Z) =
f(t | Z)

S(t | Z)
=

tf̃(t | Z)

µ̃(Z)
· µ̃(Z)

S̃(t | Z) {m̃(t | Z) + t}
=

λ̃(t | Z)t

m̃(t | Z) + t
, (4)

respectively. It is clear that λ(t | Z) ≤ λ̃(t | Z) given m̃(t | Z) ≥ 0, for any t > 0.
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When the proportional hazards models are assumed for the population lifetimes as in

(2), their length-biased hazard functions would follow

λ(t | Z) =
m̃0(t) + t

m̃(t | Z) + t
· λ0(t) exp(αTZ).

Here, λ0(t) = λ(t | Z = 0) and m̃0(t) = m̃(t | Z = 0), respectively. Since m̃(t | Z) + t

is usually unknown function of both t and Z under (2), the proportionality between the

length-biased hazard functions generally does not hold. Thus any naive application of the

proportional hazards models to the length-biased lifetimes would cause biased estimation on

the population regression parameters of α.

Consider instead the accelerated failure time models assumed for the population lifetimes

as in (3). We denote the hazard function of exp(ε) in the model (3) by λ̃0(·) as well.

Then under the accelerated failure time model, S̃(t | Z) = S̃0{t exp(βTZ)} and λ̃(t | Z) =

λ̃0{t exp(βTZ)} exp(βTZ), which leads to

m̃(t | Z) =
exp(−βTZ)

S̃0{t exp(βTZ)}

∫ ∞

t exp(βTZ)

S̃0(u)du = exp(−βTZ)m̃0 {t exp(βTZ)} ,

and

λ(t | Z) =
m̃′

0{t exp(βTZ)} + 1

m̃0{t exp(βTZ)} exp(−βTZ) + t
· t exp(βTZ)

m̃0{t exp(βTZ)} , (5)

respectively, due to the fact that λ̃0(t) = {m̃′
0(t)+ 1}/m̃0(t). Let λ0(t) = λ̃0(t)t/{m̃0(t)+ t}.

By (5), we thus obtain that

λ {t exp(−βTZ) | Z} = λ0(t) exp(βTZ). (6)

Thus the length-biased lifetimes follow the accelerated failure time model with the same

regression parameters of β as in their population models. That is, the regression parameters

are invariant under the accelerated regression model. This fact would yield much advantage

over the usual proportional hazards model in making inferences on the regression parameters,

as shown in the later sections.

3 Inferences on Population Parameters

Suppose that the observed data consist of n iid copies, (Xi,∆i, Zi), i = 1, 2, . . . , n, of

(X,∆, Z), which are the length-biased samples of model (3). Here, Xi = min(Ti, Ci) and

4
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∆i = I(Ti ≤ Ci), respectively, where Ci are the potential censoring times. Assume that

(Ti, Ci) are independent given Z. Let Ni(t) = I(Xi ≤ t,∆i = 1) and Yi(t) = I(Xi ≥ t).

Given the observed {(Xi,∆i, Zi), i = 1, 2, . . . , n}, the log likelihood function is then l =∑
i
{∆i log λ(Xi | Zi) + log S(Xi | Zi)}. As a result, the score function for β is

∂l

∂β
= −

n∑

i=1

∫ ∞

0

{
∂ log λ(t | Zi)

∂β

}
Zi {dNi(t)− Yi(t)λ(t | Zi)dt} . (7)

If m̃0(·) is known, for example, to be exponential such as m̃0(t) = θ, where θ > 0 is constant,

∂ log λ(t | Z)/∂β can be calculated as Z{1 + 2θ exp(−βTZ) + 1}/{1 + θ exp(−βTZ)}. By

solving ∂l/∂β = 0 and ∂l/∂θ = 0 simultaneously, the maximum likelihood estimators of β

and θ are obtained.

When m̃0(·) is unknown, although the baseline hazard function of the length-biased

lifetimes are modified by the factor of 0 < t/{m̃0(t) + t} ≤ 1, the regression parameter of β

in the population model (3) is invariant under the length-biased sample scheme as shown in

(6). This fact would greatly simplify the estimation of the population parameters in model

(3). Specifically to estimate β, we propose a quasi partial score estimating equation approach

similar to that in Chen & Jewell (2001). Let β∗ and Λ∗(·) be the true value of β and Λ0(·),
respectively, in model (6), where Λ(·) are the cumulative hazard functions. Then according

to (6), E{dMi(t) | Ft−;β∗,Λ∗(·)} = 0, where

dMi(t;β, m̃) = dNi {t exp(−βTZi)} − Yi {t exp(−βTZi)} dΛ0(t),

for i = 1, 2, . . . , n. Here, the filtration of Ft is defined by

σ {Ni{u exp(−βT

∗Zi)} , Yi {u exp(−βT

∗Zi)} , Zi; 0 ≤ u ≤ t, i = 1, 2, . . . , n}.

Thus, we consider the following quasi partial score estimating equations to solve for β and

Λ0(·) simultaneously,

n∑

i=1

dMi(t;β,Λ0) = 0, and (8)

n∑

i=1

∫ τ

0

ZidMi(t;β,Λ0) = 0, (9)

where τ > 0 is some constant such that lim infn n−1
∑

i pr{Xi exp(βTZi) ≥ τ + ξ} > 0 for

some ξ > 0 as in Tsiatis (1990). Denote β̂ and Λ̂0(·) the solutions of β and Λ0(·) in the

5

http://biostats.bepress.com/uwbiostat/paper258



above estimating equations, respectively. Straightforward algebra on (8) leads to that

Λ̂0(t) =

∫ t

0

∑
i dNi{t exp(−βTZi)}∑
i Yi{t exp(−βTZi)}

.

Replacing that in (9), we obtain the estimating equations for β:

Q(β) =

n∑

i=1

∫ τ

0

{
Zi − Z̄(t;β)

}
dNi {t exp(−βTZi)} = 0, (10)

where Z̄(t) = E(1)(t;β)/E(0)(t;β) with E(k)(t;β) = n−1
∑

i Z
⊗k
i Yi{t exp(−βTZi)}, k = 0, 1, 2.

Assume that limn E(k)(t;β) = e(k)(t;β). Since Q(β) is discontinuous in β, an estimator of β

is defined by the β̂ that minimises of ‖Q(β)‖2 as in Wei, et al. (1990). Following the same

conditions and arguments for the estimating equations of the log-rank type in Ying (1993),

there exists a neighbourhood U(β∗) of β∗ such that β̂ = argminβ ∈ U(β∗)‖Q(β)‖2 is strongly

consistent. Let

D =

∫
τ

0

{e(2)(t)− e(1)(t)⊗2/e(0)(t)}EY1{t exp(−βT

∗Z1)}λ′
0(t)dt, and

V =

∫
τ

0

{e(2)(t) − e(1)(t)⊗2/e(0)(t)}EY1{t exp(−βT

∗Z1)}λ0(t)dt,

respectively. Since D is nonnegative definite, n1/2(β̂−β∗)
L→ N(0,D−1V D−1), as n → ∞. In

addition, assume that there exist possibly data-dependent weight functions of W (t;β) such

that W (t;β∗) → w(t) almost surely. The weighted estimating equations for β can be also

considered:

QW(β) =
n∑

i=1

∫ τ

0

W (t;β)
{
Zi − Z̄(t;β)

}
dNi {t exp(−βTZi)} = 0.

Denote β̂W the solution to the above equations. In general, the optimal W (·) that minimises

the asymptotic variance of β̂W should be proportional to λ′
0(t)/λ0(t) by an application of

the Cauchy-Schwarz inequality, as noted in Tsiatis (1990). Moreover, adaptive W (·) can be

similarly constructed as in Lai & Ying (1992) to stabilise the integral tail and hence extend

the finite τ to ∞.

To estimate the population baseline functions, consider that λ(t) = {1 + m̃′
0(t)}t/[{m̃0(t)+

t}m̃0(t)]. This leads to a Riccati ordinary differential equation (Reid, 1972),

m̃′
0(t) −

λ(t)

t
m̃0(t)

2 − λ0(t)m̃0(t) + 1 = 0. (11)

6
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Nominally, m̃0(t) = −t is a solution to this equation. According to Polyanin & Zaitsev

(2003), this equation has a closed form of solution

m̃0(t) =
µ0 exp

{
−

∫ t

0
dΛ0(u)

}

1 − µ0

∫ t

0
u−1 exp

{
−

∫ u

0
dΛ0(s)

}
)dΛ0(u)

− t,

given the initial condition of m̃0(0) =
∫ ∞

0
exp{−

∫ t

0
dΛ0(u)}dt = µ0. Therefore, although

the population baseline hazard function is generally not straightforward to be estimated, a

natural estimator of the population baseline mean residual life function is

̂̃m0(t; β̂) =
µ̂0 exp

{
−

∫ t

0
dΛ̂0(u; β̂)

}

1 − µ̂0

∫ t

0
u−1 exp

{
−

∫ u

0
dΛ̂0(s)

}
dΛ̂0(u; β̂)

− t, (12)

where µ̂0 =
∫

τ

0
exp{−

∫ t

0
dΛ̂0(u; β̂)}. Here, Λ̂0(t; β̂) is the Breslow-type estimator in the form

of
∫

t

0

∑
i dNi{t exp(−β̂TZi)}/

∑
i Yi{t exp(−β̂TZi)}. Similar to the decomposition in Tsiatis

(1981),

n1/2{ ̂̃m0(t; β̂) − m̃0(t)} = n1/2{ ̂̃m0(t; β̂) − ̂̃m0(t;β∗)} + n1/2{ ̂̃m0(t;β∗) − m̃0(t)}

can be thus shown to converge weakly to a zero-mean Gaussian process.

4 Estimate and Variance Calculation

To calculate β̂ of the estimating equations (10), in addition to the way of minimising ‖Q(β)‖2,

direct grid search such as the bisection method can be used when Z is of low-dimension.

When Z is of moderate dimension, the recursive bisection can be used, i.e., to recursively ap-

ply the univariate bisection search to the k-dimension problem given the (k−1)-dimensional

problem solved (Huang, 2002). When Z is of high dimension, random search methods

such as the simulated annealing method in Lin & Geyer (1992) can be used. However, the

estimating equations (9) in general may have multiple solutions, some of which are not con-

sistent (Fygenson & Ritov, 1994). When W (·) is the Gehan weight function, the weighted

estimating functions QW(·) is monotone, and solving QW(β) = 0 reduces to a simple lin-

ear programming problem. Thus, the method in Jin, et al. (2003) can be used reliably to

calculate the estimates.

7
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To estimate the variance of β̂ can be challenging, since the baseline hazard function and

its derivative are both involved. Tsiatis (1990) proposed to estimate V by

V̂ = n−1

n∑

i=1

∫
τ

0

{E(2)(t; β̂) − E(1)(t; β̂)⊗2/E(0)(t; β̂)}Yi{t exp(−β̂TZi)}dΛ̂0(t; β̂),

and D by

D̂ = −n−1

n∑

i=1

∫
τ

0

λ̂0(t;hn)d[{E(2)(t; β̂) − E(1)(t; β̂)⊗2/E(0)(t; β̂)}Yi{t exp(−β̂TZi)],

respectively. Here, λ̂0(t;hn) is a consistent kernel estimator of the baseline hazard func-

tion of bandwidth hn. Alternatively, a simple numerical differentiation approach in Huang

(2002) can be used to calculate the variance. That is, first decompose V̂ = vvT, where

v = (v1, v2, . . . , vp)
T and solve Q(bi) = vi, i = 1, 2 . . . , p. Then the variance of n1/2(β̂ − β∗)

can be conveniently estimated by (b − β̂)(b − β̂)T, where b = (b1, b2, . . . , bp)
T.

Several computer-intensive methods can be also used to calculate the variance, in ad-

dition to the usual bootstrap method by Efron (1976). One approach is the estimating

function bootstrap of Hu & Kalbfleisch (2000), in which the individual terms of the esti-

mating functions are bootstrapped. The other approach is often used in literature, which is

by Parzen, et al. (1994) and recently further generalised by Chatterjee & Bose (2005). To

implement it, n independent standard normal deviates of (G1, G2, . . . , Gn) are generated

and multiplied as in QG(β) =
∑

i GiQi(β), where Qi(β) are the individual terms in Q(β).

Then the variance of β̂ can be approximated by the empirical variance of β̂G, where β̂G are

solutions of QG(β) = 0, as shown in Lin, et al. (1998). Moreover, this approach can be easily

adapted to estimate the confidence intervals and confidence bands based on the estimator of

the population baseline mean residual life function, although the covariance of ̂̃m0(·) itself is

rather complex.

5 Examples and Numerical Studies

Consider that exp(ε) in the population linear regression model (3) are exponential with the

constant mean of µ > 0. Then the population baseline hazard function is λ̃0(t) = 1/µ.

Assume that β = − log 2 for Z = 1 against Z = 0. In Fig (1), both population and length-

biased hazard functions are plotted in Z = 0 and 1, respectively. As shown in the plot,
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the length-biased hazard functions are smaller than their population ones, respectively. The

difference is more prominent in the early period of time. As the time progresses, the length-

biased hazard functions move closer to the population hazard functions, respectively. The

population hazard functions are indeed the asymptotes of the length-biased hazard functions,

as t approaches ∞.

Since the underlying population distribution functions are exponential, the population

hazard functions also follow the proportional hazards model (2) with α = log 2. In Fig

(1), the hazard ratios are plotted for the population hazard functions and the length-biased

hazard functions, respectively. As shown in the plot, although the hazard ratio for the pop-

ulation hazard functions remains constant of 1/2, that of the length-biased hazard functions

is not constant and indeed monotonically increasing from t = 0. This echoes the earlier

discussion that any naive application of the proportional hazards model to the length-biased

lifetimes would result in biased estimates without considering the unsatisfied proportionality.

[Fig (1) about here]

To contrast with the results in Wang (1996), moderate simulation studies are conducted

under the similar settings. Assume that the population accelerated failure time model holds

for Z = 0 and 1 in (3) with the null hypothesis of β = 0 and the alternative hypothesis

of β = 1, respectively, where the distribution of exp(ε) is Weibull with its hazard function

being 2t. When β = 1, the population survival functions are S̃(t | Z = 0) = exp(−t2) and

S̃(t | Z = 1) = exp(−e2t2), respectively. As a result, the population hazard functions are

λ̃(t | Z = 0) = 2t and λ̃(t | Z = 1) = 2e2t, respectively. Hence the population lifetimes also

follows the proportional hazards model (2) with α = 2.

In the actual simulations, a total of n = 50, 200 and 500 length-biased lifetimes are

simulated, respectively, representing relatively small, moderate and large sample sizes. The

assignment of Z = 0 or Z = 1 is Bernoulli(0.5). Both of the accelerated failure time models

and the proportional hazards models are fitted to the simulated length-biased lifetimes. The

simulation results are summarised in Table (1). Each cell in the table is computed according

to 1000 simulated samples. The biases are calculated as the average absolute differences

between the 1000 estimates and the true population parameters. The coverage probabilities

are calculated as the percentage of the 1000 95% nominal confidence intervals containing the

9
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ture population parameters. The sample standard error of the estimates and the mean of

the estimator standard errors are also calculated, respectively.

[Table (1) about here]

As shown in the table, the estimators based on the accelerated lifetimes models are

virtually unbiased and yield appropriate coverage probabilities of the 95% confidence inter-

vals under both the null and the alternative hypotheses, even when the sample sizes are

fairly small. Their mean standard errors and the standard errors of the estimates are also

comparable. The naive application of the Cox proportional hazards models yields reason-

able estimates under the null hypothesis. The estimates, however, tends to be biased with

incorrect coverage probabilities under the alternative hypothesis.

We further use the shrub data example in Wang (1996) to compare the different models.

The original shrub data can be found in Muttlak & McDonald (1990, Table 3). Similarly,

we consider the lifetime proxy outcome of the shrub width Y , and the two covariates of

X1 = I(y belongs to transect I) and X2 = I(y belongs to transsect II), respectively, where

I(.) is indicator function. The proportional hazards model is first applied to the length-

biased Y ’s. The regression coefficients of X1 and X2 are estimated as 1.0659 (s.e. = 0.482,

p = 0.027) and 0.0827 (s.e. = 0.469, p = 0.860), respectively. Compared with those in Table

2 of Wang (1996) under the population proportional hazards model, the standard errors are

comparable. The point estimates are however different. Unlike in that shown in Fig. (1),

the hazard ratios appear to be larger for the length-biased outcomes than their population

counterparts in the shrub data.

The accelerated failure time model of log Y = −β1X1 − β2X2 + ε is also applied to

the length-biased Y ’s, where β1 and β2 are the parameters. We estimate β̂1 = 0.7705

(s.e. = 0.2550) and β̂2 = 0.2091 (s.e. = 0.2492) with the p-values of 0.004 and 0.4068,

respectively. Compared with the population proportional hazards model, where both of the

population covariates are not statistically significant (p > 0.05), the covariate X1 is indeed a

significant population predictor of Y in the accelerated failure time model. That is, whether

or not the shrub belongs to transect I is associated with a significant average change in

its width by 0.7705 less in log-scale. This association is identical for both the population

outcomes and the collected length-biased outcomes.

10
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6 Discussion

In general the assumption of proportionality in the proportional hazards model tend to be

strong yet critical to its success in application. When the model is true, it shows robustness

as evident in the simulation studies of Wang (1996), in which both of the point estimates and

their variances tend to be irrelevant of the choice of L’s. This however does not appear to

be true in analysis of the shrub data with the proportional hazards model. One explanation,

as pointed out in Wang (1996), may be related to the relatively large size of risksets in

simulation studies. It is yet interesting to observe that the variances tends to be larger

with larger L, although larger L is supposed to increase the use of more observations. This

paradoxical discrepancy may be due to the inadequacy of the proportional hazards model,

which is assumed in the simulation studies but however not verifiable in the actual shrub

data analysis. Further investigation in the proportional hazards model’s adequacy needs to

be done for its impact on analysis of the length-biased outcomes.

On the other hand, the linear regression models, such as the accelerated failure time

model, directly models the outcomes themselves. Their parameter interpretation is usually

not limited to the hazard functions. This yields feasibility and flexibility for the linear

regression model to be used for the outcomes other than the lifetimes. Especially in the biased

sampling such as the length-biased sampling, the parameter invariance of the accelerated

failure time model establishes its role similar to that of the logistic regression model for

the binary outcomes in both prospective and retrospective study designs. Coupled with its

relatively less stringent assumptions, the linear regression models may therefore well serve

as an appealing alternative to the proportional hazards model.
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Table 1: Summary of Simulation Studies under the population models of the accelerated failure

time model of log T̃ = −βZ + ε and the proportional hazards model λ̃(t | Z) = λ̃0(t) exp(αZ).

β = 0 α = 0
n Bias Cov. Prob. SE Mean SE Bias Cov. Prob. SE Mean SE
50 0.1088 0.950 0.1376 0.1367 0.2457 0.938 0.3138 0.2953
200 0.0551 0.955 0.0683 0.0684 0.1108 0.956 0.1396 0.1433
500 0.0337 0.956 0.0422 0.0431 0.0700 0.959 0.0879 0.0900

β = 1 α = 2
n Bias Cov. Prob. SE Mean SE Bias Cov. Prob. SE Mean SE
50 0.1097 0.954 0.1362 0.1373 0.7161 0.853 1.1583 14.7820
200 0.0559 0.953 0.0696 0.0689 0.5409 0.327 0.2340 0.2291
500 0.0345 0.952 0.0426 0.0431 0.5315 0.017 0.1405 0.1422

Bias, absolute difference between 1000 estimates and the true value; Cov. Prob., percentage of

1000 95% nominal confidence intervals containing the true value; SE, sample standard error of

1000 estimates; Mean SE, average of 1000 estimator standard errors
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Figure 1: Population and length-biased hazard functions under the linear regression model (3):

solid lines are of the population exponential hazard functions and dotted lines are of their respective

length-biased hazard functions, respectively.
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