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1. INTRODUCTION

Assessments of the presence or absence of a condition cannot always be made

with certainty. This is particularly true in the development of new diagnostic

tests, where the very reason a new test is being developed is often because the

best available test for the condition is not considered adequately accurate.

A problem then arises: How can the accuracy of a new test be evaluated

when there is no gold standard against which to compare it? Latent class

analysis has been proposed as a statistical technique that allows such an

assessment (Walter and Irwig, 1988; Dawid and Skene, 1979). Briefly, a

probabilistic model is assumed for the relationship between the new diag-

nostic test, one or more imperfect “reference” tests, and the unobserved, or

latent, disease status. The likelihood is then maximized to provide estimates

of the sensitivity and specificity of the new diagnostic test. This approach

is quite popular. Recently, it has been used to study markers of Behcet’s

disease (Ferraz et al., 1995), gastro-oesophageal reflux disease (Moayyedi et

al., 2004), visceral leishmaniasis (Boelaert et al., 2004), and acute bacterial

rhinosinusitis (Young et al., 2003). Moreover it has received substantial at-

tention from statistical methodologists to extend its applications (Yang and

Becker, 1997; Qu et al., 1996; Dendukuri and Joseph, 2001; Hui and Zhou,

1998).
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The latent class approach has been criticized on several grounds (Pepe

and Alonzo, 2001; Pepe, 2003 [pp 203–205]; Albert and Dodd, 2004). First,

the approach yields estimates of the accuracy with which the test predicts

disease status, despite the fact that disease is not clinically defined. This

means that the estimates of test accuracy themselves are not well-defined.

Second, the assumed latent class model is not fully testable with the observed

data, and, if the model is incorrect, it is not clear that the resulting estimates

are meaningful. Third, the latent class estimates of test accuracy are obtained

through a sort of ‘black-box’ procedure; it is not clear what these estimates

are in terms of the raw data. In this paper, we address this third criticism

by deriving analytic forms for the estimators. This is particularly useful for

assessing their merit when the assumed latent class structure fails, and leads

to some general implications for the role of latent class analysis in practice.

The paper is organized as follows. We first describe the latent class anal-

ysis technique, and the conditional independence assumption on which the

classical latent class model is based. In Section 3, we provide analytical forms

for the latent class estimators, and discuss their validity both when the con-

ditional independence assumption holds, and when it fails to hold. The

EM-algorithm is used in Section 4 to demonstrate the relationships among

the parameter estimates, and to provide expressions which allow us to assess
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the bias in the estimates caused by conditional dependence. In Sections 3

and 4, we focus on the special case where three tests are available. We con-

clude in Section 5 that our results lead us to caution against the use of latent

class analysis in general.

2. LATENT CLASS ANALYSIS

Classic latent class analysis (LCA) is briefly described as follows: let the

binary variable D indicate the presence (D=1) or absence (D=0) of the con-

dition. This is the unobservable latent class variable. The data we observe are

the results of K binary test variables, {Y1, . . . , YK}, for each of i = 1, . . . , n

subjects. One of these variables may be the best available reference test, and

others may be new tests. A statistical model with parameters θ is assumed for

the joint distribution of {Y1, . . . , YK} given D, denoted by Pθ(Y1, . . . , YK |D).

If the model has sufficient structure, θ and the prevalence, ρ = P (D = 1),

can be estimated by maximizing the likelihood function

L(θ, ρ) =
n∏

i=1

{ρPθ(Yi1, . . . YiK |D = 1) + (1 − ρ)Pθ(Yi1, . . . YiK |D = 0)} .

The simplest and most popular statistical model for Pθ(Y1, . . . , YK|D)

assumes that, given true status, D, the test variables {Y1, . . . , YK} are sta-
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tistically independent. This is called the conditional independence (CI) as-

sumption. It yields the likelihood

L(θ, ρ) =
n∏

i=1

{
ρ

K∏

k=1

P (Yik|D = 1) + (1 − ρ)
K∏

k=1

P (Yik|D = 0)

}
,

where the parameters, θ, are the true- and false-positive rates, φk = P (Yik =

1|D = 1), ψk = P (Yik = 1|D = 0), and θ = {(φk, ψk), k = 1, . . .K}.

The parameters φk and ψk are also known, respectively, as the sensitivity

and (1−specificity) of the kth test. It turns out that, with a minimum of

K = 3 observed tests, the CI likelihood can be maximized with respect to

θ = {(φk, ψk), k = 1, . . . ,K} and ρ.

The CI assumption is the keystone of the classical latent class approach.

The assumption states that, conditional on disease status, the results of the

K tests are independent, and knowledge of one test result gives no informa-

tion about other test results. It is widely acknowledged that this assumption

is likely to fail in many cases. For example, if the tests are designed to detect

a particular substance in a biological sample, the amount of the substance

present in the sample will affect all test results. In many other cases, diag-

nostic tests are correlated due to disease severity; highly diseased subjects

who test positive with one test are likely to test positive with the others. The

tests may be independent among controls, but not among cases. We will fo-
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cus our discussion in the next sections on the setting where K = 3 tests are

available. In that setting, it is important to note that the validity of the CI

assumption cannot be determined at all from the data. When K ≥ 4, the de-

pendence structure can be modeled. A wide variety of approaches have been

taken (Yang and Becker, 1997; Qu et al., 1996; Albert et al., 2001; Espeland

and Handelman, 1989). However, Albert and Dodd (2004) have shown that,

typically, it is impossible to discern one form of dependence structure from

the other.

To illustrate classical LCA, consider the data shown in Table 1 for three

tests of hearing impairment measured on n = 666 subjects, reproduced from

Pepe, 2003 (page 201). The maximum likelihood estimates of the 7 parame-

ters, ρ =prevalence and (φk, ψk) for each of the three tests, are also shown.

Table 1 here

3. ANALYTIC EXPRESSIONS FOR ESTIMATES

Pepe and Alonzo (2001) criticized LCA on the grounds that the connection

between the observed data and the parameter estimates is not explicit. An

intuition for the estimates does not exist. Practitioners who are not knowl-

edgeable about likelihood functions might simply have faith in the validity

of this statistical methodology. Indeed, even for those of us who understand

5

Hosted by The Berkeley Electronic Press



likelihood based methods, the lack of explicit expressions for the parameter

estimates in terms of the raw data makes connections to the raw data elusive.

Here we rectify this state of affairs, for the special case where K = 3 tests are

available, by deriving analytic expressions for the estimates in terms of the

raw data. Implications of our results for K ≥ 4 will be discussed in Section

5.

Suppose that there are K = 3 observed tests, and write the probabilities

of observable data with the following notation:

pk = P (Yk = 1), k = 1, 2, 3

pkj = P (Yk = 1, Yj = 1), j > k

p123 = P (Y1 = 1, Y2 = 1, Y3 = 1) .

The same notation with a ‘hat’ denotes the observed frequency, e.g., p̂k is

the proportion of observations with Yk = 1. In the appendix we derive the

following analytic expressions for the LCA parameter estimates

φ̂k = p̂k +

√
Ĉk

√
1 − ρ̂

ρ̂
(1)

ψ̂k = p̂k −
√
Ĉk

√
ρ̂

1 − ρ̂
(2)

where
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Ck =

(
pkj − pkpj

pkpj

)(
pkl − pkpl

pkpl

)
/

(
pjl − pjpl

pjpl

)

=E

[(
Yk − pk

pk

)(
Yj − pj

pj

)]
E

[
(
Yk − pk

pk
)(
Yl − pl

pl
)

]
/E

[
(
Yj − pj

pj
)(
Yl − pl

pl
)

]

and

ρ̂ =
1

2
±

√
1

4
+

1

4 + V̂2
(3)

where

V =
p123 − p12p3 − p13p2 − p23p1 + 2p1p2p3√

(p12 − p1p2)(p13 − p1p3)(p23 − p2p3)

=
E

[
(Y1−p1)(Y2−p2)(Y3−p3)

p1 p2 p3

]

√
E

[
(Y1−p1)(Y2−p2)

p1 p2

]
E

[
(Y1−p1)(Y3−p3)

p1 p3

]
E

[
(Y2−p2)(Y3−p3)

p2 p3

]

For the audiology data, the frequencies in Table 1 yield: p̂1 = 0.000, p̂2 =

0.470, p̂3 = 0.626, p̂12 = 0.351, p̂13 = 0.423, p̂23 = 0.386, p̂123 = 0.311. Using

these estimates, we arrive at exactly the same values of (φ̂k, ψ̂k), k = 1, 2, 3

and ρ̂ as those calculated earlier by maximizing the likelihood. (Note here

that there are two solutions for ρ̂, one larger than 1
2

and the other smaller.

We choose the one that maximizes the likelihood L =
∏n

i=1 ρφ
Y1
1 φ

Y2
2 φ

Y3
3 (1 −
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φ1)
1−Y1(1−φ2)

1−Y2(1−φ3)
1−Y3 +(1−ρ)ψY1

1 ψY2
2 ψ

Y3
3 (1−ψ1)

1−Y1(1−ψ2)
1−Y2(1−

ψ3)
1−Y3 .)

The likelihood was maximized with a Newton-Raphson scheme using an

available Fortran program. One advantage of having the analytic expressions

is that estimates can now be calculated directly (even with a hand calcula-

tor!) without requiring a numerical optimization routine. More importantly,

they describe how relationships observed in the raw data are used to infer

properties of the three tests and the prevalence of the latent condition.

In particular, the analytic expression (3) for the estimated prevalence

is interesting and novel. It reveals that the starting point for estimation

is ρ̂ = 1
2
, with V determining deviations of ρ̂ from .5; larger values of V

result in lower estimates of ρ. The factor V compares the three-way asso-

ciation amongst tests in its numerator with the pairwise associations in its

denominator. These authors do not yet have an intuitive explanation as to

why prevalence is simply a function of the three- versus two-way association

parameter under the CI LCA model. It is particularly intriguing that the

marginal frequencies of positive tests, pk, do not directly affect the preva-

lence estimate. These affect only the true- and false-positive rate estimates

(see below). The prevalence estimate is invariant to changes in values of

(p1, p2, p3) as long as the three- versus two-way association parameter, V,
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remains the same.

Somewhat more intuition can be provided for the test accuracy estimates,

φ̂k and ψ̂k, given ρ̂. Consider (1), the estimated sensitivity of the kth test.

Note that for a completely uninformative test that has no association with

disease status, P [Yk = 1|D = 1] = P [Yk = 1] = pk. Thus the starting point

for φ̂k is p̂k, the true-positive rate estimate for an uninformative test. The

factor Ĉk, determined by the marginal positive associations between pairs

of tests, increases φ̂k above p̂k. This is logical, since the CI model asserts

that any correlation between test results is due to their common association

with the latent variable D. If two tests are strongly associated, it must be

because they are both accurately reflecting D. The factor Ck is curious in

that its numerator reflects associations between Yk and the other two tests,

and its denominator reflects the association between the other two tests. This

implies that associations between the kth test and other tests are calibrated

by the observed association between those other tests.

The estimates of φk and ψk are very closely linked, since they are de-

termined by exactly the same entities, p̂k, Ĉk and ρ̂. Observe in equations

(1) and (2) that if Ĉk is large, the kth test will be estimated to have a high

true-positive and a low false-positive rate relative to the uninformative test.

9
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In fact, there is a direct linear relationship between φ̂k and ψ̂k:

p̂k = ρ̂φ̂k + (1 − ρ̂)ψ̂k .

Therefore, given values for ρ̂ and the observed frequency of positive tests, p̂k,

higher estimates of sensitivity also give rise to higher estimates of specificity.

Under the CI LCA model, (φ̂k, ψ̂k, ρ̂) are maximum likelihood estimators,

and hence are consistent and efficient. Moreover, they seem to represent

meaningful quantities. Consider the estimate of φk. Suppose that, in truth,

two of the tests, Y1 and Y2, have high true-positive rates, and Y3 does not.

In the observed data, we would expect only weak associations between Y1

and Y3 and between Y2 and Y3, but a strong association between Y1 and Y2.

Correspondingly, the Ck factor will be low for k = 3, because the numerator

is small and the denominator is large. On the other hand, for k = 1 (or

2), the denominator and one component of the numerator will be small,

canceling each other out to some extent, and Ck will be large due to the

strong association between Y1 and Y2 in the numerator. Thus, φ̂1 (and φ̂2)

will be large, and φ̂3 will be small, as they should be. A similar exercise can

be undertaken for the case where two tests, Y1 and Y2, have low true-positive

rates but Y3 has a high true-positive rate. Compared to associations between

Y1 and Y3 and between Y2 and Y3, the association between Y1 and Y2 will be

very weak. This yields a high value of C3, and hence increases φ̂3 well above
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the starting point p̂3. On the other hand, C1 and C2 will be dominated by

the weak association between Y1 and Y2, assuming that associations between

Y1 and Y3 and between Y2 and Y3 are of comparable size. Hence, φ̂1 and φ̂2

will be low. We see once again that the LCA estimates make intuitive sense.

The above discussion focused on φ̂k, but analagous considerations hold

for ψ̂k. The starting point for estimating ψk is p̂k, the false-positive rate of

the uninformative test. Positive associations between tests in the observed

data reduce estimates of ψk from this starting point.

In contrast, the value of the estimators, (φ̂k, ψ̂k, p̂), when the CI LCA

model does not hold is questionable. Although the analytic expressions above

now afford them interpretations in terms of the observed data, these do not

seem to be generally clinically meaningful entities. Suppose, for example,

that there is a latent class, D, but that two tests, say Y1 and Y2, are con-

ditionally positively dependent. The expressions for φ̂k and ψ̂k suggest that

the estimates will be biased towards optimistic values. Observed correlation

between Y1 and Y2 will be stronger than is due simply to D, suggesting that

φ̂k will be biased large and ψ̂k will be biased small. Indeed, this corroborates

the simulation results of Torrance-Rynard and Walter (1997).
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4. PARAMETER INTERPRETATIONS VIA THE EM-ALGORITHM

The EM-algorithm is a numerical procedure that allows one to calculate

maximum likelihood estimates. In this section, we use the EM-algorithm to

derive some interesting alternative expressions for the parameter estimates

(ρ̂, φ̂K, ψ̂K).

If the latent variable D were observed, the log-likelihood for the data

from the ith subject, Yi = {Yi1, . . . , YiK}, could be written as

logLC
i (ρ, θ) = Di log ρPθ(Yi|Di = 1) + (1 −Di) log(1 − ρ)Pθ(Yi|Di = 0) .

Given values for ρ = ρ∗ and θ = θ∗, the expected log-likelihood is

Eρ∗,θ∗(ρ, θ) =

n∑

i=1

E
{
logLC

i (ρ, θ)|Yi

}

=
n∑

i=1

[P (Di = 1|Yi, ρ
∗, θ∗) {log ρ+ logPθ(Yi|Di = 1)}

+ P (Di = 0|Yi, ρ
∗, θ∗) {log(1 − ρ) + logPθ(Yi|Di = 0)}] (4)

where

P (Di = 1|Yi, ρ
∗, θ∗) =

Pθ∗(Yi|Di = 1)ρ∗

Pθ∗(Yi|Di = 1)ρ∗ + Pθ∗(Yi|Di = 0)(1 − ρ∗)
. (5)

The EM-algorithm proceeds by iteratively maximizing Eρ∗,θ∗(ρ, θ) with re-

spect to ρ and θ, and substituting these values for ρ∗ and θ∗ in the next
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iteration. The algorithm is completed when (ρ∗, θ∗) have converged. The

value of ρ that maximizes (4) is

ρ =

n∑

i=1

P (Di = 1|Yi, ρ
∗, θ∗)/n.

Therefore, at convergence of the algorithm,

ρ̂ =
n∑

i=1

P̂ (Di = 1|Yi)/n, (6)

where P̂ (Di = 1|Yi) = P (Di = 1|Yi, ρ̂, θ̂) is given by (5).

The discussion thus far in this section is general in regards to the LCA

model, Pθ(Yi|Di). Adding the CI assumption and the notation φ = {φ1, . . . φK}

and ψ = {ψ1 . . . ψK} yields the following expression for the expected log-

likelihood:

Eρ∗,θ∗(ρ, θ) =
K∑

k=1

[
n∑

i=1

P (Di = 1|Yi, ρ
∗, φ∗, ψ∗){Yik log φk + (1 − Yik) log(1 − φk)}

+ P (Di = 0|Yi, ρ
∗, φ∗, ψ∗){Yik logψk + (1 − Yik) log(1 − ψk)}]

+ log ρ

n∑

i=1

P (Di = 1|Yi, ρ
∗, φ∗, ψ∗) + log(1 − ρ)

n∑

i=1

P (Di = 0|Yi, ρ
∗, φ∗, ψ∗).

This expression is maximized at

φ̂k =
n∑

i=1

YikP (Di = 1|Yi, ρ
∗, φ∗, ψ∗)/

n∑

i=1

P (Di = 1|Yi, ρ
∗, ψ∗)
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and

ψ̂k =
n∑

i=1

YikP̂ (Di = 0|Yi, ρ
∗, φ∗, ψ∗)/

n∑

i=1

P (Di = 0|yi, ρ
∗, φ∗, ψ∗).

Therefore, at convergence, the maximum likelihood estimates can be written

as

φ̂k =
n∑

i=1

YikP̂ (Di = 1|Yi)/nρ̂ (7)

ψ̂k =

n∑

i=1

YikP̂ (Di = 0|Yi)/n(1 − ρ̂). (8)

A few observations are warranted at this point. First, expressions (6), (7),

(8) do not provide explicit formulas for calculating ρ̂, φ̂ and ψ̂. Rather they

describe some relationships among the estimators. Each expression on the

right hand side is a function of all three parameters through the terms P̂ (Di =

1|Yi). Second, the expressions are intuitive, in the sense that, if P̂ (Di = 1|Yi)

is an unbiased estimate of P (Di = 1|Yi), then E(ρ̂) = ρ,E(φ̂k) = φk and

E(ψ̂k) = ψk. Even if the CI assumption does not hold, the estimators of

ρ, φk and ψk are valid as long as P̂ (Di = 1|Yi) is valid. We can think of these

as the naive estimators when Di is observed, and, when Di is not observed,

Di is replaced with P̂ (Di = 1|Yi).

One avenue, therefore, for exploring bias in the estimators ρ̂, φ̂k and ψ̂k

when CI fails is to consider how violations of the CI assumption affect P̂ (Di =
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1|Yi). For example, in the case of extreme positive dependence between

the three tests, i.e., Yi1 = Yi2 = Yi3 almost surely, we would anticipate

that P̂ (Di = 1|Yi) will be biased large if (Yi1, Yi2, Yi3) = (1, 1, 1) and biased

small if (Yi1, Yi2, Yi3) = (0, 0, 0). Expressions (7) and (8) then imply over-

optimistic values for (φ̂1, φ̂2, φ̂3, ψ̂1, ψ̂2, ψ̂3) even if ρ̂, the average probability

∑
P̂ (Di = 1|Yi)/n, is unbiased.

In the audiology data, we do in fact have a gold standard measure of

disease status. Hence, we can actually compare the observed (true) and

latent class estimates of ρ, φk, and ψk. In Table 2 we show the subject-

specific estimates of P (Di = 1|Yi1, Yi2, Yi3) for these data. Observe that

expressions (6), (7) and (8) do indeed yield the LCA maximum likelihood

estimates of ρ, φk and ψk given in Table 1. With D observed, prevalence is

calculated as 42%, whereas the LCA estimate that ignores D is 54%.

With data on D available, we can test if the CI assumption holds. A

log-linear model yields a likelihood ratio test statistic with three degrees of

freedom in both cases and controls. The sum of these two statistics is 169.4

with six degrees of freedom (p < .001). Thus, CI does not hold. There is

in fact positive dependence amongst tests. As mentioned above, this inflates

LCA estimates of P (Di = 1|Yi) for subjects with positive tests and deflates

LCA estimates of P (Di = 1|Yi) for subjects with negative tests. The last

15
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two columns of Table 2 bear this out. Correspondingly, the LCA estimates of

(φk, ψk) are seen to be over-optimistic relative to their true values calculated

using D. We write the true values as

̂̂
φk =

∑
YikDi/

∑
Di

̂̂
ψk =

∑
Yik(1 −Di)/

∑
(1 −Di)

and obtain

̂̂
φ1 = 0.664,

̂̂
φ2 = 0.625,

̂̂
φ3 = 0.751,

̂̂
ψ1 = 0.401,

̂̂
ψ2 = 0.360,

̂̂
ψ3 = 0.537.

Table 2 here

Another use of latent class analysis is to derive an operational definition

of disease based on observable test results. In this data, we note that the

estimates of P (Di = 1|Yi1, Yi2, Yi3) are high for certain combinations of test

results, and low for others. In particular, if two or more test results are

positive, P̂ (Di = 1|Yi) ≥ .78. On the other hand if two or more are negative,

P̂ (Di = 1|Yi) ≤ .24. This result suggests the classification rule that the

condition is considered present (absent) if two or more of the tests are positive

(negative). However, comparison with the observed D indicates that this

LCA based classifier is very poor, with a false-positive rate of 42% and a
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false-negative rate of 30%. Again, violation of the CI assumption leads to

misleading inference.

5. DISCUSSION

Imperfect reference tests are a common problem in the evaluation of diag-

nostic and prognostic classifiers. Latent class analysis has been promoted

heavily in the statistical literature as providing a solution. However, the

methodology is not transparent even to those of us who have the highest

levels of training in biostatistics. The contribution of this paper is to further

our understanding of this popular but technical methodology.

In the special case of three tests where conditional independence is as-

sumed to hold, we derived closed form analytic expressions for maximum

likelihood estimates of prevalence and of the associations between observed

and latent variables. We found that, given an estimate of prevalence, esti-

mation of the true- and false-positive rates depend on the observed pairwise

associations between tests, and on the marginal frequencies of positive tests.

This seems intuitive. Less intuitive is the result that the prevalence esti-

mate is a function of the three- versus two-way associations between test

results. The unintuitive nature of this estimator reinforces the fact that the

estimates have no clinically relevant interpretation and are valid only when

17
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the conditional independence latent class model holds.

We have also derived a second set of expressions which describe relation-

ships amongst parameter estimates, and show how they rely on the estimated

probabilities that individuals have the condition given observed data. These

expressions also make apparent the bias in the paramter estimates when the

conditional independence assumption fails.

The analytic results in this paper pertain to the case where three tests

are available. With only three tests, a latent variable structure based on

conditional independence must be assumed in order to ensure parameter

identifiability. The expressions we derived for parameter estimates, however,

indicate that they have no merit more generally, i.e., outside of the condi-

tional independence model. This, along with the fact that CI cannot be

tested leads us to caution strongly against the use of latent class analysis in

practice when only three tests are available.

This argument can be extrapolated to settings with more than three tests.

Regardless of how many tests are available, some untestable assumptions

must be made for identifiability of test performance parameters. Given our

observations, we expect that the estimates obtained will be reasonable only

within the context of the assumed (untestable) model, and will have no basis

more broadly. This is corroborated by work by Albert and Dodd (2004), who
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found a very varied set of test performance estimates when they fit different

latent class conditional dependence models to the same data. Assumptions

about the latent structure impact heavily on inference about test perfor-

mance, and since the latent structure is unknowable, one cannot endorse the

results of latent class analysis as being scientific.
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APPENDIX

Derivation of Maximum Likelihood Estimators

We show that under the conditional independence model there is a one-

to-one mapping of the 7 parameters (ρ, θ) = (ρ, {(φk, ψk), k = 1, 2, 3}) to the

7 probabilities P = (p1, p2, p3, p12, p13, p23, p123) that characterize the proba-

bility distribution of the observable data, i.e., the 2 × 2 × 2 frequency table

(e.g., Table 1). Writing this mapping as g : g(P ) = (ρ, θ) and noting that

the maximum likelihood estimates of the observable probabilities are the cor-

responding data frequencies P̂ = (p̂1, p̂2, p̂3, p̂12, p̂13, p̂23, p̂123), it follows that

the maximum likelihood estimates of (ρ, θ) are g(P̂ ).

The following 7 equations follow from elementary probability theory and

the conditional independence assumption:

pk = ρφk + (1 − ρ)ψk, k = 1, 2, 3 (1a)

pkj = ρφkφj + (1 − ρ)ψkψj, k < j, (k, j) ∈ (1, 2, 3) (2a)

p123 = ρφ1φ2φ3 + (1 − ρ)ψ1ψ2ψ3 (3a)

These define g−1. Algebraic manipulations yield the expressions for (ρ, {(φk, ψk), k =

1, 2, 3}) in terms of P , i.e., the function g. First we write ψk in terms of
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(P, ρ, φk) using (1a)

ψk = (pk − ρφk)/1 − ρ, k ∈ (1, 2, 3) (4a)

and substitute into (2a) to yield

(pk − φk)(pj − φj) =
1 − ρ

ρ
(pkj − pkpj), k < j, (k, j) ∈ (1, 2, 3).

Thus we can write φ2 and φ3 in terms of (P, φ1, ρ):

φk = pk −
(1 − ρ)

ρ

p1k − p1pk

p1 − φ1
, k = 2, 3

and substituting into the above expression for (p2 − φ2)(p3 − φ3) we have

(p1 − φ1)
2 =

(p12 − p1p2)(p13 − p1p3)

p23 − p2p3

(1 − ρ)

ρ

= C1(1 − ρ)/ρ,

where C1 was defined in Section 3. There are two solutions then for φ1 :

p1 ±
√
C1

√
(1 − ρ)/ρ. We choose p1 +

√
C1

√
(1 − ρ)/ρ) which follows from

the reasonable assumption that the true-positive rate is at least as large as the

false-positive rate, φ1 ≥ ψ1. Similar steps yield φ2 = p2 +
√
C2

√
(1 − ρ)/ρ

and φ3 = p3 +
√
C3

√
(1 − ρ)/ρ. Substituting φk into equation (4a) above

yields
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ψk = (pk − ρpk −
√
Ck

√
(1 − ρ)ρ)/(1 − ρ)

= pk −
√
Ck

√
ρ/(1 − ρ).

Substituting expressions for φk and ψk into equation (3a) and gathering terms

yields:

p123 = p1p2p3

[
1 +

√
C1C2 +

√
C2C3 +

√
C1C3 +

√
C1C2C3

{√
1 − ρ

ρ
−

√
ρ

1 − ρ

}]
.

Equivalently,

{√
1 − ρ

ρ
−

√
ρ

1 − ρ

}
=
p123 − p1p2p3(1 +

√
c1c2 +

√
c1c3 +

√
c2c3)

p1p2p3
√
c1c2c3

,

which is easily shown to equal V as defined in Section 3. Hence,

V =

{√
1 − ρ

ρ
−

√
ρ

1 − ρ

}
,

and thus

ρ =
{

1 ±
√

1 + 4/(4 + V2)
}
/2.
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Table 1:

A. Results of three tests for hearing impairment performed on n = 666

subjects.

Y2 = 0 Y2 = 1

Y3 = 0 Y3 = 1 Y3 = 0 Y3 = 1

Y1 = 0 162 85 29 50

Y1 = 1 31 75 27 207

B. Parameter estimates from LCA

ρ̂ = 0.536

(φ̂1, ψ̂1) = (0.841, 0.129)

(φ̂2, ψ̂2) = (0.762, 0.133)

(φ̂3, ψ̂3) = (0.898, 0.312)
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Table 2: Estimated probabilities of disease P̂ (D = 1|Y ) by categories of test

results, using LCA (that ignores D) and using the empirical proportions.

(Y1, Y2, Y3) #observations LCA estimate Proportion (D = 1)

(0, 0, 0) 162 0.0085 0.2346

0 0 1 85 0.1430 0.3176

0 1 0 29 0.1525 0.2069

1 0 0 31 0.2360 0.3548

0 1 1 50 0.7771 0.4400

1 0 1 75 0.8568 0.3733

1 1 0 27 0.8658 0.5185

1 1 1 207 0.9921 0.6329
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