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SUMMARY

Colorectal cancer remains a significant public health concern despite the fact that effective

screening procedures exist and that the disease is treatable when detected at early stages.

Numerous risk factors for colon cancer have been identified, but none are very predicitive

alone. We sought to determine whether there are certain combinations of risk factors

that distinguish well between cases and controls, and that could be used to identify

subjects at particularly high or low risk of the disease to target screening. Using data

from the Seattle site of the Colorectal Cancer Family Registry (C-CFR), we fit logic

regression models to combine risk factor information. Logic regression is a methodology

that identifies subsets of the population, described by Boolean combinations of binary

coded risk factors. This method is well suited to situations in which interactions between
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many variables result in differences in disease risk. Neither the logic regression models

nor stepwise logistic regression models fit for comparison resulted in criteria that could

be used to direct subjects to screening. However, we believe that our novel statistical

approach could be useful in settings where risk factors do discriminate between cases and

controls, and illustrate this with a simulated dataset.

KEY WORDS: logic regression; prediction; ROC curve; sensitivity; specificity; colon

cancer

1 Introduction

Colorectal cancer is the third most common cancer in the United States. It is the second

leading cause of cancer death among men and women despite the fact that the disease is

treatable when detected at early stages1 and that efficacious methods exist for early detection,

namely sigmoidoscopy and colonoscopy.2 The key problem is that colon cancer screening is

underutilized by the general public because it is invasive and costly, so that most disease is

detected after it has progressed beyond the localized stage.

A range of risk factors for colon cancer have been identified. The motivation for the

work described in this paper is to determine if subsets of the population with very high or

low risk could be defined on the basis of these risk factors. This would provide an avenue

for targeting screening efforts in the population. Individuals at high risk might be offered

incentives or otherwise facilitated to undergo screening. Individuals at very low risk, on the

other hand, might be allowed to forego screening and would not unnecessarily consume health

care resources.

The Seattle site of the Colorectal Cancer Family Registry (C-CFR) has collected data

on colon cancer risk factors for 1680 cases and 1410 controls. This is a population based
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case-control study with cases identified from the Puget Sound site of the Surveillance and

End Results (SEER) registry and controls, matched to cases on age and gender, selected at

random from population lists.3 As with most cancers, increasing age is the dominant risk

factor for disease. Family history and male gender are also consistently associated with higher

risk of disease. Other established risk factors include lack of physical exercise, intake of red

meat, obesity (in males), alcohol and tobacco use. Use of aspirin and other non-steroidal

anti-inflammatory agents, high intake of fruits and vegetables, folic acid taken as a food

supplement and use of post-menopausal hormones have all been found to decrease the risk

of colon cancer. Finally, a number of demographic and social factors have been linked with

colon cancer (eg. ethnicity and education).4,5

Although epidemiologic associations exist with these factors, no one factor appears to be

very predictive. Neither does a linear logistic model that combines risk factor information

into a linear score appear to discriminate well between cases and controls (see Section 5.3).

We suspected that interactions between multiple risk factors might be key in determining risk.

For example, it might be that (“lack of exercise” or “low dietary fiber”) along with (“male

gender” or “female gender and not on post-menopausal hormones”) would distinguish well

between cases and controls. In Section 2 we describe logic regression, the methodology we

used for combining risk factor information. This is a tree-based statistical technique for

identifying subsets of the population defined by such Boolean functions of binary coded risk

factors and is therefore well suited to our purposes. In Section 3 we describe the C-CFR

study in some detail. Section 4 is concerned with the evaluation of a fitted logic regression

model for the purposes of developing criteria that could be used to direct subjects to screening

sigmoidoscopy. Our results for colon cancer, described in Section 5 are disappointing in that

useful criteria do not seem to emerge from the data. Nevertheless, we believe that the novel
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statistical approach we took could be useful in settings where risk factor combinations do

discriminate cases from controls. In Section 6 we demonstrate this with a simulated dataset.

We conclude in Section 7 with a discussion of the potential for pre-screening with risk factor

information in health care and further refinement to the logic regression methodology that

may facilitate its use for identifying pre-screening criteria.

2 Logic Regression

Logic regression can be applied to any type of regression outcome as long as the proper scor-

ing function is specified. We have a binary outcome and use deviance of logistic regression

as the score function. For a given set of Boolean expressions, an example of which was given

in Section 1, the logic regression model is a logistic regression model with those Boolean ex-

pressions as covariates. Specifically, we denote a Boolean expression with the binary variable

L, where L = 1 is “true” and L = 0 is “false”. The model is written as

logit P (D = 1 | L1, . . . , LP ) = α0 + β1L1 + . . .+ βPLP . (1)

What distinguishes logic regression from simple logistic regression with binary covariates

is that the fitting algorithm both defines covariates for the model (using risk factor data) and

estimates the regression coefficients simultaneously. Ruczinski, Kooperberg and LeBlanc6

provide a detailed description of logic regression and the simulated annealing algorithm used

to fit it. The output is represented as a series of trees, one for each Boolean predictor, L,

and the associated regression coefficient. The logic tree for the expression defined earlier is

shown in Figure 1.

Logic regression was proposed for settings where interactions between many variables
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give rise to large differences in response. This occurs, for example, in single nucleotide

polymorphism association studies, where multiple genetic point mutations may be jointly

associated with a disease outcome. See Kooperberg et al.7 for a successful application of

logic regression in this setting. We suspect that disease risk factors may behave similarly.

Etzioni et al.8 use logic regression to combine two prostate cancer biomarkers together. They

use continuous biomarker data by defining multiple dichotomous predictors using various

thresholds for the biomarkers. Ruczinski et al.6 provide further examples of applications of

logic regression.

In addition to the specification of the scoring function, the algorithm for logic regression

also requires specification of the number of logic trees (P in equation (1)) and the maximum

number of variables, or leaves that can make up a tree (3 in the example in Figure 1). As

with any adaptive regression methodology, larger models (those with more trees and leaves)

typically fit better than smaller models. In this paper we chose model sizes a priori ; for

interpretability we fit models with four leaves per tree. More generally, one can select the

size of the model with the data using techniques such as cross-validation or randomization

tests.

For a given model size, the selection of the best logic trees Lj is a nontrivial optimization

problem. The logic regression algorithm that we implemented employs a simulated anneal-

ing algorithm. Simulated annealing9 is a stochastic optimization algorithm similar to the

Metropolis-Hastings algorithm for Markov chain Monte Carlo.6 As with any stochastic opti-

mization algorithm, there is no guarantee that the “best” model is found, though with proper

adjustment of various tuning parameters we can be confident that we have selected a good

model.

5

Hosted by The Berkeley Electronic Press



3 The Registry Data

The Seattle Familial Registry for Colorectal Cancer is a member of the international Colon

Cancer Family Registry (CCFR). It was established in 1998 as a resource for studying the

genetic epidemiology of colorectal cancer. From 1998 to 2002, cases aged 20 to 74 years of

both genders diagnosed with incident colon or rectal cancer were identified from the Puget

Sound SEER registry. Controls were randomly selected from two sampling frames. For

cases age 20-64 years, controls were identified from lists of licensed drivers; for those age

65-74 years, controls were selected from files of the Health Care Financing Administration.

All subjects completed an interviewer administered questionnaire on family and medical

history, environmental and lifestyle factors, and screening history, and biological samples

were collected.10 Response rates were high (80% for cases, 71% for controls).3

The data used in this analysis are a subset of the registry data. We began with 769 cases

and 657 controls, recruited in the last study year. We set aside one third of the cases and

one third of the controls, randomly selected within age strata, for validation testing of the

model.

Logic regression requires binary predictor variables, so we recoded variables into binary

forms. Categorical covariates were coded as a set of indicator variables for each level of the

covariate. Continuous covariates were coded as a series of threshold indicators. For example,

pack-years of smoking was coded as three indicators: (Pack-years > 0), (Pack-years > 9) and

(Pack-years > 19). Where possible, thresholds were chosen to be quintiles of the covariate

in the control population. For BMI and height, different thresholds were chosen for men

and women. Sigmoidoscopy screening history was defined as screening more than one year

prior to enrollment in the study. For two covariates with a large amount of missingness
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(hours of physical exercise and fried poultry consumption), indicators of missingness were

also included.

The data used to fit the logic regression model include 66 binary covariates. Since the

logic regression algorithm currently cannot handle missing data, subjects with any missing

covariates were not included in the analysis. Missingness was as large as 2.4% for a given

predictor. A total of 463 cases and 415 controls were used to fit the model.

4 Operating Characteristics of the Fitted Model

4.1 The ROC Curve

Recall that the overall objective is to define criteria for who should or should not be recom-

mended for clinical screening. We evaluate the sensitivity (true positive fraction) and speci-

ficity (1 - false positive fraction) of criteria based on the risk factor model. Since the data

are from a case-control study, with sampling dependent on disease status, we cannot evaluate

predictive values directly from the data, but we can evaluate true and false positive fractions.

It is natural to consider positivity criteria based on the risk score, P (D = 1 | L1, . . . LP ), or

equivalently the linear predictor, exceeding a threshold c:

“positive” = “β1L1 + . . .+ βPLP > c”.

Such decision criteria are known to be optimal.11 The associated true and false positive

fractions,

TPF (c) = P (positive | diseased)

and

FPF (c) = P (positive | not diseased),
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are quantities derived from cases and controls, respectively. A plot of (FPF (c), TPF (c))

displays the range of operating characteristics attainable with the risk factors. This plot is

known as the Receiver Operating Characteristic (ROC) curve.

For our settings, we seek criteria which are either very sensitive and at least moderately

specific, or very specific and at least moderately sensitive. If a very sensitive criterion were

developed, subjects who did not meet the criterion could forego screening without losing

many cases to screening. This would give rise to a savings in health care resources. If a very

specific criterion were presented, on the other hand, one might encourage subjects satisfying

the criterion to avail of screening procedures, since these subjects are at relatively high risk

of disease. We therefore focus on points on the ROC curve that relate either to high values

for TPF or to small values for FPF.

4.2 Predictive Values

The predictive values of a criterion quantify the risk of disease for subjects that are positive

or negative on the criterion. These entities relate directly to the usefulness of the criterion

in the population. However, they depend on disease prevalence, which cannot be determined

from a case-control study. We used the SEER incidence rates for colorectal cancer (denoted

by ρ) and the following relationships to calculate predictive values (PV):

Positive PV = P (D = 1 | positive)

= ρTPF / {ρTPF + (1− ρ)FPF}

Negative PV = P (D = 0 | negative)

= (1− ρ)(1− FPF ) / {(1− ρ)(1− FPF ) + ρ(1− TPF ).

Again, a criterion with a high positive PV could be useful for selecting subjects for clinical
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screening. Negative predictive values are always high for a rare disease and so tend to be

less useful. However, it will be important to determine the proportion of the population that

satisfy the criterion τ = Prob(positive), in order to assess the impact of using such a criterion

in the population. We calculate τ with the formula:

τ = ρTPF + (1− ρ)FPF.

4.3 Stratum Specific Performance

As is typical of many case-control studies, the C-CFR is designed so that controls are fre-

quency matched with cases. Matching on gender and age (by decade) was implemented to

control for these major confounders. The implications of matching are threefold: (i) the ef-

fects of age and gender on disease risk cannot be estimated. They are fixed in the sample by

design; (ii) the effects of other risk factors can be estimated, but only within subpopulations

defined by age and gender; (iii) and to do this, it is necessary to include age and gender as

covariates in the model for disease risk.12 We categorized age into 5 categories, which along

with gender defines 10 strata. A stratum-specific intercept, αs for s = 1, . . . 10 was included

in the model

logit P (D = 1 | age, gender, risk factors) = αs + β1L1 + . . .+ βPLP .

The matching variables are included among the risk factors for defining the Boolean covariates

in the model, since their interactions with other risk factors are estimable. If such occurs,

the interpretation is that the relevant risk factor combinations or their effects differ amongst

the strata.

The assessment of criteria such as “β1L1+. . .+βPLP > c” is straightforward within strata.

We can calculate the (FPF (c), TPF (c)) values using the cases and controls within each
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stratum. Predictive values can be calculated with stratum-specific incidence rates (available

from SEER). It is not clear how best to summarize these operating characteristics across

strata, particularly if they vary amongst strata. Therefore we report the stratum-specific

values here.

5 Results for Colon Cancer Data

5.1 The Simple One Tree Model

We first fit a model with a single Boolean tree predictor, i.e. P = 1. The tree is shown in

Figure 2. The odds ratio and 95% confidence interval associated with the tree are exp(β̂1) =

2.9 and (2.1, 3.9), respectively, with p-value < .001.

The factors identified in the data concur with previous reports in the literature. Family

history of disease and overweight (in males) are well established as colon cancer risk factors.4

Less education is likely to be a surrogate for less healthy lifestyle and less access to health care

resources amongst other things. It too has been found to be associated with higher risk of

colon cancer. Women taking estrogen post-menopausally have a reduced risk of colon cancer.

The logic tree indicates that having a family history of colon cancer or having less education

defines a group at substantially increased risk of colon cancer. However, post-menopausal

females in this group who take estrogen are not at increased risk unless they are substantially

overweight. As a group, those satisfying the logic tree are estimated as having a relative

risk of almost 3 compared to subjects of the same age and gender who do not satisfy the

tree. This is likely an overestimate since it is estimated from the same data that selected this

covariate on the basis of its association with risk in this data. We therefore re-estimated the

relative risk associated with the tree using the validation data that we had set aside. The
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estimated age and gender adjusted relative risk is 3.0 (95% confidence interval = (2.0, 4.5),

p-value < .001). The odds ratio estimate is the same as that based on the training data,

although the confidence interval is wider because of the smaller sample size in the validation

set.

With only one tree, the operating characteristics of the fitted model are very simple.

There is only one distinct non-degenerate positivity criterion to consider, namely, whether

or not the tree is satisfied (L1 = 1). The estimated sensitivity and specificity values for this

criterion are shown for the eight strata that had > 20 cases and controls (Table 1). Again,

we note that performance is similar with the validation and training datasets, although there

is more statistical variability with the smaller validation set, as expected. The sensitivities,

averaging about 45-50%, are not very high. We certainly could not use this criterion to

consider screening to be unnecessary in the subpopulation that is criterion-negative because

about half of diseased subjects are criterion negative. The specificity is better, averaging

about 76% across the strata. However, it may not be appropriate to use this criterion for

targeting intense screening encouragement efforts either: about 24% of non-diseased subjects

would be unnecessarily enticed to undergo clinical screening with this criterion.

It is interesting that the tree, L1, defines a group with a high relative risk of disease but

does not yield a criterion with good operating characteristics. We show the stratum specific

odds ratios associated with L1 in Table 1, which are reasonably well summarized by the

overall odds ratio exp(1.06) = 2.9 from the fitted model. The odds ratios can be calculated

directly from the sensitivity and specificity values as:

Odds ratio =
TPF

(1− TPF )
1− FPF
FPF

. (2)

From equation (2) we see that the odds ratio is a composite of the sensitivity and specificity.
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Clearly it will be large if either the sensitivity is large or if the specificity is large, since

these yield small denominators, (1 − TPF ) and FPF respectively. However, it is notable

that criteria with moderate sensitivity and specificity values can also have large odds ratios

(Figure 3). This reinforces the need to examine the two components of the odds ratio,

(FPF, TPF ), not just their composite, for the sorts of applications we have in mind.

We now turn to the population performance of the criterion. Table 1 displays τ , the

fractions of the population that are estimated to satisfy the criterion (the fraction for whom

L1 = 1). It ranges from 29% to 46% across the strata. Note that the incidence of colon

cancer is very low, ranging from about 20 per 100,000 per year in 40-50 year old women to

364 per 100,000 per year in 70-79 year old men.1 This, along with the moderate specificity

of the criterion, gives rise to low positive predictive values (Table 1). The highest value is

seen in 70-79 year old females where the incidence of colon cancer is estimated to be 8.1 per

1,000 in women who are criterion positive. This seems unlikely to provide strong motivation

for campaigning for screening in this population.

Recall that we chose a priori to have a model with four leaves. It is possible that smaller

or larger models would perform slightly better. However, we do not expect them to have

substantially different operating characteristics.

5.2 More Subpopulations

We next fit models with two trees, P = 2. The model was fit six times, resulting in five unique

models. Since the simulated annealing algorithm used to fit the logic regression models is

not guaranteed to find the “best” model, this variation is to be expected. On any given run,

the model selected may correspond to a peak in the likelihood, but fitting the model several

times allows us to determine if there is some model with an exceptionally good score. The five
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models we found all had very similar scores, indicating that for this problem there are many

models that perform equally well. We present the results for the most easily interpretable

model.

The two-tree model is shown in Figure 4. Interestingly the first tree, L1, is the same

as that arrived at when we allowed only one tree in the model. The estimated odds ratio,

3.0 = exp(1.096), is also similar. The second tree, L2, involves different risk factors, including

one (poultry consumption) that has not been previously consistently implicated in colon

cancer. The model with linear predictor β1L1+β2L2 = 1.096L1+0.777L2 gives rise to three

distinct non-degenerate criteria for defining subpopulations. Let’s consider the operating

characteristics for this model. The most specific criterion based on the model is where both

trees are positive, which corresponds to choosing c > 1.096 + 0.777. The most sensitive

non-trivial rule is where tree 1 or tree 2 is positive c > 0.777. The associated operating

characteristics in the validation data are shown in Figure 5. The most specific criterion had an

estimated specificity that averaged 89% across strata, with corresponding average sensitivities

of 25%. If these numbers are accurate, it appears that 25% of cases could be identified for

screening with the criterion without referring more than 11% of non-diseased subjects for

unnecessary screening. The most sensitive criterion averaged 83% with specificities that

average 33% across the strata. If these numbers are accurate, we could save 33% of controls

from unnecessary screening while continuing to screen the majority of cases.

As more trees are added to the model, this creates a broader range of criteria that can

be investigated. There are, in fact, P criteria that are formed from the linear predictor

β1L1 + . . . + βPLP . Assume without loss of generality that β1 > β2 > . . . > βP . The

constants c1 = β1 + . . .+ βP , . . . , cP−1 = βP−1+ βP , cP = βP define the P criteria that are

nested in the sense that all subjects positive by criterion p are also positive by lower order
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criteria q < p. In general, the associated operating characteristics are represented as P points

along an ROC curve.

5.3 Comparison with Linear Logistic Regression

We fit a linear logistic model to the C-CFR data. A stepwise algorithm yielded the results

shown in Table 2. Covariates whose statistical significance was p < .2 were sequentially

added to the null model. The operating characteristics for criteria based on this model are

the (FPF, TPF ) points corresponding to the rules

γ1X1 + γ2X2 + . . .+ γKXK > c, (3)

where Xk denotes a covariate in the model, γk is the associated log odds ratio and c is the

threshold for the rule. Because of the large number of covariates, K = 9, and the fact that

some covariates are on a continuous scale, the (FPF, TPF ) points map out a continuous

ROC curve for c 6 (−∞,∞). The curves may well vary across strata. We estimated stratum

specific ROC curves using the binormal model

ROC(t) = Φ(as + bs Φ
−1(t)),

where Φ denotes the cumulative standard normal distribution function and (as, bs) are stra-

tum specific ROC intercept and slope parameters. The LABROC algorithm was used to find

parameter estimates.13 The average curve

ROC(t) = Φ(a+ b Φ−1(t)),

where a = S
s=1 as/S and b = S

s=1 bs/S, is shown as the curve in Figure 6. Both the

ROC curve and the (FPF, TPF ) points associated with the logic regression model shown

pertain to the validation data. As with the logic regression models, the risk factors do not
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yield criteria with adequate operating characteristics from the fitted linear logistic regression

model.

In general, we prefer logic regression over linear logistic regression. The linear logistic

model criteria are more complex than those from logic regression. One needs to calculate

the linear score (3), i.e. a weighted average of risk factors, and compare it with the chosen

threshold. The logic trees, on the other hand, produce more easily defined subsets of the

population that do not involve weighted averaging, although this comes at a cost of some

constraints on risk factor parametrization. In this dataset, however, there do not seem to be

identifiable subsets of the population that are at risk, and both approaches yield inadequate

prescreening criteria for colon cancer.

6 Illustration with Simulated Dataset

In order to validate the use of logic regression in a setting in which combinations of covariates

are important for predicting disease, we simulated such a dataset. We generated a population

with an age and gender specific covariate distribution similar to the controls in the colon

cancer registry data. We set the size of the simulated population at N = 7000. Subjects

in this hypothetical simulated population were at high risk for colon cancer if they were

heavy males (BMI > 25.7) with a family history of colon cancer, or female smokers (pack-

years > 0) who were not heavy (BMI ≤ 24.2). This logic tree is shown in Figure 7. Those

satisfying these conditions became cases in the simulation with probability 0.75, while those

not in this subgroup became cases with probability 0.2. We then selected 100 cases and 100

controls at random from each of the 10 age and gender strata. The stratum-specific operating

characteristics of the logic tree used to generate the data are contained in Table 3. The fact

15
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that membership in the high risk subgroup is rare and that the large number of subjects

outside of this group developed cancer by some other cause with probability 0.2 means that

there are a large number of cases who are not described by the logic tree. Consequently,

some of the stratum-specific sensitivities are very low (0% to 2%). The specificities are high,

a result of the rarity of the high risk subgroup (87% to 100%).

A logic regression model with one tree and eight leaves, including age and gender effects,

was fit to the simulated data (see Figure 8). By comparing Figures 7 and 8, we can see that

the fitted tree is not exactly the same as the tree used to generate the data, but the high

risk subgroups described are very similar. In fact, only 15 of the total 2000 subjects are dif-

ferentially classified by the two trees. It is possible that further model selection would result

in a model that is even more similar to the true model. For comparison, a stepwise logistic

regression model, also including age and gender, was fit to the data. The operating charac-

teristic of the logic and logistic models were assessed using a very large validation dataset

(N = 78, 000). The stratum-specific empirical ROC curves for the logistic model are shown

in Figure 9; sensitivities and specificities for the logic regression model are superimposed on

these plots. We see that in some strata, the stepwise logistic and logic models perform equally

well, while for others, the logic regression model has significantly better discrimination. In

each stratum, the fitted logic regression model performs as well or slightly better than the

tree used to generate the data.

This simulation illustrates the potential value of logic regression. In settings where the

high risk subpopulation is described by a complex combination of risk factors, a logic regres-

sion model yields a simple and interpretable characterization of the high risk subgroup. A

logic regression model can also result in a rule that has better discrimination between cases

and controls compared to the criterion that corresponds to a stepwise logistic regression
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model.

The operating characteristics of the tree used to generate the simulated data, shown in

Table 3, also have important implications. Recall that individuals falling into the subgroup

described by the tree were very likely to become cases in the simulated dataset (0.75 proba-

bility), while those not in this subgroup were much less likely to be cases (0.2 probability).

However, the fact that a small portion of the population (15%) fell into the high risk sub-

group meant that a large number of cases were generated outside of the high risk subgroup.

Thus, the stratum-specific sensitivities of the tree used to generate the data are low, but the

specificities are high. This is probably not an unlikely scenario; we would expect that, if an

extremely high risk subgroup existed for a particular disease, membership in the subgroup

would be rare. Hence, even a small likelihood of disease outside this subgroup would mean

that a rule which discriminates between cases and controls based on their subgroup member-

ship would have low sensitivity and high specificity. As a result, any model which attempts

to describe the high risk subgroup is limited by these operating characteristics.

7 Discussion

Risk factors have been established for many diseases. One potential use for such information

is for targeting interventions, such as screening, or for identifying groups where interventions

are not needed. Risk scores based on multiple risk factors have been developed. Examples

are the Framingham risk score for cardiovascular disease14 and the Gail et al. breast cancer

risk prediction (BCRP) model.15 Rockhill et al.16 have criticized the BCRP model because

it is not very discriminatory. Many subjects who do not get disease have high risk scores

while many breast cancer cases have low values prior to their disease onset. Similarly, the
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Framingham risk score does not discriminate well between those destined to become cases

and those destined to become controls.14 Better discriminators would clearly be more useful.

We sought to identify criteria that would be discriminatory for colon cancer, with either high

sensitivity or high specificity. Unfortunately, our data did not present such a criterion.

The technique that we used for extracting criteria from risk factor data is logic regres-

sion, a technique that is well suited to settings where the presence (or absence) of various

combinations of risk factors yields similar risk. In our opinion, the criteria that are generated

from logic regression are more intuitively appealing than those from linear logistic regression

that depend on weighted averages of covariate values.

The algorithm that we implemented used the deviance (−2 × log likelihood) as the

objective function for determining the Boolean predictor variables and their co-efficients.

This choice of objective function enabled us to naturally compare logic and stepwise logistic

regression. However, the deviance is not directly related to notions of accuracy associated

with model-based positivity criteria (i.e. FPF, TPF and predictive values). In addition,

the ratio of cases to controls in the sample will affect the models selected if deviance is the

objective function. It is possible that another objective function could yield better performing

criteria. One possibility is to restrict attention to predictor variables that yield FPF (or

TPF ) values within a desirable range and to maximize TPF (or minimize FPF ) within

that subset. Eguchi and Copas17 discuss such an objective function with FPF fixed at a

particular value. Maximizing the area under the ROC curve associated with the fitted model

has also been discussed.17,18 Etzioni et al.8 implemented logic regression using a weighted

misclassification rate, w(1 − TPF ) + (1 − w)FPF , as the objective function. They varied

w to yield corresponding single tree models whose FPF s varied from 0 at w = 0, to 1 at

w = 1. This approach might also be used in risk factor modeling to find Boolean criteria

18

http://biostats.bepress.com/uwbiostat/paper204



with desired levels of specificity (or sensitivity).

We chose thresholds or indicators corresponding to continuous covariates based on quan-

tiles of the control distribution. Defining thresholds a priori according to meaningful cutoffs

may have yielded different results. Another option would be to include several distinct sets

of threshold indicators and let the algorithm choose the most discriminating ones.

When statistical models are selected in an adaptive fashion, as is the case both for logic

regression and stepwise logistic regression, selection of the “right size” model can be quite

important. In this paper we avoided this problem for logic regression by selecting the model

size a priori. That is, we selected model sizes for logic regression that were easy to interpret.

Ruczinski et al.6 argue for the use of cross-validation and randomization tests to select the

model that predicts best. (Software is available from: http://www.bear.fhcrc.org/∼ingor/logic.)

Some limited cross-validation that we carried out suggests that, for both the one and two

tree logic models for the colon cancer data and for the simulated data model, slightly smaller

models would produce at least equally good results.

For any statistical model, selected using cross-validation or a priori, honestly assessing

the prediction cannot be carried out on the same data that was used to fit the model. To

make such an assessment, we either need a second level of cross-validation, or we need to

use a separate test dataset. For this analysis, we chose to split our data, using one part for

training to identify predictors and estimate parameters, and the other for assessing operating

characteristics of the associated criteria. This is simple, though a somewhat inefficient use of

data.
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Figures

Figure 1 Example of a logic tree that evaluates to 1 if the Boolean expression illustrated is

true. White letters on black denote negation of the entry.

Figure 2 The single tree, L1, fitted to the colon cancer data. The risk factors included

are: family history (yes/no); less schooling (high school education or less); overweight (body

mass index > 26.6 kg/m2 for females, > 27.3 kg/m2 for males); p.m. hormones (women

post-menopause ever taking hormones for more than 6 months).

Figure 3 Contour plots for the odds ratio. (FPF, TPF) combinations that yield equal values

for the odds ratio are connected. Shown are contours for odds ratios of 1.0, 1.5, 2.0, 3.0, 9.0,

16.0.

Figure 4 The trees L1 (upper panel) and L2 (lower panel) fit to the colon cancer data. The

fitted age and gender adjusted model is β1L1 + β2L2 = 1.096L1 + 0.777L2. Variables in L1

are described in Figure 1. Variables in L2 are: low poultry consumption (≤ 2 servings per

week); screening sigmoidoscopy (> 1 year before study entry); NSAID use (> 0.25 months

using non-steroidal anti-inflammatory drugs); college education (some college education).

Figure 5 Operating characteristics for criteria based on the two-tree model. Each point

represents a stratum with numbers of cases and controls shown in Table 1b. Values for most

sensitive (◦) and most specific (P) criteria are displayed.

Figure 6 Operating characteristics associated with the linear logistic model. The average

ROC curve is shown, ROC(t) = Φ(a+ bΦ−1(t)) with a = .55 and b = 1.05. Estimated (FPF,

TPF) points for the single tree logic regression model are also shown.

Figure 7 The tree used to generate the simulated data. Subjects are at high risk of colon
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cancer if they are heavy (BMI > 25.7 kg/m2) males with a family history of colon cancer, or

if they are female smokers (pack-years > 0) who are not heavy (BMI ≤ 24.2 kg/m2).

Figure 8 The logic tree fitted to the simulated data. Risk factors include smoking (pack-

years > 0) and not being heavy (BMI ≤ 24.2 kg/m2) for females, and a family history of

colon cancer, not drinking sake (currently) and not having had a screening sigmoidoscopy (>

1 year before study entry) for males.

Figure 9 Operating characteristics for the stepwise logistic model fit to the simulated data.

The empirical ROC curve is shown for each of the ten strata. Estimated (FPF, TPF) points

for the fitted logic regression model (Figure 8) are also shown for comparison.

Tables

Table 1 Operating characteristics for the single tree model (Figure 2) for the colon cancer

data. (A) using the training dataset; (B) using the validation dataset.

Table 2 Results of a linear logistic regression model fit to the colon cancer data. Age and

gender were included in the model.

Table 3 Operating characteristics of the tree used to generate the data (shown in Figure 7).
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Table 1 

(A) Training Data 
 

 
Age 
(years) 

 
Gender 

 
Number 
of Cases 

 
Sensitivity % 

 
Number 
of 
Controls 

 
Specificity % 

 
Odds Ratio 

 
Criterion 
Positive 
% 

 
1 Year 
Positive PV  
% 

 
40-49  

 
female 

 
26 

 
46.15 (26.59, 66.63) 

 
29 

 
72.41 (52.76, 87.27) 

 
2.25 (0.73, 6.91) 

 
36.36 

 
0.03 

 
40-49  

 
male 

 
21 

 
47.62 (25.71, 70.22) 

 
26 

 
80.77 (60.65, 93.45) 

 
3.82 (1.04, 13.98) 

 
31.91 

 
0.05 

 
50-59 

 
female 

  
74 

 
43.24 (31.77, 55.28) 

 
86 

 
82.56 (72.87, 89.90) 

 
3.61 (1.75, 7.43) 

 
29.38 

 
0.14 

 
50-59 

 
male 

 
73 

 
41.10 (29.71, 53.23) 

 
45 

 
82.22 (67.95, 92.00) 

 
3.23 (1.32, 7.90) 

 
32.20 

 
0.20 

 
60-69 

 
female 

 
91 

 
45.05 (34.60, 55.84) 

 
89 

 
74.16 (63.79, 82.86) 

 
2.35 (1.25, 4.41) 

 
35.56 

 
0.24 

 
60-69 

 
male 

 
95 

 
45.26 (35.02, 55.81) 

 
45 

 
73.33 (58.05, 85.40) 

 
2.27 (1.05, 4.93) 

 
39.29 

 
0.34 

 
70-79 

 
female 

 
61 

 
59.02 (45.68, 71.45) 

 
66 

 
75.76 (63.64, 85.46) 

 
4.50 (2.10, 9.62) 

 
40.94 

 
0.64 

 
70-79 

 
male 

 
44 

 
50.00 (34.56, 65.44) 

 
43 

 
69.77 (53.88, 82.82) 

 
2.31 (0.96, 5.56) 

 
40.23 

 
0.60 
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Table 1 

 
(B) Validation Data 

 
 
Age 
(years) 

 
Gender 

 
Number 
of Cases 

 
Sensitivity % 

 
Number 
of 
Controls 

 
Specificity % 

 
Odds Ratio 

 
Criterion 
Positive 
% 

 
1 Year 
Positive PV 
% 

 
40-49 

 
female 

 
16 

 
50.00 (24.65, 75.35) 

 
19 

 
78.95 (54.44, 93.95) 

 
3.75 (0.86, 16.40) 

 
34.29 

 
0.05 

 
40-49 

 
male 

 
12 

 
25.00 (5.49, 57.19) 

 
12 

 
66.67 (34.89, 90.08) 

 
0.67 (0.11, 3.93) 

 
29.17 

 
0.01 

 
50-59 

 
female 

 
35 

 
40.00 (23.87, 57.89) 

 
38 

 
71.05 (54.10, 84.58) 

 
1.64 (0.62, 4.33) 

 
34.25 

 
0.08 

 
50-59 

 
male 

 
26 

 
30.77 (14.33, 51.79) 

 
15 

 
86.67 (59.54, 98.34) 

 
2.89 (0.52, 15.91) 

 
24.39 

 
0.19 

 
60-69 

 
female 

 
54 

 
48.15 (34.34, 62.16) 

 
44 

 
81.82 (67.29, 91.81) 

 
4.18 (1.64, 10.63) 

 
34.69 

 
0.36 

 
60-69 

 
male 

 
47 

 
44.68 (30.17, 59.88) 

 
19 

 
84.21 (60.42, 96.62) 

 
4.31 (1.10, 16.79) 

 
36.36 

 
0.56 

 
70-79 

 
female 

 
46 

 
56.52 (41.11, 71.07) 

 
38 

 
81.58 (65.67, 92.26) 

 
5.76 (2.10, 15.75) 

 
39.29 

 
0.81 

 
70-79 

 
male 

 
19 

 
52.63 (28.86, 75.55) 

 
16 

 
62.50 (35.43, 84.80) 

 
1.85 (0.48, 7.18) 

 
45.71 

 
0.51 
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Table 2 
 

 Odds 
Ratio 

95% CI 

Education   
     high school or less 1.00  
     some college 0.62 (0.43, 0.91) 
     college graduate 0.47 (0.32, 0.69) 
Body mass index 
  per kg/m2 

 
1.04 

 
(1.01, 1.07) 

Calcium 
  months of use  

 
0.96 

 
(0.93, 0.99) 

Family history of colon cancer 
  yes versus no 

 
2.78 

 
(1.81, 4.28) 

Screening sigmoidoscopy 
  yes versus no 

 
0.59 

 
(0.40, 0.86) 

Fried poultry 
  servings per week 

 
1.04 

 
(0.99, 1.10) 

Poultry 
  servings per week 

 
0.90 

 
(0.82, 0.99) 
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Table 3 
 

Age (years) Gender Sensitivity % Specificity % 
30-39 Female 2.0 100.0 
30-39 Male 48.0 92.0 
40-49 Female 53.0 87.0 
40-49 Male 1.0 100.0 
50-59 Female 54.0 93.0 
50-59 Male 2.0 100.0 
60-69 Female 50.0 95.0 
60-69 Male 13.0 97.0 
70-79 Female 42.0 98.0 
79-79 Male 0.0 100.0 
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Figure 1   Example of a logic tree that evaluates to 1 if the Boolean expression
  illustrated is true.  White letters on black denote negation of the entry.

lack of
exercise

low dietary
fiber intake

and

or

female on
post-menopausal

hormones
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Figure 3  Contour plots for the odds ratio.  (FPF, TPF) combinations
  that yield equal values for the odds ratio are connected.  Shown
  are contours for odds ratios of 1.0, 1.5, 2.0, 3.0, 9.0, 16.0.
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1

1.5
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Figure 4   The trees L1 (upper panel) and L2 (lower panel) fit to the colon cancer
  data.  The fitted age and gender adjusted model is β1L1 + β2L2 = 1.096L1 + 0.777L2.
  Variables in L1 are described in Figure 1.  Variables in L2 are: low poultry
  consumption (< 2 servings per week); screening sigmoidoscopy (> 1 year before
  study entry); NSAID use (> 0.25 months using non-steroidal anti-inflammatory
  drugs); college education (some college education).

Tree #2:  L2

Tree #1:  L1

or

and and

low poultry
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college
education

screening
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and
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less
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FPF
0 1

TPF

0

1

Figure 5  Operating characteristics for criteria based on the two-tree
  model.  Each point represents a stratum with numbers of cases and
  controls shown in Table 1b.  Values for most sensitive (  ) and  most
  specific (  ) criteria are displayed.
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FPF
0 1

TPF

0
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Figure 6  Operating characteristics associated with the linear logistic
  model.  The average ROC curve is shown, ROC(t) = Φ( a + bΦ-1(t) ) 
  with a = .55 and b = 1.05.  Estimated (FPF, TPF) points for the
  single tree logic regression model are also shown.
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