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INTRODUCTION

One of the most frequent questions asked of a consulting
statistician is "how many subjects are needed?” This question usu-
ally arises in designing an experiment where there is a cost for
the collection of an additional observation, and it is desirable
to collect "enough" but not "too many" subjects in order to con-
serve resources. Even if there is no meaningful cost associated
with the collection or analysis of an additional case, the exer-
cise of calculating a sample size is often educational. It
requires the investigator to define exactly what the major ques-
tions of the analysis are, and how they will be operationalized.
The calculation of a sample size helps to put things into perspec-
tive, since often the result is an impossibly large number. This
might suggest that the study be abandoned, that additional funds
be sought for the study, or that the level of expectation be
reduced.

Often, health services research does not involve experiments
or even the collection of data, but is "secondary analysis" of
data which are already collected. 1In this case, the cost of col-
lecting an extra case is not at issue; however, the cost of enter-
ing that extra case onto a computer might be fairly large, and the
cost of analyzing a large data set may be substantially larger
than the cost for a small set. Even if the investigator decides
later to use a larger sample the preliminary analysis, which is
where most of the mistakes are made, should routinely be performed
on a small subset of the data. An additional advantage of this
approach is that, if unexpected findings arise, some of the re-

served data may be used to test hypotheses formed from the first
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set of data.

A related problem in health ser#ices research is, how long to
follow subjects. Is studying 100 people for 2 months equivalent
to studying 50 people for four months, or 2 people for 160 months?

We consider two cases in the calculation of sample size:
what to do when you know some parameters of the distribution of

the data, and what to do when these are unknown.

HOW TO CALCULATE SAMPLE SIZES IF YOU KNOW SOMETHING ABOUT

THE DATA: SOME STANDARD FORMULAS

Suppose one wishes to compare the means of two groups. Often
some information or experience is available about the size of the
means (ml and m2) and standard deviations (sl and s2) of the data.
Then, the investigator chooses values for 4 (a difference between
the two means which it is important to detect); b (the chance of
failing to detect a difference as large as d when it exists); and
a (the chance of declaring the two means different on the basis of
observed data when in fact ml=m2). Let z be the 108 (1-a)
percentile of the normal distribution. Téig?)assuming that the -

statistic has a normal distribution, the optimal sample size for

each group is

N=2z (s + s)/ d (F1)
2

where

z = z( + z(

1-a) 1-b)

This formula can be applied to proportions, letting ml=pl and

sl=(pl ql)**.5. If the problem can be specified as a difference
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in proportions, there are useful tables in many statistics texts.
The tables by Gail (5) and Feigl (4) are especially helpful.
Formula Fl1 assumes that an equal number of patients are
required in both groups. This is not always the case. For exam-
ple, if one group is more variable than the other, it would be
preferable to choose a larger number from that group. (This might
also suggest a transformation of the data to make the variability
more equal.) If the variance of group 2 is 52 and of group 1 is
K s2 , then letting

2 2 2 «5
N2 =[ Z s /d ] (K + 1) (F2)

and
.5
Nl = (K) N2

gives the smallest total sample size which will meet the investi-
gator's specifications. (Note that if K=1 =-- the two variances
are equal -- this reduces to the previous formula.)

Sometimes, as in a case-control study, one group of data has
already been collected, and only the second sample size is of

concern. In this case, the formula is

N2 = K_N (F3)
N g’ -1
2 2
z s
2
where sample 1 is fixed, with mean = m, variance = s , and sample
2

size N; sample 2 has mean = m + d, variance = Ks , and sample
size = N2. (Note, a negative value for N2 means that the speci-
fied difference, d, can not be detected even with an infinite num-
ber of observations in group 2, because there is too much varia-

bility in the estimate of the mean for group 1. This may suggest
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obtaining more cases for group 1).

If there are more than two groups, the charts in Dixon and
Massey (3) may be used. These require stating the alternative
hypothesis in the form of the means of each group of interest,
which may be difficult.

It might be wiser to formulate the sample size problem as an
estimation problem rather than as a testing problem; i.e., how big

\

a sample is needed to estimate this parameter to

within plus or minus 4 with 100 (1-a)% confidence? In this case,

2 2 2

N = S /d (F4)

z
(1-a/2)
where the confidence interval is (m-d, m+d). If a = .05,

then z = 1.96, and we have a 95% confidence interval for the

difference in the means.
WHEN YOU KNOW NOTHING ABOUT YOUR DATA

Frequently an investigator is unable to estimate the range -of
data expected. One possibility is to turn it into a problem in-
volving proportions. The investigator may have little feeling for
(say) the median score on a Likert scale, but might well be able
to answer "about what percent will be satisfied?" or "approxi-
mately what percent will have a visit that year?" If the major
question of interest can be phrased in this way, the tables men-
tioned above can be used. A pilot study is always a good idea to
provide initial estimates of the means and the variability. It
may also suggest changes in the problem formulation, methods and

data instruments as well as help with choosing N.
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There afe often published sources for data. However, these
frequently do not provide measures of variability. If it was pos-
sible to estimate the standard deviation from the mean, the inves-
tigator would be able to proceed. Here we present some insights
gained from our analysis of the Seattle Prepaid Health Care Pro-
ject data (7). In this study, about 8800 low income people were
given free health care and their utilization was monitored for up
to 48 months. We will examine the variables: visits, hospital
admissions, labs and x-rays. An investigator proposing to study
these measures may find some of this information helpful.

The data used here are the means and standard deviations of
the various measures, calculated for 14 categories: 2 sexes by 7
age groups. This is referred to as the "uniform age/sex" data
set. Only people enrolied for more than one year were included
here (n = 6698). For visits and admissions, people were also sub-
divided by the number of months they had been followed (1 to 48
months) with the l1-month exposure group and those subgroups with
fewer than 108 people excluded. This left 32 groups for analysis,
which constitute the "uniform time" data. We have studied the
relationship between the mean and standard deviation across these
subgroups.

Other analyses have considered visits and other measures to
be counts, and thus Poisson distributed. If this is so, then the
mean and variance are equal. We will see that such an assumption
clearly underestimates the variance of the rates and thus provides
nonconservatiQe estimates of the sample size. We examine empiri-
cally (1) the relationship of the mean to the standard deviation,
(2) how the standard deviation varies as a function of follow-up

time, and (3) the effect of transformations on the data. The
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optimal follow-up time is also considered.

VISITS

Nationwide the mean number of physician visits per person is
about 5, increasing with age and higher for females (8). As men-

tioned above, data on variability are not easy to find.

A. RELATION OF MEAN TO STANDARD DEVIATION

The ordinary least squares equationdeveloped from the uniform
age/sex data is

.75
SD (VISAN) = 1.64(mean) (r=.92) (F5)

For the uniform time data, the relationship is approximately

, 1.04
SD(VISAN) = 1.15(mean) (r=.78) (F6)

which seems rather dissimilar. Figure 1 plots equations F5 and
F6 with the uniform age/sex data. This figure shows that these
two equations are very similar in the range of the data. Figure
2 shows similar results for the constant time data. The largest
dots on the plot are for people enrolled less than one year
(t<12), which are apparently the cause of the discrepancy between
the two lines. Since the lines are very similar it appears that
the length of the study period is not very important, at least in
our range of 1 to 48 months. In the range VISAN = 3 to 10, the

approximation

SD(VISAN) = mean (VISAN)
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is seen to be fairly good. Assuming that the coefficient of vari-
ation is 1.5 is also a good approximation.

The plot of mean = variance is not near the data. Thus, the
annualized visit rates do not have a Poisson distribution but are
closer to log-normal. Kilpatrick (6) showed that a negative bino-
mial distribution provided a good fit to some visit data. This
distribution has a larger standard deviation than mean. The coef-
ficients of variation in the 63 practices that he examined were
all in the range of 1.4 to 1.5. Our data set also included a
self-reported visit rate for the previous month. The coefficient
of variation was larger for these data, on the order of 2.5. This
may be due to the short period of time, however. A study in
Boston (1) of people over 65 years of agegave a coefficient of
variation of 1.1 Thus, assuming that the standard deviation is

about equal to the mean seems to be a reasonable approximation.

B. CHANGES IN STANDARD DEVIATION AS A FUNCTION OF FOLLOWUP TIME

The annualized visit rate as a function of t (number of

months the person was followed) is estimated as:

-0204
SD(VISAN) = 10 t (r=-.68) (F7)

Thus, variability decreases as the follow-up period increases, as
would be expected. Figure 3 plots equation F7 along with the data
points to exhibit the fit. We would expect the sd to decrease
with t**-,5, if each person month provided independent information
about a person's visit rate. The observed decrease is consider-
ably slower. If VISAN were estimated from 1600 people each ob-

served for one month the standard error of the estimate would be
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0.32; for 500 people observed for 2 months it would be 8.39; and,
for 20 people observed 58 months it would be 1.61. Although all
of these examples'provide 1000 person-months for analysis, the
estimate from the smaller number of people followed for a longer
time is substantially less accurate than the two estimates which
follow more people for less time. However, it may be much less
expensive to follow a few people fqr a long time than vice-versa.
The relationship in F7 can be used to optimize the design with

respect to cost. Let

If C is the cost of an additional person and D is the cost of fol-
lowing a person for one month, then the total cost of following
N people for t months is

cost= CN + DNt,
which is minimized when

t = -2bC /[(2b + 1)D ] (F8)
In equation F7 above, b = -.20, éiving us

N= .67 C/D. |
Thus, if C = $100 per person and D= $10 per month, it would be
optimal to observe each person for .67 (166) / 10 = 6.7 months.
(For reasons of seasonality, it might still be best to take twelve
months.) The standard error of the estimated rate is, from equa-
tion F7, 6.76/N**,5., The optimal value of N can be calculated
from thevconditions set on the standard error in the sample size
calculation, shown in equation Fl. Using the mean and time in the

same equation, we have
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-.13 .81
SD(VISAN) = 2.38(t) (mean ) (R=.88)

The power of t is still far from -.5; thus, making the subjects

more uniform does not alter these findings.

C. TRANSFORMATIONS OF THE DATA

The formulas have been applied to VISAN, even though this
measure will usually be highly skewed. The square root might be a
better measure, since it tends to be more normally distributed for
variables with long right tails, providing more efficient esti-

mates. If we work with SVISAN (= square root of VISAN), then

-0258
SD(SVISAN) = 1.42(mean) (r=-.17) (F9)
for constant time, and
.473
SD(SVISAN) =,94 (mean) (r=.872)

for constant age/sex, and finally

.63
SD(SVISAN) =.81 (mean) (r=.87)

for constant age/sex but allowing only people with more than 12

months exposure. Against time,

-.205
SD(SVISAN) = 2.19 (time) (r==.93 ).

The mean and s.d. are fairly unrelated for the constant time
data (equation F9), which is one characteristic of a normal
distribution.

If the hypotheses and results could be specified in square
root units, an improved analysis might be achieved. Estimating
the mean m to plus or minus .1 visit is roughly equivalent to
estimating root m to plus or minus 0.0258. Using equation F4
above gives N1 = 4 (s)**2 /f.1**2 using the original units com-
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pared to N2 = 4(s)**2 /(.025)**2 required if the square roots are
used. The sd of VISAN is 5.3, and the SD of SVISAN is 1.15.

Thus, N1 = 11,236 and N2 = 8,464. The ratio of these two sample
sizes is 1.33, indicating a smaller sample size required for the
transformed data. This ratio holds for other reasonable values of
d. However, since the mean square root is substantially lower
than the square root of the mean, this may not be acceptable if
answers are needed in the original units. These small savings may
not be worth the problems caused by working in other units. 1In
the example above, costs are again minimized at about 7 months

observation per person if the square root is used for analysis.

ADMISSIONS

Nationwide, the rate of hospital admissions was 163 per
thousand population per year in 1975 (8). Hospital admission data
are usually presented as the number of admissions divided by the
total number of person-years involved. The mean number of admis-
sions per person is thus easy to estimate from published sources,

but the variability cannot usually be determined.

A. RELATIONSHIP OF MEAN AND STANDARD DEVIATION

In our data, admission rates have extremely high variability
between persons, which is reasonable since in a healthy group very
few have any admissions, but those with one admission are likely

to have more than one admission (2).
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Letting NINAN be the number of admissions per thousand years
for an individual = (number of admissions/time)x12000, we can
estimate the relationship between the standard deviation and mean
of NINAN for the individual. The best equation (calculated from
14 uniform age/sex groupings ) relating an individual's standard

deviation to the mean is

.58
SD(NINAN) = 21.4(mean) (r=.97) (F10)

Note that the exponent is near to .5 Thus, for similar people,
the variance is approximately proportional to the mean but far
from equal to it. The coefficient of variation is 2.5 at the rate
of 163 admissions per thousand. The uniform time data yield the

equation:

1.30
SD(NINAN) = .67 (mean) (r=.81) (F11)

which looks quite different. The coefficient of variation is
about 3 at 163 admissions per thousand.

Figure 4 plots equations F1@¢ and Fll together with the means
of the data which are uniform in age and sex. The two lines cross
at the mean of the data, but otherwise have quite different
slopes. The variability increases at a faster rate for the uni-
form time data than for the uniform people data. The line SD =

mean is also shown. Neither line is close to the data, but the
former is closer. Figure 5 shows these lines plotted against the

constant time data. The two slopes are clearly different, and

well above the "sd = mean" line.
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Grouping our data in different ways has shown that the
coefficient of variation is usually between 2 and 3 for up to 48
months. Our data included a self-reported admission rate for the
previous year; the coefficient of variation for this rate was
quite high, on the order of 4. This discrepancy may be due to the
relatively short time period considered. For senior citizens in
Boston (1) the coefficient pf variation for the question "Did you
have any admissions?" was 1.9. Thus, estimating that the standard
deviation of the rate to be about three times the mean appears to
be appropriate.

The distribution of NINAN might be handled theoretically if
we could consider the number of admissions for a person followed t
months to be the sum of t independent binary random variables. A
person studied for "t" months who had "A" admissions, would have
an estimated probability of admission (per month) of p=A/t. Here,
A is assumed to be approximately Poisson distributed. This means
that NINAN, which is a constant multiple of A, will not be Pois-
son. Using the usual binomial rules, the variance of p would be
p(l-p)/t. The estimate of NINAN for the individual would be
12000p, and the variance estimate would be 12808**2 (p) (1-p)/t.

We can use this theoretical variance to describe the relationship
between the mean and standard deviation of NINAN, controlling for

t. This equation becomes

e5 .5
SD(NINAN) = (12000/t) * mean (F12)

_.5 .5
=110 t - * mean

which seems quite similar to Fl0 when t = 24 months, the average

http://biostats.bepress.com/uwbiostat/paper42



exposure in the data. However, it provides lower estimates than
F5 for all t > 12 months. It is lower by a factor of 1.4 at
t=24, and a factor of 2 at 48 months. Thus, this theoretical
equation though similar is a understatement of the variability.

We assume that the variability in the data is higher than theoret-
ically expected because: (1) people may not all have the same
underlying "p" and (2) person-months are not independent for an

individual.

B. CHANGES IN STANDARD DEVIATION AS A FUNCTION OF FOLLOWUP

The standard deviation is quite related to t, the number of
months followed. The best equation is estimated as

-.5
SD(NINAN)=1698 t (r=-.89) (F13)

When the mean value is taken as 163, equation F7 becomes SD = 1398
t**— .5, which is similar to F13 but provides lower estimates.

Figure 6 plots the data against time, and shows equations F1l2
and F13. Both provide very good fits to the constant time data.
Since the power of t in F13 is -.5, it is as good to get an addi-
tional person-month on the same person as for a new person. Using
equations F8 and Fl3 the optimal value of t is

infinity
Thus, a longer time is better here than for visits to the limit of
our data, which is 48 months. Looking at both mean and t simulta-

neously, we have:
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-.36 .72
SD(NINAN) = 32.4 t m (R=.97) .

Here, the power of t is not -.5, suggesting that there is a limit

to the desirable amount of time a person is followed.

C. TRANSFORMATIONS OF DATA

If square roots are used, we have

-ogl3
SD(NINAN) =1.10 (mean) (r=-.02), constant time
.478
=5.36 (mean) (r=.97), same age/sex
.48
=4 .9 (mean) (r=.99) , same age/sex
: t gt 12
-.142
=1.58(t) (r=-.97) over time,

Thus, for constant time, there is no relationship between the mean
and the standard deviation, suggesting that this distribution is
more normal than that of the untransformed data. 1In the cost
example, each person should be studied for four months to minimize
costs, quite different from the optimal time using the untrans-
formed data. The required sample size can be reduced to about

one-third (using . equation F4) if the hypotheses can be specified

in square roots. N1 4(358)**2 /10**2, N2 = 4(9.9)**2 /(.45)**2,

if the mean= 125, Nl

5126, and N2 = 1936. The ratio of N1/N2 is
2.65. Thus, there is a large potential saving in formulating

hypotheses in these units,
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LABS and XRAYS

Based on our study, the standard deviation of the annualized
number of laboratory tests performed is approximately proportional
to the mean, and the coefficients of variation are near to 2. The
best equation describing that rate was (using uniform age/sex

data, any exposure amount):

.816
(lab sd x 10) = 3 (mean) (r=.94) (F14)

For a mean of 3 labs per yvear, this gives a coefficient of varia-
tion of 1.708. Figure 7 shows these equations. The mean number of
laboratory tests per person in our study was 2.9 to 3.8.

For x-rays per person per year, the equation is

.704
(xray sd x 10) = 3.6 (mean) (r=.97) (F15)

Figure 8 plots these equations for x-rays.

SUMMARY

We have presented some useful formulae which can be used to
estimate the necessary sample size when the approximate mean and
standard deviation are known. We have also provided some informa-
tion on estimating the standard deViation once the mean is known
since investigators may have a better feel for the expected value
than for its variability. It is interesting that for every
variable considered the standard deviation was substantially
larger than the mean. This is not surprising since large

differences among people and long right tails are to be expected.
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It suggests that families of contagious distributions should be
examined when modelling such variables rather than making the

typical (but clearly incorrect) assumption that variables have a

Poisson distribution.
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SD(VISAN)

FIGURE 1

Plot of the Mean of VISAN (annualized visit rate) vs. the Standard Deviation
of VISAN, for the uniform age/sex groupings. N = 6690
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SD (VISAN)

FIGURE 2
Plot of the Mean of VISAN (annualized visit rate) vs. the Standard Deviation

of VISAN, for the uniform time data
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SD(VISAN)

FIGURE

Plot of the Standard Deviati
t, the number of months the

3

on of VISAN (annualized visit rate) versus
person was followed. Uniform time data.
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(NINAN)
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FIGURE 4
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FIGURE 5

Uniform Time data.

Plot of Standard Deviation of NINAN (annualized admission rate per thousand)
by the Mean of NINAN.
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FIGURE 6

Standard Deviation of NINAN (Annualized admission rate per thousan.
a function of time (in months)
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SD(LABAN )

FIGURE 7

Standard Deviation of LABAN (annualized number of lab tests)
by Mean of LABAN
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FIGURE 8
Standard Deviation of XRAYAN (Annualized number of x-rays) versus
Uniform age/sex data
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