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Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing

Response and Missing Covariates

Abstract

Longitudinal studies often feature incomplete response and covariate data. Likelihood based

method such as EM algorithm gives consistent estimates for data are missing at random provided

that the response model and the missing covariate model are correctly specified; while we can

misspecify (or do not even to estimate) the distribution of the missing indicators. An alternative

method is the weighted estimating equation which gives consistent estimates if the missing data

models and response models are correctly specified; but we can misspecify (or do not even to esti-

mate) the distribution of the missing covariates. In this paper we develop a doubly robust estimate

method for longitudinal data with missing response and missing covariate when data are missing

at random. This method is appealing in that it can provide consistent estimates if either the missing

data model or the missing covariate model is correctly specified. Simulation studies demonstrate

that this method performs well in a variety of situations.

KEYWORDS: Doubly robust; estimating equation; missing at random; missing covariate; missing

response.
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1 Introduction

Incomplete longitudinal data often arise in comparative studies because of difficulties in ascertain-

ing responses at scheduled assessment times, partially completed forms or questionnaires, patients

refusal to undergo complete examinations, or study subjects failing to attend a scheduled clinic

visit. Problems ensue if the mechanism leading to the missing data is dependent on the response

or covariates. Analyses based only on individuals with complete data can lead to invalid infer-

ences in this case. Under a missing completely at random (MCAR) mechanism (Little & Rubin,

2002), analyses based on generalized estimating equations (GEE) (Liang & Zeger, 1986) yield

consistent estimates of the regression parameters. However, when the data are missing at random

(MAR) or missing not at random (MNAR) (Little & Rubin, 2002), analyses based on GEE give

inconsistent estimates. Robins et al. (1995) developed a class of inverse probability weighted

generalized estimating equations (IPWGEE) which can yield consistent estimates when data are

MAR. The weights are obtained from models for the missing data process, and these models must

be correctly specified for the resulting estimators to be consistent. Alternatively, one can use max-

imum likelihood method to estimate the parameters, and it gives consistent estimate if the model

is correctly specified.

The literature on methods for missing data has primarily addressed either missing response

or missing covariate data (see, e.g., Fitzmaurice et al., 2001; Horton & Laird, 1998; Ibrahim et

al., 2001; Lipsitz et al., 1999; Zhao et al., 1996), but relatively little work has been done when

both can be missing. In practice, of course, data are often unavailable for both responses and

covariates. Chen et al. (2008) provide a careful investigation of likelihood methods for missing

response and covariate data via the EM algorithm. Shardell & Miller (2008) propose a marginal

modeling approach to estimate the association between a time-dependent covariate and an outcome

in longitudinal studies with missing response and missing covariate, but they focus on methods

with an assumption that responses are independent.

1
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For the IPWGEE, to obtain a consistent estimate we need to correctly model the missing data

process and also need to correctly model the response process given the covariates. If the miss-

ing data process model is misspecified, it can give biased estimate. While we can misspecify the

distribution of the missing covariates. That means, the IPWGEE method is sensitive to the mis-

specification of the missing data model but robust to the misspecification of the covariate process

model. For the maximum likelihood method, we do not need to specify the missing data models

when missing data are MAR, but we must correctly specify the joint distribution of the response

and the covariates that subject to missing. If the distribution of the covariates is misspecified,

the maximum likelihood can give inconsistent estimate. That is to say, the maximum likelihood

method is sensitive to the misspecification of the covariate model but robust to the misspecification

of the missing data model when data are MAR.

A hybrid approach is the doubly robust estimate introduced by Lipsitz et al. (1999), in which

they only considered the cross-sectional studies with a missing covariate. This is an estimating

equation approach with properties similar to maximum likelihood. To obtain a consistent estimate

of the regression parameters, either the missing-data model or the distribution of the missing data

given the observed data must be correctly specified, which is more robust to the IPWGEE and

maximum likelihood method. The literature for the doubly robust estimate includes Robins &

Rotnitzky (2001), Van der Laan & Robins (2003), Scharfstein et al. (1999), Lunceford & Davidian

(2004), Carpenter et al. (2006), Davidian et al. (2005), Bang & Robins (2005), and Kang & Schafer

(2007), Seaman & Copas (2009). This literature, however, focuses primarily on monotone missing

data patterns; Vansteelandt et al. (2007) developed regression models for the mean of repeated out-

comes under nonignoreable nonmonotone nonresponse, where they focus on conducting inference

about the marginal mean and the conditional mean given the baseline observed covariates. Little

work has devoted to the longitudinal studies with both missing response and missing covariates.

In this paper, we extend the method of Lipsitz et al. (1999) to accommodate binary longitudinal

data with both missing response and missing covariates. This approach is appealing in that it can

2
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not only deal with the missing response and missing covariate problem with intermittently missing

data pattern but yields the optimal estimator.

The remainder of this paper is organized as follows. In Section 2, we introduce notation and

models. In Section 3, we give the forms of the estimating equations and provide details on estima-

tion and inference. Simulation studies are given in Section 4. Data arising from an Alzheimer’s

diease are analyzed in the application in Section 5. Concluding remarks are made in Section 6.

2 Notation and Models

2.1 Response Process

Suppose that 𝑛 individuals are to be observed, with 𝐽𝑖 repeated measurements for subject 𝑖, 𝑖 =

1, . . . , 𝑛. Let 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝐽𝑖)
′ denote the 𝐽𝑖 × 1 binary response vector for subject 𝑖 that

may be missing at some time points. Let 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝐽𝑖)
′ be the covariate vector that

may be missing and 𝑍𝑖 = (𝑍 ′
𝑖1, 𝑍

′
𝑖2, . . . , 𝑍

′
𝑖𝐽𝑖
)′ be the covariate matrix that are always observed,

where 𝑍𝑖𝑗 is the covariate vector for subject 𝑖 at time 𝑗.

Define 𝜇𝑖𝑗 = 𝐸(𝑌𝑖𝑗∣𝑋𝑖, 𝑍𝑖) = 𝑃 (𝑌𝑖𝑗 = 1∣𝑋𝑖, 𝑍𝑖), and let 𝜇𝑖 = (𝜇𝑖1, 𝜇𝑖2, . . . , 𝜇𝑖𝐽𝑖)
′. Provided

that the mean structure of 𝑌𝑖𝑗 depends on the covariate vector for subject 𝑖 at time 𝑗 (Pepe &

Anderson, 1994; Robins et al., 1999), we may consider the models for the mean of the form

𝑔(𝜇𝑖𝑗) = 𝑋𝑖𝑗𝛽𝑥 + 𝑍 ′
𝑖𝑗𝛽𝑧

for 𝑗 = 1, . . . , 𝐽𝑖, 𝑖 = 1, . . . , 𝑛, where 𝛽 = (𝛽𝑥, 𝛽
′
𝑧)

′ is a vector of regression parameters. Here we

suppose only one covariate 𝑋𝑖𝑗 is potentially missing. Comments on how to deal with the problem

when multiple covariates may be missing are given in the discussion. The variance for the response

𝑌𝑖𝑗 is specified as

𝑣𝑖𝑗 = Var(𝑌𝑖𝑗∣𝑋𝑖, 𝑍𝑖) = 𝜇𝑖𝑗(1− 𝜇𝑖𝑗),

which depends on the regression parameter vector 𝛽.

3
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Let 𝑌 ∗
𝑖𝑗 = (𝑌𝑖𝑗 − 𝜇𝑖𝑗)/

√
𝑣𝑖𝑗 , 𝜌𝑖𝑗𝑘 = 𝐸(𝑌 ∗

𝑖𝑗𝑌
∗
𝑖𝑘), 𝜌𝑖𝑗1𝑗2⋅⋅⋅𝑗𝐾 = 𝐸(𝑌 ∗

𝑖𝑗1
𝑌 ∗
𝑖𝑗2

⋅ ⋅ ⋅𝑌 ∗
𝑖𝑗𝐾

) be the 𝐾th-

order correlation among components 𝑌𝑖𝑗1 , 𝑌𝑖𝑗2 , . . . , 𝑌𝑖𝑗𝐾 of 𝑌𝑖, and 𝜌 denote all the correlation

parameters. For given subject 𝑖, the joint probability for a response vector 𝑌𝑖 can be expressed via

the Bahadur representation (Bahadur 1961), which is given by

𝑃 (𝑌𝑖 = 𝑦𝑖∣𝑋𝑖, 𝑍𝑖) =

𝐽𝑖∏
𝑗=1

{𝜇𝑦𝑖𝑗
𝑖𝑗 (1− 𝜇𝑖𝑗)

1−𝑦𝑖𝑗} ⋅ {1 +
∑
𝑗<𝑘

𝜌𝑖𝑗𝑘𝑦
∗
𝑖𝑗𝑦

∗
𝑖𝑘

+
∑
𝑗<𝑘<𝑙

𝜌𝑖𝑗𝑘𝑙𝑦
∗
𝑖𝑗𝑦

∗
𝑖𝑘𝑦

∗
𝑖𝑙 + ⋅ ⋅ ⋅+ 𝜌𝑖1⋅⋅⋅𝐽𝑖𝑦

∗
𝑖1 ⋅ ⋅ ⋅ 𝑦∗𝑖𝐽𝑖}, (1)

where 𝑦𝑖 is a realization of 𝑌𝑖, and 𝑦∗𝑖𝑗 is a realization of 𝑌 ∗
𝑖𝑗 . This joint density requires modeling the

correlation structures of all orders. In practice, it is often the case that the second order dominates

the association structure while the third and higher order association is null or nearly null. Under

such circumstances, then the joint density is given by

𝑃 (𝑌𝑖 = 𝑦𝑖∣𝑋𝑖, 𝑍𝑖) =

𝐽𝑖∏
𝑗=1

{𝜇𝑦𝑖𝑗
𝑖𝑗 (1− 𝜇𝑖𝑗)

1−𝑦𝑖𝑗} ⋅ {1 +
∑
𝑗<𝑘

𝜌𝑖𝑗𝑘𝑦
∗
𝑖𝑗𝑦

∗
𝑖𝑘}. (2)

In the following, we assume that the third and higher order association for 𝑌𝑖 is null, and let 𝐶𝑖(𝜌)

denote the correlation matrix of 𝑌𝑖.

2.2 Missing Data Process

To indicate the availability of data we let 𝑅𝑖𝑗 = 0 if 𝑌𝑖𝑗 and 𝑋𝑖𝑗 are missing, 𝑅𝑖𝑗 = 1 if 𝑌𝑖𝑗 is

missing and 𝑋𝑖𝑗 is observed, 𝑅𝑖𝑗 = 2 if 𝑌𝑖𝑗 is observed and 𝑋𝑖𝑗 is missing, and 𝑅𝑖𝑗 = 3 if 𝑌𝑖𝑗 and

𝑋𝑖𝑗 are observed. Let 𝑅𝑖 = (𝑅𝑖1, 𝑅𝑖2, . . . , 𝑅𝑖𝐽𝑖)
′, and �̄�𝑖𝑗 = {𝑅𝑖1, . . . , 𝑅𝑖,𝑗−1}.

Instead of modeling the joint probability 𝑃 (𝑅𝑖 = 𝑟𝑖∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖) for 𝑅𝑖 directly, since we are

focusing on the longitudinal setting we restrict attention to conditional models of the form 𝑃 (𝑅𝑖𝑗 =

𝑟𝑖𝑗∣�̄�𝑖𝑗, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖) which reflect the dynamic nature of the observation process over time; we can

then obtain 𝑃 (𝑅𝑖 = 𝑟𝑖∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖) through

𝐽𝑖∏
𝑗=2

𝑃 (𝑅𝑖𝑗 = 𝑟𝑖𝑗∣�̄�𝑖𝑗, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖) ⋅ 𝑃 (𝑅𝑖1 = 𝑟𝑖1∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖) .
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Let 𝜆𝑖𝑗𝑘 = 𝑃 (𝑅𝑖𝑗 = 𝑘∣�̄�𝑖𝑗, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖) denote the conditional probability, 𝑘 = 0, 1, 2, 3. We

write these probabilities as conditional on the previous missing data indicators for the response

and covariate, as well as the full vector of responses and covariates. The formulation thus far

encompasses MCAR, MAR and MNAR mechanisms since we have written the missing data model

at assessment 𝑗 as depending on the full vector of responses 𝑌𝑖 and covariates 𝑋𝑖. For missing at

random mechanisms we require

𝑃 (𝑅𝑖 = 𝑟𝑖∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖) = 𝑃 (𝑅𝑖 = 𝑟𝑖∣𝑌 𝑜
𝑖 , 𝑋

𝑜
𝑖 , 𝑍𝑖), (3)

where 𝑌 𝑜
𝑖 and 𝑋𝑜

𝑖 represent the observed components of 𝑌𝑖 and 𝑋𝑖, respectively. However, in

the longitudinal setting with our conditional formulation it is very natural to make the further

assumption that

𝑃 (𝑅𝑖𝑗 = 𝑟𝑖𝑗∣�̄�𝑖𝑗, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖) = 𝑃 (𝑅𝑖𝑗 = 𝑟𝑖𝑗∣�̄�𝑖𝑗, 𝑌
𝑜
𝑖 , 𝑋

𝑜
𝑖 , 𝑍𝑖) (4)

for each time point 𝑗. It can be seen that (4) implies (3), but not vice versa. Moreover, while

mechanism (3) covers a larger class of MAR models than (4), models under (4) are easier to

formulate and interpret. Finally, many useful models can be embedded into the class characterized

by (4), and this approach has been commonly used to model missing data processes with a MAR

mechanism (e.g., Robins et al., 1995). For intermittently MAR data, it is often convenient to adopt

the further assumption that the missing data indicators at time 𝑗 depend only on the previously

observed outcomes and covariates.

To model 𝜆𝑖𝑗𝑘, typically, a generalized logistic link, by using 𝜆𝑖𝑗0 as a reference, may relate a

linear function of �̄�𝑖𝑗 , 𝑌𝑖, 𝑋𝑖 and 𝑍𝑖, i.e.

log

(
𝜆𝑖𝑗𝑘

𝜆𝑖𝑗0

)
= 𝑢′

𝑖𝑗𝑘𝛼𝑘, 𝑘 = 1, 2, 3,

where 𝑢𝑖𝑗𝑘 may be a subset of {�̄�𝑖𝑗, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖}. Let 𝛼 = (𝛼′
1, 𝛼

′
2, 𝛼

′
3)

′.

Let 𝜋𝑖𝑗 = 𝑃 (𝑅𝑖𝑗 = 3∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖) be the marginal probability of observing subject 𝑖 at time 𝑗,

5
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given the entire vectors of responses and covariates; it is given by

𝜋𝑖𝑗 =
∑

𝑟𝑖1,...,𝑟𝑖,𝑗−1

𝑃 (𝑅𝑖𝑗 = 3, 𝑅𝑖,𝑗−1 = 𝑟𝑖,𝑗−1, . . . , 𝑅𝑖1 = 𝑟𝑖1∣𝑌𝑖, 𝑍𝑖, 𝑋𝑖).

This marginal probability can be expressed in terms of the marginal (conditional) probabilities,

𝜆𝑖𝑗𝑘
′𝑠.

2.3 Missing Covariate Model

Since subjects can have 𝑋𝑖 missing, we must consider the density of 𝑋𝑖 in some situations to obtain

valid analysis, where we assume the joint density of 𝑋𝑖 given 𝑍𝑖 does not depend on the response

vector 𝑌𝑖. In practice, this joint density can be expressed as

𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖; 𝛾) =

𝐽𝑖∏
𝑗=2

𝑃 (𝑋𝑖𝑗 = 𝑥𝑖𝑗∣�̄�𝑖𝑗, 𝑍𝑖; 𝛾) ⋅ 𝑃 (𝑋𝑖1 = 𝑥𝑖1∣𝑍𝑖; 𝛾), (5)

where �̄�𝑖𝑗 = {𝑋𝑖1, . . . , 𝑋𝑖,𝑗−1} is the history of the covariate 𝑋𝑖𝑗 until time 𝑗 − 1, and 𝛾 is the

corresponding coefficient vector.

3 Methods of Estimation

We denote the vector of all the parameters as 𝜃 = (𝛽′, 𝛾′, 𝛼′)′. Our main interest is in estimation of

𝛽, with 𝛾 and 𝛼 viewed as nuisance parameters.

3.1 Weighted Estimating Equation for the Response Parameters

Following the spirit of the IPWGEE approach of Robins, Rotnitzky, and Zhao (1995), we introduce

a weight matrix Δ∗
𝑖 (𝛼) into the usual GEE to adjust for the effects of incomplete responses and

covariates. That is, if we let Δ∗
𝑖 (𝛼) = diag(𝐼(𝑅𝑖𝑗 = 3)/𝜋𝑖𝑗, 1 ≤ 𝑗 ≤ 𝐽𝑖), then the product

Δ∗
𝑖 (𝑌𝑖−𝜇𝑖) yields an adjusted contribution from subject 𝑖 which involves the observed data alone.

6
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Moreover, this element has expectation zero, and hence unbiased estimating equations for 𝛽 can

be obtained as

𝑈∗(𝛽, 𝛼) =
𝑛∑

𝑖=1

𝑈∗
𝑖 (𝛽, 𝛼) = 0, (6)

where 𝑈∗
𝑖 (𝛽, 𝛼) = 𝐷𝑖𝑉

−1
𝑖 Δ∗

𝑖 (𝛼)(𝑌𝑖 −𝜇𝑖) with 𝐷𝑖 = ∂𝜇′
𝑖/∂𝛽 being a 𝑝× 𝐽𝑖 derivative matrix, and

𝑉𝑖 the working covariance matrix for the response 𝑌𝑖.

In practice, the covariance matrix 𝑉𝑖 is often expressed as 𝑉𝑖 = 𝐹
1/2
𝑖 𝐶𝑖𝐹

1/2
𝑖 , where 𝐶𝑖 is

a working correlation matrix, and 𝐹𝑖 = diag(𝑣𝑖𝑗, 𝑗 = 1, . . . , 𝐽𝑖) and is assumed only depends

on the marginal mean 𝜇𝑖. When the working correlation matrix 𝐶𝑖 is the identity matrix, (6) is

computable. However, when a working independence assumption is not adopted, (6) may not

be computable since elements of 𝐷𝑖𝑉
−1
𝑖 associated with the observed pairs (𝑌𝑖𝑗, 𝑋𝑖𝑗) may be

unknown because they involve of other missing covariates 𝑋𝑖𝑘 (𝑘 ∕= 𝑗). Here we modify (6)

to incorporate general working correlation matrices. We define Δ𝑖 = [𝛿𝑖𝑗𝑘]𝐽𝑖×𝐽𝑖 , where 𝛿𝑖𝑗𝑘 =

[𝐼(𝑅𝑖𝑗 = 1, 𝑅𝑖𝑘 = 3) + 𝐼(𝑅𝑖𝑗 = 3, 𝑅𝑖𝑘 = 3)]/𝜋𝑖𝑗𝑘 for 𝑗 ∕= 𝑘, 𝛿𝑖𝑗𝑗 = 𝐼(𝑅𝑖𝑗 = 3)/𝜋𝑖𝑗 , and 𝜋𝑖𝑗𝑘 =

𝑃 (𝑅𝑖𝑗 = 1, 𝑅𝑖𝑘 = 3∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖)+𝑃 (𝑅𝑖𝑗 = 3, 𝑅𝑖𝑘 = 3∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖). Let 𝑀𝑖 = 𝐹
−1/2
𝑖 [𝐶−1

𝑖 ∙Δ𝑖]𝐹
−1/2
𝑖 ,

where 𝐴∙𝐵 = [𝑎𝑖𝑗 ⋅𝑏𝑖𝑗] denotes the Hadamard product of 𝐽𝑖×𝐽𝑖 matrices 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗].

By introducing the condition that 𝑋𝑖𝑗 must be observed for elements in row 𝑗 of Δ𝑖(𝛼), we ensure

that all required elements of 𝐷𝑖[𝑉
−1
𝑖 ∙Δ𝑖(𝛼)](𝑌𝑖 − 𝜇𝑖) can be computed.

The generalized estimating functions for 𝛽 are given by

𝑈(𝛽, 𝛼) =
𝑛∑

𝑖=1

𝑈𝑖(𝛽, 𝛼) = 0 , (7)

where 𝑈𝑖(𝛽, 𝛼) = 𝐷𝑖𝑀𝑖(𝑌𝑖 − 𝜇𝑖). It is easy to see that estimating function (7) depends on the

observed data and the parameters only, and hence is computable.

For the estimating equations (7), to obtain a consistent estimate, the missing data model needs

to be correctly specified. If the missing data model is misspecified, it can yield biased estimates.

Under a missing at random mechanism, Robins, Rotnitzky, and Zhao (1994, 1995), Robins and

Rotnitzky (1995), Scharfstein, Rotnitzky, and Robins (1999), and Van der Laan and Robins (2003)

7
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proposed methods to improve the robustness of the inverse probability weighted estimates. The

idea is to modify these inverse weighted equations by adding a tangent space of the conditional

distribution of 𝑅𝑖, yielding an augmented estimating function which remains unbiased. With suit-

able choice of the appended function, we can get the doubly robust estimates. This approach has, to

our knowledge, only been investigated to address the missingness with either incomplete response

or covariate processes, but not both. Now, we describe ways for the double robustness for the

general missingness patterns when either the covariates model or missing data model is correctly

specified.

Following the same spirit of Van der Laan and Robins (2003), the general form of the aug-

mented estimating functions for the general missingness patterns can be written as

𝑛∑
𝑖=1

[𝑈𝑖 + 𝜙𝑖] = 0, (8)

where 𝜙𝑖 is a function in the tangent space the conditional distribution of 𝑅𝑖 with mean zero. The

optimal 𝜙𝑖,𝑜𝑝𝑡 is chosen as the projection of 𝑈𝑖 onto the tangent space of the conditional distribution

of 𝑅𝑖. It is not hard to show that, in Hilbert space, 𝜙𝑖,𝑜𝑝𝑡 = 𝐸(𝑌 𝑚
𝑖 ,𝑋𝑚

𝑖 ∣𝑌 𝑜
𝑖 ,𝑋𝑜

𝑖 ,𝑍𝑖,𝑅𝑖)[𝐷𝑖𝑁𝑖(𝑌𝑖 − 𝜇𝑖)]

with

𝑁𝑖 = 𝐹
−1/2
𝑖 [𝐶−1

𝑖 ∙ (11′ −Δ𝑖)]𝐹
−1/2
𝑖 ,

where 1 is a vector a 1’s with length 𝐽𝑖, and 𝑌 𝑚
𝑖 and 𝑋𝑚

𝑖 denote the missing part of 𝑌𝑖 and 𝑋𝑖

respectively. We then can solve estimating equations

𝑆1(𝜃) =
𝑛∑

𝑖=1

𝑆1𝑖(𝜃) =
𝑛∑

𝑖=1

{𝐷𝑖𝑀𝑖(𝑌𝑖 − 𝜇𝑖) + 𝐸(𝑌 𝑚
𝑖 ,𝑋𝑚

𝑖 ∣𝑌 𝑜
𝑖 ,𝑋𝑜

𝑖 ,𝑍𝑖,𝑅𝑖)[𝐷𝑖𝑁𝑖(𝑌𝑖 − 𝜇𝑖)]} = 0

to obtain the estimate of 𝛽. It can be shown that the resulting estimator for 𝛽 is robust to the

misspecification of either the missing data model or the covariates model. The proof if given in the

Appendix.

In practice the parameters 𝛾 and 𝛼 are unknown, and one must replace 𝛾 and 𝛼 in with a

consistent estimate. We describe how to obtain an estimate in the next subsection.

8
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3.2 Estimation for the Nuisance Parameters

Since we are assuming the covariate is missing at random, we can obtain the estimate of 𝛾 through

maximizing likelihood estimate. Note that the likelihood for subject 𝑖 is 𝐿𝑖(𝛾;𝑋𝑖, 𝑍𝑖) = 𝑃 (𝑋𝑖 =

𝑥𝑖∣𝑍𝑖). With complete data, we can solve the estimating equation
∑𝑛

𝑖=1 ∂ log𝐿𝑖(𝛾;𝑋𝑖, 𝑍𝑖)/∂𝛾
′ =

0 to obtain the estimate 𝛾. With incomplete data for 𝑋𝑖, instead, we can solve the estimating

equation

𝑆2(𝛾) =
𝑛∑

𝑖=1

𝑆2𝑖(𝛾) =
𝑛∑

𝑖=1

[𝐸{𝑋𝑚
𝑖 ∣𝑋𝑜

𝑖 ,𝑍𝑖}∂ log𝐿𝑖(𝛾;𝑋𝑖, 𝑍𝑖)/∂𝛾
′] = 0

to obtain the consistent estimate when the distribution for 𝑋𝑖 is correctly specified.

For the estimation of the missing data parameter 𝛼, we can also employ the maximum likeli-

hood estimate. Note that the log likelihood for 𝛼 is given by

ℓ(𝛼) =
𝑛∑

𝑖=1

ℓ𝑖(𝛼) =
𝑛∑

𝑖=1

𝐽𝑖∑
𝑗=1

3∑
𝑘=0

𝐼(𝑅𝑖𝑗 = 𝑘) log(𝜆𝑖𝑗𝑘),

and the score function is

𝑆3(𝛼) =
𝑛∑

𝑖=1

𝑆3𝑖(𝛼) =
𝑛∑

𝑖=1

𝐽𝑖∑
𝑗=1

3∑
𝑘=0

𝐼(𝑅𝑖𝑗 = 𝑘)

𝜆𝑖𝑗𝑘

⋅ ∂𝜆𝑖𝑗𝑘

∂𝛼′ .

Solving the estimating equation 𝑆3(𝛼) = 0 leads to the maximum likelihood estimate �̂�.

3.3 Estimation and Inferences

In the section we give details on the estimation and inference for the parameters. To obtain an

estimate for 𝜃, we can solve estimating equations

𝑆(𝜃) =

⎡⎢⎢⎢⎢⎣
𝑆1(𝜃)

𝑆2(𝛾)

𝑆3(�̂�)

⎤⎥⎥⎥⎥⎦ =
𝑛∑

𝑖=1

𝑆𝑖(𝜃) =
𝑛∑

𝑖=1

⎡⎢⎢⎢⎢⎣
𝑆1𝑖(𝜃)

𝑆2𝑖(𝛾)

𝑆3𝑖(�̂�)

⎤⎥⎥⎥⎥⎦ = 0. (9)

It can be shown that, provided the response model 𝑝(𝑦𝑖∣𝑥𝑖, 𝑧𝑖) is correctly specified, either the

correct specification of the missing data model 𝑝(𝑟𝑖∣𝑥𝑖, 𝑦𝑖, 𝑧𝑖) or the correct specification of the

9
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covariate model 𝑝(𝑥𝑖∣𝑧𝑖) leads to the asymptotically unbiased estimate of 𝛽. The details of proof

are given in the Appendix.

To solve estimating equations (9), we employ an EM algorithm (Dempster et al., 1977) if the

covariate 𝑋 is discrete and Montone Carlo (MC) EM (Wei and Tanner, 1990) algorithm if the

covariate 𝑋 is continuous. The key is that we need to calculate the conditional expectation in 𝑆1

and 𝑆2.

When 𝑋 is discrete, then the second part in 𝑆1𝑖 can be written as

𝐸(𝑌 𝑚
𝑖 ,𝑋𝑚

𝑖 ∣𝑌 𝑜
𝑖 ,𝑋𝑜

𝑖 ,𝑍𝑖,𝑅𝑖)[𝐷𝑖𝑁𝑖(𝑌𝑖 − 𝜇𝑖)] =
∑

(𝑦𝑚𝑖 ,𝑥𝑚
𝑖 )

𝑤𝑖𝑥𝑦[𝐷𝑖𝑁𝑖(𝑌𝑖 − 𝜇𝑖)]

where

𝑤𝑖𝑥𝑦 = 𝑃 (𝑌 𝑚
𝑖 = 𝑦𝑚𝑖 , 𝑋

𝑚
𝑖 = 𝑥𝑚

𝑖 ∣𝑌 𝑜
𝑖 , 𝑋

𝑜
𝑖 , 𝑍𝑖, 𝑅𝑖) = 𝑃 (𝑌 𝑚

𝑖 = 𝑦𝑚𝑖 , 𝑋
𝑚
𝑖 = 𝑥𝑚

𝑖 ∣𝑌 𝑜
𝑖 , 𝑋

𝑜
𝑖 , 𝑍𝑖)

=
𝑃 (𝑌𝑖 = 𝑦𝑖, 𝑋𝑖 = 𝑥𝑖∣𝑍𝑖)∑

(𝑦𝑚𝑖 ,𝑥𝑚
𝑖 ) 𝑃 (𝑌𝑖 = 𝑦𝑖, 𝑋𝑖 = 𝑥𝑖∣𝑍𝑖)

=
𝑃 (𝑌𝑖 = 𝑦𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑍𝑖)𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖)∑

(𝑦𝑚𝑖 ,𝑥𝑚
𝑖 )[𝑃 (𝑌𝑖 = 𝑦𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑍𝑖)𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖)]

can be regarded as a weight, where the distribution of 𝑃 (𝑌𝑖 = 𝑦𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑍𝑖) and 𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖)

can be obtained from (2) and (5), respectively.

We now introduce the EM algorithm to solve 𝑆(𝜃) = 0 as follows:

1. Obtain an initial value of the parameter 𝜃 = 𝜃(0).

2. At the 𝑡th step, we have 𝜃(𝑡), and calculate 𝑤
(𝑡)
𝑖𝑥𝑦 = 𝑤𝑖𝑥𝑦(𝜃

(𝑡)) and 𝑤
(𝑡)
𝑖𝑥 = 𝑤𝑖𝑥(𝜃

(𝑡)), where

𝑤𝑖𝑥 = 𝑃 (𝑋𝑚
𝑖 = 𝑥𝑚

𝑖 ∣𝑋𝑜
𝑖 , 𝑍𝑖) =

𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖)∑
𝑥𝑚
𝑖
𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖)

.

3. Treating 𝑤
(𝑡)
𝑖𝑥𝑦 and 𝑤

(𝑡)
𝑖𝑥 as fixed, solve 𝑆(𝜃(𝑡+1)∣𝜃(𝑡)) = 0 for 𝜃(𝑡+1), where

𝑆(𝜃(𝑡+1)∣𝜃(𝑡)) =

⎡⎢⎢⎢⎢⎣
𝑆1(𝜃

(𝑡+1)∣𝜃(𝑡))
𝑆2(𝜃

(𝑡+1)∣𝜃(𝑡))
𝑆3(𝜃

(𝑡+1)∣𝜃(𝑡))

⎤⎥⎥⎥⎥⎦ =
𝑛∑

𝑖=1

⎡⎢⎢⎢⎢⎣
𝑆1𝑖(𝜃

(𝑡+1)∣𝜃(𝑡))
𝑆2𝑖(𝜃

(𝑡+1)∣𝜃(𝑡))
𝑆3𝑖(𝜃

(𝑡+1)∣𝜃(𝑡))

⎤⎥⎥⎥⎥⎦ , (10)

10
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𝑆1𝑖(𝜃
(𝑡+1)∣𝜃(𝑡)) = 𝐷𝑖𝑀𝑖(𝜃

(𝑡))(𝑌𝑖 − 𝜇𝑖) +
∑

(𝑦𝑚𝑖 ,𝑥𝑚
𝑖 )

𝑤
(𝑡)
𝑖𝑥𝑦[𝐷𝑖𝑁𝑖(𝜃

(𝑡))(𝑌𝑖 − 𝜇𝑖)],

and

𝑆2𝑖(𝜃
(𝑡+1)∣𝜃(𝑡)) =

∑
𝑥𝑚
𝑖

𝑤
(𝑡)
𝑖𝑥 ∂ log𝐿𝑖(𝛾; 𝑥𝑖, 𝑧𝑖)/∂𝛾

′.

4. Iterate until convergence to, say 𝜃, which gives the solution to 𝑆(𝜃) = 0.

When 𝑋 is continuous, we employ the MCEM algorithm. Specifically, we solve (10) with

𝑆1𝑖(𝜃
(𝑡+1)∣𝜃(𝑡)) = 𝐷𝑖𝑀𝑖(𝜃

(𝑡))(𝑌𝑖 − 𝜇𝑖) +

∫
(𝑦𝑚𝑖 ,𝑥𝑚

𝑖 )

𝑤
(𝑡)
𝑖𝑥𝑦[𝐷𝑖𝑁𝑖(𝜃

(𝑡))(𝑌𝑖 − 𝜇𝑖)]𝑑𝑌
𝑚
𝑖 𝑑𝑋𝑚

𝑖 ,

and

𝑆2𝑖(𝜃
(𝑡+1)∣𝜃(𝑡)) =

∫
𝑥𝑚
𝑖

𝑤
(𝑡)
𝑖𝑥 ∂ log𝐿𝑖(𝛾; 𝑥𝑖, 𝑧𝑖)/∂𝛾

′𝑑𝑋𝑚
𝑖 ,

where the weights become

𝑤
(𝑡)
𝑖𝑥𝑦 = 𝑃 (𝑌 𝑚

𝑖 = 𝑦𝑚𝑖 , 𝑋
𝑚
𝑖 = 𝑥𝑚

𝑖 ∣𝑌 𝑜
𝑖 , 𝑋

𝑜
𝑖 , 𝑍𝑖; 𝜃

(𝑡))

=
𝑃 (𝑌𝑖 = 𝑦𝑖, 𝑋𝑖 = 𝑥𝑖∣𝑍𝑖; 𝜃

(𝑡))∫
(𝑦𝑚𝑖 ,𝑥𝑚

𝑖 )
𝑃 (𝑌𝑖 = 𝑦𝑖, 𝑋𝑖 = 𝑥𝑖∣𝑍𝑖; 𝜃(𝑡))𝑑𝑌 𝑚

𝑖 𝑑𝑋𝑚
𝑖

=
𝑃 (𝑌𝑖 = 𝑦𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑍𝑖; 𝜃

(𝑡))𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖; 𝜃
(𝑡))∫

(𝑦𝑚𝑖 ,𝑥𝑚
𝑖 )

𝑃 (𝑌𝑖 = 𝑦𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑍𝑖; 𝜃(𝑡))𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖; 𝜃(𝑡))𝑑𝑌 𝑚
𝑖 𝑑𝑋𝑚

𝑖

and

𝑤
(𝑡)
𝑖𝑥 = 𝑃 (𝑋𝑚

𝑖 = 𝑥𝑚
𝑖 ∣𝑋𝑜

𝑖 , 𝑍𝑖; 𝜃
(𝑡)) =

𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖; 𝜃
(𝑡))∫

𝑥𝑚
𝑖
𝑃 (𝑋𝑖 = 𝑥𝑖∣𝑍𝑖; 𝜃(𝑡))𝑑𝑋𝑚

𝑖

.

To solve (10) that equals 0, we need the integrations. In this case, rather than use numerical

integration, we may employ a Monte Carlo method. To be specific, we sample (𝑦𝑚𝑖 , 𝑥
𝑚
𝑖 ) from the

conditional density 𝑤
(𝑡)
𝑖𝑥𝑦 using the adaptive rejection algorithm of Gilks & Wild (1992). Repeat

this 𝐿 times, with the 𝑙th draw of (𝑦𝑚𝑖 , 𝑥
𝑚
𝑖 ) denoted by (𝑦

𝑚𝑙(𝑡)
𝑖 , 𝑥

𝑚𝑙(𝑡)
𝑖 ). Then∫

(𝑦𝑚𝑖 ,𝑥𝑚
𝑖 )

𝑤
(𝑡)
𝑖𝑥𝑦[𝐷𝑖𝑁𝑖(𝜃

(𝑡))(𝑌𝑖 − 𝜇𝑖)]𝑑𝑌
𝑚
𝑖 𝑑𝑋𝑚

𝑖

=
1

𝐿

𝐿∑
𝑙=1

[𝐷𝑖𝑁𝑖(𝜃
(𝑡))(𝑌𝑖 − 𝜇𝑖)]

∣∣∣
(𝑌 𝑚

𝑖 ,𝑋𝑚
𝑖 )=(𝑦

𝑚𝑙(𝑡)
𝑖 ,𝑥

𝑚𝑙(𝑡)
𝑖 )

,
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and ∫
𝑥𝑚
𝑖

𝑤
(𝑡)
𝑖𝑥 ∂ log𝐿𝑖(𝛾; 𝑥𝑖, 𝑧𝑖)/∂𝛾

′𝑑𝑋𝑚
𝑖 =

1

𝐿

𝐿∑
𝑙=1

∂ log𝐿𝑖(𝛾; 𝑥𝑖, 𝑧𝑖)/∂𝛾
′
∣∣∣
𝑋𝑚

𝑖 =𝑥
𝑚𝑙(𝑡)
𝑖

.

To state the asymptotic properties of 𝛽, we define

Γ(𝛽, 𝛾, 𝛼) = 𝐸[∂𝑆1𝑖(𝛽, 𝛾, 𝛼)/∂𝛽],

𝐼12(𝛽, 𝛾, 𝛼) = 𝐸[∂𝑆1𝑖(𝛽, 𝛾, 𝛼)/∂𝛾],

𝐼13(𝛽, 𝛾, 𝛼) = 𝐸[∂𝑆1𝑖(𝛽, 𝛾, 𝛼)/∂𝛼],

𝐼2(𝛾) = 𝐸[∂𝑆2𝑖(𝛾)/∂𝛾],

𝐼3(𝛾) = 𝐸[∂𝑆3𝑖(𝛾)/∂𝛼],

𝑄𝑖(𝛽, 𝛾, 𝛼) = 𝑆1𝑖(𝛽, 𝛾, 𝛼)− 𝐼12(𝛽, 𝛾, 𝛼)𝐼
−1
2 (𝛾)𝑆2𝑖(𝛾)− 𝐼13(𝛽, 𝛾, 𝛼)𝐼

−1
3 (𝛼)𝑆3𝑖(𝛼).

Theorem 1. Suppose that the regularity conditions state in the Appendix hold, if either the

missing data model or the covariate model is correctly specified, we have

𝑛1/2(𝛽 − 𝛽0) → 𝑁(0,Γ−1(𝛽0, 𝛾0, 𝛼0)Σ[Γ
−1(𝛽0, 𝛾0, 𝛼0)]

′),

where 𝛽0 is the true value of 𝛽, 𝛾0 and 𝛼0 are the probability limits of 𝛾 and �̂�, and Σ =

𝐸[𝑄𝑖(𝛽0, 𝛾0, 𝛼0)𝑄
′
𝑖(𝛽0, 𝛾0, 𝛼0)].

The proof is given in the Appendix. To make inferences, the matrix Γ can be consistently estimated

with

Γ̂ = 𝑛−1

𝑛∑
𝑖=1

[∂𝑆1𝑖(𝜃∣𝜃)/∂𝛽],

and Σ can be consistently estimated with Σ̂ = 𝑛−1
∑𝑛

𝑖=1[�̂�𝑖�̂�
′
𝑖], where

�̂�𝑖 = 𝑆1𝑖(𝜃∣𝜃)− 𝐼12(𝜃∣𝜃)𝐼−1
2 (𝜃∣𝜃)𝑆2𝑖(𝜃∣𝜃)− 𝐼13(𝜃∣𝜃)𝐼−1

3 (�̂�)𝑆3𝑖(�̂�),

𝐼12(𝜃∣𝜃) = 𝑛−1

𝑛∑
𝑖=1

[∂𝑆1𝑖(𝜃∣𝜃)/∂𝛾],
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𝐼13(𝜃∣𝜃) = 𝑛−1

𝑛∑
𝑖=1

[∂𝑆1𝑖(𝜃∣𝜃)/∂𝛼],

𝐼2(𝜃∣𝜃) = 𝑛−1

𝑛∑
𝑖=1

[∂𝑆2𝑖(𝜃∣𝜃)/∂𝛾],

𝐼3(�̂�) = 𝑛−1

𝑛∑
𝑖=1

[∂𝑆3𝑖(�̂�)/∂𝛼].

4 Numerical Studies

4.1 Performance of the Proposed Estimates

In this subsection, we evaluate the performance of the proposed method compared to other methods

commonly used in practice through simulation studies. In the simulation studies, we focus on a

setting where 𝐽𝑖 = 𝐽 = 3 and 𝑛 = 500. We simulate the longitudinal binary responses from a

model with

logit 𝜇𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗 + 𝛽2𝑍𝑖𝑗 (11)

where 𝑍𝑖𝑗 is a time variant covariate generated from 𝐵𝑖𝑛(1, 0.5), and 𝑋𝑖𝑗 is a time variant binary

covariate which may be missing at some time points and is generated from the model

logit 𝜔𝑖𝑗 = 𝛾0 + 𝛾1𝑋𝑖,𝑗−1 + 𝛾2𝑍𝑖𝑗, (12)

where 𝜔𝑖𝑗 = 𝑃 (𝑋𝑖𝑗 = 1∣�̄�𝑖𝑗, 𝑍𝑖𝑗). We take 𝛽0 = log(1.5), 𝛽1 = log(0.5), 𝛽2 = log(2), 𝛾0 =

log(1), 𝛾2 = 2, and 𝛾1 varies from -2 to 2. The correlation matrix is exchangeable with correlation

coefficient 𝜌.

For the missing data process, we take

log

(
𝜆𝑖𝑗𝑘

𝜆𝑖𝑗0

)
= 𝛼0𝑘 + 𝛼1𝑘1𝐼(𝑅𝑖,𝑗−1 = 1) + 𝛼1𝑘2𝐼(𝑅𝑖,𝑗−1 = 2) + 𝛼1𝑘3𝐼(𝑅𝑖,𝑗−1 = 3)

+𝛼2𝑘𝑦
𝑜
𝑖,𝑗−1 + 𝛼3𝑘𝑥

𝑜
𝑖,𝑗−1, (13)
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for 𝑘 = 1, 2, 3, where 𝑦𝑜𝑖,𝑗−1 = 𝑦𝑖,𝑗−1 if 𝑦𝑖,𝑗−1 is observed and 0 otherwise, 𝑥𝑜
𝑖,𝑗−1 = 𝑥𝑖,𝑗−1 if

𝑥𝑖,𝑗−1 is observed and 0 otherwise. The true values are taken as 𝛼0𝑘 = log(1.5), 𝛼1𝑘1 = log(1.5),

𝛼1𝑘2 = log(1.3), 𝛼1𝑘3 = log(1.1), 𝛼3𝑘 = −2, and 𝛼2𝑘 = 𝛼2 varies from -2 to 2.

In the simulations, we always assume the model for (𝑦𝑖∣𝑥𝑖, 𝑧𝑖) is correctly specified. We con-

sider the following seven methods: 1) both the missing data model and covariate model are cor-

rectly specified, which we denote (𝑥+, 𝑟+); 2) the missing data model is correctly specified, but

the model for 𝜔 is misspecified as

logit 𝜔𝑖𝑗 = 𝛾∗
0 + 𝛾∗

2𝑍𝑖𝑗, (14)

which we denote (𝑥−, 𝑟+); 3) the model for 𝜔 is correctly specified, but the missing data model is

misspecified as

log

(
𝜆𝑖𝑗𝑘

𝜆𝑖𝑗0

)
= 𝛼∗

0𝑘 + 𝛼∗
1𝑘1𝐼(𝑅𝑖,𝑗−1 = 1) + 𝛼∗

1𝑘2𝐼(𝑅𝑖,𝑗−1 = 2) + 𝛼∗
1𝑘3𝐼(𝑅𝑖,𝑗−1 = 3)

+𝛼∗
3𝑘𝑥

𝑜
𝑖,𝑗−1, (15)

which we denote (𝑥+, 𝑟−); and 4) both the model for 𝜔 is misspecified as (14), and the missing

data model is misspecified as (15), which we denote (𝑥−, 𝑟−); 5) the EM algorithm with the

covariate model incorrectly specified as (14), which we denote EM(𝑥−); 6) the simple weighted

GEE (not the robust method) method that with the missing data model incorrectly specified as (15),

which we denote GEE(𝑟−); 7) the complete case analysis using maximum likelihood method,

which we denote cc. In each setting, we perform 2000 simulations.

The results are reported in Tables 1 to 3, where the bias is the percent relative bias, SD is the

standard deviation for the 2000 simulations, and CP represents the empirical coverage probability

for 95% confidence intervals. It is seen that the (𝑥−, 𝑟−), EM(𝑥−), 𝐺𝐸𝐸(𝑟−) and complete

case approaches yield larger biases and poor coverage probabilities; as the response association

𝜌 increases, the performance decreases. The (𝑥+, 𝑟+), (𝑥+, 𝑟−) and (𝑥−, 𝑟+) methods provide

ignorable finite sample biases, and gives good coverage probabilities; (𝑥−, 𝑟+) estimate is more

14
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efficient than (𝑥+, 𝑟−) estimate, indicating that the efficiency of the estimate is more sensitive to

the misspefication of the missing data model than to the covariate model.

4.2 Impact of Model Misspecification

The validity of this algorithm depends on correct specification of the model for the response pro-

cess and either the observation process and the missing covariate process. Here we investigate the

impact of misspecification of the observation process model and/or the missing covariate process.

Let 𝜃† denote the estimator for 𝜃 when the missing data process and the covariate process are

misspecified. To characterize the asymptotic bias of 𝜃†, we use the methods of White (1982) to

find the value to which 𝜃† converges. In the spirit of Rotnitzky and Wypij (1994), Fitzmaurice,

Molenberghs, and Lipsitz (1995) and Cook, Zeng, and Yi (2004), we take the expectation of 𝑆𝑖(𝜃)

with respect to the true distribution of 𝐺 = (𝑅𝑖, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖) and set it equal to zero. The solution

to this equation, denoted 𝜃†, is the value to which 𝜃† converges in probability. If 𝒢 is the sample

space for 𝐺, and 𝑃 (𝑔; 𝜃) is the true probability of observing the realized value 𝑔 of 𝐺, then solving

the equation ∑
𝑔∈𝒢

𝑆𝑖(𝜃
†) ⋅ 𝑃 (𝑔; 𝜃) = 0 (16)

gives the relationship between 𝜃 and 𝜃†, and enables one to characterize the asymptotic bias.

In this study, response measurements are featured by the same model (11) with 𝜌 = 0.3; the

true model for missing data indicators is (13), and the true model for the missing covariate model

is (12).

Now we consider the misspecification the missing data model and the covariate model. Figures

1 and 2 plot the asymptotic percent relative biases of 𝛽1 and 𝛽2 against 𝛾1 as 𝛼2 changes. It is seen

that 𝛽1 and 𝛽2 are sensitive to the misspecification of the missing data and covariate models. As

the absolute value of 𝛼2 goes to 0, the relative biases decrease; as the absolute value of 𝛾1 goes to

0, the relative biases decrease. For fixed 𝛼2 that are not very big, the relative biases lines are more

flat, and the biases are small, indicating that the estimate is less sensitive to the misspecification of

15
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Table 1: Empirical bias, standard deviation and coverage probabilities for seven approaches to
estimation and inference with incomplete covariate and response data (𝜌 = 0.6)

𝛽0 𝛽1 𝛽2

𝛾1 𝛼2 Method Bias% SD CP% Bias% SD CP% Bias% SD CP%

2 2 (𝑥+, 𝑟+) 1.5 0.112 95.2 0.1 0.107 94.4 -0.6 0.095 95.3
2 2 (𝑥+, 𝑟−) -1.3 0.120 94.7 -0.7 0.113 94.6 0.7 0.098 94.5
2 2 (𝑥−, 𝑟+) 1.3 0.116 94.9 -0.0 0.109 94.5 -0.7 0.096 94.4
2 2 (𝑥−, 𝑟−) 8.4 0.114 93.4 -5.5 0.100 93.7 -3.6 0.096 94.5
2 2 EM(𝑥−) -14.1 0.146 92.8 -51.8 0.141 84.4 28.6 0.110 85.3
2 2 GEE(𝑟−) 23.7 0.196 83.8 -17.8 0.222 84.2 -2.3 0.204 94.4
2 2 cc 185.3 0.716 74.5 -42.4 0.773 85.7 12.2 0.703 94.9

2 -2 (𝑥+, 𝑟+) 1.1 0.103 94.5 1.0 0.093 94.6 -0.8 0.086 94.7
2 -2 (𝑥+, 𝑟−) 1.2 0.107 94.6 1.8 0.102 94.7 -1.1 0.094 94.7
2 -2 (𝑥−, 𝑟+) -1.3 0.105 94.5 -1.2 0.098 94.9 -1.4 0.088 94.6
2 -2 (𝑥−, 𝑟−) -9.5 0.108 91.4 -7.3 0.099 91.9 -4.3 0.096 94.2
2 -2 EM(𝑥−) -25.0 0.140 90.5 -73.3 0.136 80.6 26.3 0.110 88.3
2 -2 GEE(𝑟−) 32.0 0.230 81.3 18.8 0.251 80.4 2.6 0.264 94.2
2 -2 cc -272.6 0.690 89.0 72.6 0.977 96.0 28.8 0.655 95.2

-2 2 (𝑥+, 𝑟+) 1.6 0.100 95.0 0.3 0.128 94.5 -1.2 0.101 95.2
-2 2 (𝑥+, 𝑟−) -1.3 0.108 94.5 -1.3 0.134 94.7 -1.3 0.110 94.6
-2 2 (𝑥−, 𝑟+) 0.2 0.102 95.3 1.0 0.132 95.1 0.3 0.105 95.0
-2 2 (𝑥−, 𝑟−) 7.6 0.103 94.5 5.8 0.143 94.7 -2.6 0.108 94.8
-2 2 EM(𝑥−) -31.4 0.119 88.1 -62.8 0.109 82.5 30.9 0.123 83.6
-2 2 GEE(𝑟−) 51.3 0.178 78.3 -9.9 0.202 89.5 -1.3 0.200 94.4
-2 2 cc 170.0 0.506 66.7 -41.8 0.564 90.9 16.7 0.664 97.0

-2 -2 (𝑥+, 𝑟+) 0.7 0.104 95.1 0.8 0.080 94.5 -0.9 0.093 94.9
-2 -2 (𝑥+, 𝑟−) -1.0 0.110 95.2 -1.6 0.088 94.9 1.6 0.102 95.0
-2 -2 (𝑥−, 𝑟+) 0.4 0.105 94.4 1.0 0.084 94.8 -0.3 0.096 94.5
-2 -2 (𝑥−, 𝑟−) -20.1 0.094 91.4 12.0 0.081 92.9 3.0 0.096 93.9
-2 -2 EM(𝑥−) -41.3 0.112 84.9 -87.1 0.093 74.3 29.5 0.121 83.8
-2 -2 GEE(𝑟−) -57.5 0.235 74.4 -11.3 0.280 91.6 -4.7 0.261 93.4
-2 -2 cc -302.0 0.876 53.8 49.9 1.077 96.8 0.4 1.218 94.6

Relative bias defined by (
¯̂
𝛽 − 𝛽𝑡𝑟𝑢𝑒)/𝛽𝑡𝑟𝑢𝑒 × 100.

SD is the standard deviation for the 2000 times simulation, which is defined by (2000−1)−1
∑2000

𝑖=1 (𝛽(𝑖)− ¯̂
𝛽)2, where

𝛽(𝑖) is the 𝑖th simulation result, and ¯̂
𝛽 = 2000−1

∑2000
𝑖=1 𝛽(𝑖).
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Table 2: Empirical bias, standard deviation and coverage probabilities for seven approaches to
estimation and inference with incomplete covariate and response data (𝜌 = 0.3)

𝛽0 𝛽1 𝛽2

𝛾1 𝛼2 Method Bias% SD CP% Bias% SD CP% Bias% SD CP%

2 2 (𝑥+, 𝑟+) 1.6 0.100 95.0 0.6 0.100 94.7 -0.2 0.086 94.4
2 2 (𝑥+, 𝑟−) 0.1 0.108 94.5 0.6 0.106 94.6 0.6 0.092 94.9
2 2 (𝑥−, 𝑟+) 0.9 0.101 94.7 0.5 0.102 94.5 -0.4 0.088 95.3
2 2 (𝑥−, 𝑟−) 6.6 0.103 94.2 -5.1 0.100 93.9 -2.5 0.084 94.6
2 2 EM(𝑥−) -10.3 0.120 91.5 -66.2 0.125 80.6 21.3 0.099 90.7
2 2 GEE(𝑟−) 10.9 0.183 84.3 -8.9 0.205 84.5 2.3 0.207 94.3
2 2 cc 128.0 0.593 86.0 -19.8 0.665 92.0 17.0 0.628 96.0

2 -2 (𝑥+, 𝑟+) 1.4 0.095 95.2 0.9 0.091 94.8 0.1 0.081 94.7
2 -2 (𝑥+, 𝑟−) 0.8 0.109 94.6 1.0 0.101 94.7 0.6 0.083 94.8
2 -2 (𝑥−, 𝑟+) -0.6 0.097 94.7 -0.9 0.092 94.4 -0.3 0.082 94.5
2 -2 (𝑥−, 𝑟−) -7.5 0.097 93.8 -6.3 0.095 94.1 0.0 0.083 95.2
2 -2 EM(𝑥−) -10.2 0.121 91.7 -86.1 0.122 74.3 21.6 0.099 90.8
2 -2 GEE(𝑟−) 15.9 0.215 81.4 11.5 0.252 86.4 -1.3 0.255 94.5
2 -2 cc -221.1 0.955 75.8 -26.8 1.112 97.0 -27.7 1.423 93.9

-2 2 (𝑥+, 𝑟+) 0.1 0.076 94.6 0.3 0.077 94.8 0.4 0.091 94.7
-2 2 (𝑥+, 𝑟−) 0.8 0.077 94.4 0.1 0.080 94.6 -0.8 0.098 94.7
-2 2 (𝑥−, 𝑟+) -0.4 0.076 94.4 0.6 0.079 94.8 0.1 0.092 94.4
-2 2 (𝑥−, 𝑟−) -6.3 0.077 94.8 5.0 0.077 94.3 -1.4 0.090 94.6
-2 2 EM(𝑥−) -16.7 0.090 90.5 -65.0 0.097 80.5 26.5 0.107 88.3
-2 2 GEE(𝑟−) 23.5 0.167 79.7 5.4 0.204 91.6 4.3 0.207 94.7
-2 2 cc 109.7 0.400 84.0 -37.9 0.469 94.0 5.6 0.610 91.0

-2 -2 (𝑥+, 𝑟+) 0.1 0.060 95.4 0.1 0.072 95.1 0.3 0.086 94.6
-2 -2 (𝑥+, 𝑟−) 0.0 0.066 94.3 0.8 0.071 94.9 0.2 0.091 94.7
-2 -2 (𝑥−, 𝑟+) 1.2 0.062 94.7 0.6 0.079 94.8 -0.9 0.087 94.5
-2 -2 (𝑥−, 𝑟−) -12.4 0.076 93.4 8.4 0.077 94.1 2.0 0.087 94.2
-2 -2 EM(𝑥−) -10.6 0.088 91.4 -85.2 0.097 73.5 26.1 0.100 89.4
-2 -2 GEE(𝑟−) -34.1 0.238 74.6 -3.7 0.272 94.4 2.7 0.269 95.4
-2 -2 cc -219.6 0.784 78.6 -27.0 1.065 97.2 0.0 0.930 94.9

Relative bias defined by (
¯̂
𝛽 − 𝛽𝑡𝑟𝑢𝑒)/𝛽𝑡𝑟𝑢𝑒 × 100.

SD is the standard deviation for the 2000 times simulation, which is defined by (2000−1)−1
∑2000

𝑖=1 (𝛽(𝑖)− ¯̂
𝛽)2, where

𝛽(𝑖) is the 𝑖th simulation result, and ¯̂
𝛽 = 2000−1

∑2000
𝑖=1 𝛽(𝑖).
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Table 3: Empirical bias, standard deviation and coverage probabilities for seven approaches to
estimation and inference with incomplete covariate and response data (𝜌 = 0.0)

𝛽0 𝛽1 𝛽2

𝛾1 𝛼2 Method Bias% SD CP% Bias% SD CP% Bias% SD CP%

2 2 (𝑥+, 𝑟+) 0.3 0.091 94.8 0.4 0.099 94.5 0.2 0.082 94.5
2 2 (𝑥+, 𝑟−) 0.7 0.094 94.5 1.0 0.097 94.6 1.2 0.086 94.8
2 2 (𝑥−, 𝑟+) 0.5 0.090 95.2 -0.4 0.100 94.9 -0.8 0.086 95.0
2 2 (𝑥−, 𝑟−) 1.3 0.090 95.4 0.4 0.097 94.4 -0.2 0.082 95.1
2 2 EM(𝑥−) 28.4 0.108 91.5 -96.6 0.114 75.1 -3.0 0.081 94.6
2 2 GEE(𝑟−) 2.2 0.80 93.9 -0.6 0.208 95.6 -1.0 0.206 95.3
2 2 cc 52.0 0.508 94.0 -40.8 0.599 92.0 4.5 0.565 96.0

2 -2 (𝑥+, 𝑟+) 0.1 0.089 94.8 0.2 0.098 94.5 0.1 0.079 94.6
2 -2 (𝑥+, 𝑟−) -0.4 0.089 94.4 0.9 0.099 94.7 0.9 0.080 94.8
2 -2 (𝑥−, 𝑟+) -0.3 0.089 94.6 -0.2 0.098 94.2 -0.4 0.080 94.9
2 -2 (𝑥−, 𝑟−) -0.0 0.089 94.7 -0.6 0.097 94.8 -0.1 0.081 94.5
2 -2 EM(𝑥−) 49.1 0.102 84.9 -109.0 0.106 71.5 -12.0 0.079 93.5
2 -2 GEE(𝑟−) 3.8 0.225 95.2 3.2 0.259 94.3 2.8 0.259 94.2
2 -2 cc -157.7 0.828 85.7 -6.8 1.021 93.3 -19.0 1.356 94.5

-2 2 (𝑥+, 𝑟+) 0.3 0.060 94.9 0.5 0.078 94.3 0.2 0.090 94.5
-2 2 (𝑥+, 𝑟−) 0.3 0.059 94.8 0.0 0.080 94.5 -0.3 0.091 94.7
-2 2 (𝑥−, 𝑟+) 0.4 0.060 94.7 -0.1 0.079 94.5 -0.6 0.091 94.4
-2 2 (𝑥−, 𝑟−) -0.1 0.062 94.7 0.5 0.084 94.8 -0.2 0.091 94.3
-2 2 EM(𝑥−) 59.3 0.080 80.2 -68.5 0.093 84.4 1.2 0.088 94.4
-2 2 GEE(𝑟−) -3.0 0.161 94.5 1.4 0.203 94.5 1.3 0.206 94.4
-2 2 cc 46.7 0.291 96.0 -58.8 0.501 93.0 -0.1 0.450 99.0

-2 -2 (𝑥+, 𝑟+) 0.1 0.056 94.9 -0.3 0.077 94.5 -0.2 0.080 94.8
-2 -2 (𝑥+, 𝑟−) -0.3 0.057 94.8 -0.2 0.077 94.7 0.7 0.081 94.5
-2 -2 (𝑥−, 𝑟+) 0.2 0.059 94.4 0.6 0.077 95.2 -0.3 0.080 94.2
-2 -2 (𝑥−, 𝑟−) -0.0 0.060 95.3 0.2 0.074 95.1 0.0 0.085 94.7
-2 -2 EM(𝑥−) 69.4 0.081 74.7 -94.1 0.098 74.7 -8.2 0.080 93.8
-2 -2 GEE(𝑟−) 1.9 0.241 94.6 1.1 0.287 94.3 2.8 0.281 94.2
-2 -2 cc -18.1 0.820 88.6 -14.8 1.087 96.5 1.1 1.101 94.4

Relative bias defined by (
¯̂
𝛽 − 𝛽𝑡𝑟𝑢𝑒)/𝛽𝑡𝑟𝑢𝑒 × 100.

SD is the standard deviation for the 2000 times simulation, which is defined by (2000−1)−1
∑2000

𝑖=1 (𝛽(𝑖)− ¯̂
𝛽)2, where

𝛽(𝑖) is the 𝑖th simulation result, and ¯̂
𝛽 = 2000−1

∑2000
𝑖=1 𝛽(𝑖).
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the covariate model; while for fixed 𝛾1 that are not very close to 0, the relative biases change big

as 𝛼2 changes, indicating that the estimate is more sensitive to the misspecification of the missing

data model.
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Figure 1: Asymptotic percent relative bias of 𝛽1 with misspecified covariate model and missing
data model

In summary, estimation of the response parameters is generally sensitive to misspecification of

the missing data model and covariate model, although the degree of the sensitivity could be varying

for different kinds of misspecification. Our asymptotic studies also suggest that if the missing data

model is modeled approximately correct, then there is very good chance that the proposed method

will reduce the bias with the covariate model is misspecified.
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Figure 2: Asymptotic percent relative bias of 𝛽2 with misspecified covariate model and missing
data model
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5 Application to an Alzheimer’s Disease Study

We apply the proposed method to the National Alzheimer’s Coordinating Center (NACC) Uniform

Data Set (UDS). One of the goal of the study is to investigate the risk factors that influence the

onset of dementia. The response is the diagnostic of dementia (Yes/No). The covariates that may

influence the status of dementia include sex, congestive heart failure (CVCHF, yes/no), family

history of dementia (FHDEM, yes/no), diabetes (yes/no), behavioral assessment (depression or

dysphoria, yes/no), hypertension (yes/no), education (years), Mini-Mental State Exam (MMSE)

score, and age. There are 16223 subjects from 29 Alzheimer’s Disease Centers included at the

entry of this study. Follow-up visits for subjects are scheduled at approximately one-year intervals,

with up to four clinical visits at present. Due to some reasons, there are some missing data for

the response and the behavioral assessment covariate. There are 8724 subjects with complete

data observed. About 11.9% subjects miss both the response and behavioral assessment; about

31.2% subjects miss the response but observe behavioral assessment; about 3.2% subjects miss

the behavioral assessment but observe the response; and about 53.7% subjects observe both the

response and the behavioral assessment covariate.

Consider the regression model for the response process

logit 𝜇𝑖𝑗 = 𝑢′
𝑖𝑗𝛽

where 𝑢𝑖𝑗 is the covariate vector at time point 𝑗, which include the function of sex, CVCHF,

FHDEM, diabetes, depression, hypertension, education, MMSE, and age.

For the missing indicators, we build regression models

log

(
𝜆𝑖𝑗𝑘

𝜆𝑖𝑗0

)
= 𝑣′𝑖𝑗𝑘𝛼𝑘, 𝑘 = 1, 2, 3,

where 𝑣𝑖𝑗𝑘 include function of history of the missing indicators, sex, CVCHF, FHDEM, diabetes,

depression, hypertension, education, MMSE, and age.
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For the covariate, we build model

logit 𝜔𝑖𝑗 = 𝑤′
𝑖𝑗𝛾, 𝑗 > 1,

where 𝜔𝑖𝑗 is the conditional probability that patient 𝑖 at time 𝑗 is depressed given the covariate

vector 𝑤𝑖𝑗 which may include function of history of the covariate, sex, CVCHF, FHDEM, diabetes,

depression, hypertension, education, MMSE, and age.

In line with the simulation study, here we use three methods to analyze the data. The first

method, labeled “EM”, is the EM algorithm; the second method, labeled “WEE”, is the doubly

robust method; the third method is the complete case analysis; the results are reported in Table

4. The complete case (CC) method reveal that sex has no significant effect on the dementia,

but the EM and the WEE methods reveal that it is significant; all the three methods reveal that

CVCHF has no significant impact on the dementia, depression has a negative effect on the onset of

dementia, MMSE has a positive effect to protect the onset of dementia, diabetes and hypertension

have positive effects to protect the onset of dementia; for the family history of dementia, the CC

analysis indicates that it has no significant effect, but the EM and WEE method analyses indicate

that it has a negative effect on the onset of dementia; for the education level, the EM and WEE

methods reveal that it has no significant effect on the onset of dementia, but the CC analysis reveals

that it is not significant; for age, all three methods indicate that it has a negative effect on the onset

of dementia.

For the missing data model, we carry out standard diagnostic tests for the fit of regression

models by comparing a model with an expanded model to do a model selection. Here, we only

list the results for the final model without reporting the tables due to the limiting space. Signif-

icance of the previous missing indicator indicates that there exists strong series dependence; sex,

CVDHF, DEPD, MMSE, FHDEM, diabetes, hypertension, education, age and the observed previ-

ous response are also significant in some missing data models, indicating that data are not missing

completely at random.
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Table 4: Parameter estimate for the national Alzheimer’s coordinating center uniform dataset:

response models

EM WEE CC

Parameter Est. SE p Est. SE p Est. SE p

(Intercept) -0.104 0.108 0.336 -0.136 0.106 0.198 0.283 0.162 0.081

SEX(F) -0.190 0.025 <0.001 -0.203 0.025 <0.001 -0.022 0.037 0.551

CVCHF 0.003 0.064 0.968 -0.031 0.063 0.618 -0.019 0.092 0.834

DEPRESSION 0.668 0.029 <0.001 0.679 0.029 <0.001 0.416 0.039 <0.001

MMSE -0.005 0.001 <0.001 -0.002 0.001 <0.001 -0.021 0.001 <0.001

FHDEM 0.156 0.028 <0.001 0.181 0.028 <0.001 -0.067 0.040 0.099

DIABETE -0.141 0.038 <0.001 -0.124 0.038 0.001 -0.168 0.054 0.002

HYPERT -0.193 0.026 <0.001 -0.195 0.026 <0.001 -0.212 0.039 <0.001

EDUC -0.003 0.001 0.006 -0.002 0.001 0.040 0.002 0.002 0.252

AGE 0.007 0.001 <0.001 0.006 0.001 <0.001 0.013 0.002 <0.001

6 Discussion

The consistent estimates of longitudinal data with both missing response and missing covariates

under missing at random depend on the correct specification of the missing data model or the

covariate model. Likelihood-based method is robust to the misspecification of the missing data

process model, while the weighted estimating equation method is robust to the misspecification of

the covariate model. In this paper we develop a doubly robust estimate method, which is robust to

the misspeficiation of the missing data model or the misspecification of the covariate model, but

not both. Simulation studies have shown that, subject to the correct specification of the response

model, the estimators are consistent and empirical studies have shown that there is negligible bias

in finite samples, when the missing data model is correctly specified or the covariate model is

correctly specified.

The asymptotic studies have provided insight into the nature of the biases one can expect with
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different types of model misspecification, which suggests that there is a very good chance that our

proposed method will reduce the bias with the covariate model is misspecified and the missing data

model is approximately correct. Use of model diagnostics for the missing data process, perhaps

most easily carried out in the MAR setting through model expansion, is warranted. It appears that

empirically there is often little price to pay for introducing additional covariates into the missing

data regression models. This is comforting since the more comprehensive the missing data model

the more plausible it is that there is no residual dependence on the missing response, say. To

provide a final check against the effects of data MNAR, sensitivity analyses can be carried out as

described by Rotnitzky et al. (1998) and Scharfstein et al. (1999). It is generally not possible to

check formally for the presence of a MNAR mechanism, so sensitivity analysis are required if this

is a serious concern.

We focussed here primarily on estimation and inference regarding one covariate is subject to

missing. Multiple covariates subject to missing are very common in practice. A future research

is to extend this method to the multiple missing covariates problem. The idea is that we build

missing data models to construct the weights in the weighted estimating equations, and we also

need to build joint models for the covariates that are subject to missing, which is challenge in

practice, especially for missing covariates with both continuous and categorical.

Appendix: Proof of the Doubly Robust Estimation Property and

Theorem 1

Proof of the doubly robust estimation property.

Using the first Taylor series expansion, it can be shown that

𝑛1/2(𝜃 − 𝜃) ≈ 𝑛
{
− ∂𝐸[𝑆(𝜃)]

∂𝜃

}−1

𝑛−1/2𝑆(𝜃),

which implies that

𝑛1/2(𝛽 − 𝛽) ≈ 𝑛𝐼11𝑛−1/2𝑆1(𝜃) + 𝑛𝐼12𝑛−1/2𝑆2(𝜃) + 𝑛𝐼13𝑛−1/2𝑆3(𝛼), (17)
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where 𝐼11, 𝐼12, and 𝐼13 are the appropriate submatrices of {−∂𝐸[𝑆(𝜃)]/∂𝜃}−1.

1. Missing data model is correctly specified

Suppose missing data model and 𝑝(𝑦𝑖∣𝑥𝑖, 𝑧𝑖) are correctly specified, but the distribution

of (𝑥𝑖∣𝑧𝑖) is not correctly specified. Then, in (9) we rewrite 𝐸(𝑌 𝑚
𝑖 ,𝑋𝑚

𝑖 ∣𝑌 𝑜
𝑖 ,𝑋𝑜

𝑖 ,𝑍𝑖,𝑅𝑖)[⋅] and

𝐸(𝑋𝑚
𝑖 ∣𝑋𝑜

𝑖 ,𝑍𝑖,𝑅𝑖)[⋅] as 𝐸∗
(𝑌 𝑚

𝑖 ,𝑋𝑚
𝑖 ∣𝑌 𝑜

𝑖 ,𝑋𝑜
𝑖 ,𝑍𝑖)

[⋅] and 𝐸∗
(𝑋𝑚

𝑖 ∣𝑋𝑜
𝑖 ,𝑍𝑖)

[⋅] because of the MAR assumption,

where the subscript “∗” represents the expectation taken over the wrongly specified distribu-

tion for (𝑦𝑖, 𝑥𝑖∣𝑧𝑖) and (𝑥𝑖∣𝑧𝑖).

If the missing data model is correctly specified, we have 𝐸[𝛿𝑖𝑗𝑘] = 1, and thus 𝐸[Δ𝑖] = 11
′,

𝐸[𝑀𝑖] = 𝑉 −1
𝑖 , and 𝐸[𝑁𝑖] = 0. So, we have 𝐸[𝐷𝑖𝑀𝑖(𝑌𝑖 − 𝜇𝑖)] = 𝐸[𝐷𝑖𝑉

−1
𝑖 (𝑌𝑖 − 𝜇𝑖)] = 0,

and 𝐸{𝐸∗
(𝑌 𝑚

𝑖 ,𝑋𝑚
𝑖 ∣𝑌 𝑜

𝑖 ,𝑋𝑜
𝑖 ,𝑍𝑖,𝑅𝑖)

[𝐷𝑖𝑁𝑖(𝑌𝑖−𝜇𝑖)]} = 𝐸{𝐸∗
(𝑌 𝑚

𝑖 ,𝑋𝑚
𝑖 ∣𝑌 𝑜

𝑖 ,𝑋𝑜
𝑖 ,𝑍𝑖)

[𝐷𝑖 ⋅0 ⋅ (𝑌𝑖−𝜇𝑖)]} = 0,

if the distribution of (𝑦𝑖∣𝑥𝑖, 𝑧𝑖) is correctly specified. That means 𝐸[𝑆1(𝜃)] = 0. It is easy to

show that 𝐸[𝑆3(𝛼)] = 0.

Now if the distribution of (𝑥𝑖∣𝑧𝑖) is incorrectly specified, then 𝐸[𝑆2(𝜃)] ∕= 0. However, the

second term on the right hand side of (17) still has expectation equal to 0. Using the theory

of partitioned matrices, it can be shown that 𝐼12 = 0 if 𝐸[∂𝑆1(𝜃)/∂𝛾] = 0. Note that the

first term of 𝑆1(𝜃) does not depend on 𝛾, so the derivative is equal to 0, hence

𝐸
{∂𝑆1𝑖(𝜃)

∂𝛾

}
= 𝐸

{∂𝐸∗
(𝑌 𝑚

𝑖 ,𝑋𝑚
𝑖 ∣𝑌 𝑜

𝑖 ,𝑋𝑜
𝑖 ,𝑍𝑖)

𝐸(𝑅𝑖∣𝑌𝑖,𝑋𝑖,𝑍𝑖)[𝐷𝑖𝑁𝑖(𝑌𝑖 − 𝜇𝑖)]

∂𝛾

}
= 𝐸

{∂𝐸∗
(𝑌 𝑚

𝑖 ,𝑋𝑚
𝑖 ∣𝑌 𝑜

𝑖 ,𝑋𝑜
𝑖 ,𝑍𝑖)

[0]

∂𝛾

}
= 0.

Thus all the terms on the right hand side of (17) have expectation equal to 0, and 𝛽 is

asymptotically unbiased.

2. 𝑝(𝑥𝑖∣𝑧𝑖) correctly specified.

Suppose that the distribution of (𝑦𝑖∣𝑥𝑖, 𝑧𝑖) and (𝑥𝑖∣𝑧𝑖) are correctly specified but the missing

data model is incorrectly specified. To be specific, suppose that 𝜋𝑖𝑗𝑘 is misspecified as 𝜋∗
𝑖𝑗𝑘,
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and 𝜋𝑥
𝑖𝑗 is misspecified as 𝜋𝑥∗

𝑖𝑗 , which are still functions of 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖. We define Δ̃𝑖 = [𝛿𝑖𝑗𝑘]

with 𝛿𝑖𝑗𝑘 = [𝑃 (𝑅𝑖𝑗 = 1, 𝑅𝑖𝑘 = 3∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖) + 𝑃 (𝑅𝑖𝑗 = 3, 𝑅𝑖𝑘 = 3∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖)]/𝜋
∗
𝑖𝑗𝑘 for

𝑘 ∕= 𝑗 and 𝛿𝑖𝑗𝑗 = 𝑃 (𝑅𝑖𝑗 = 3∣𝑌𝑖, 𝑋𝑖, 𝑍𝑖)/𝜋
∗
𝑖𝑗 , and

Δ̃∗
𝑖 = diag(𝑃 (𝑅𝑖𝑗 = 2 or 3∣𝑋𝑖, 𝑌𝑖, 𝑍𝑖)/𝜋

𝑥∗
𝑖𝑗 , 𝑗 = 1, . . . , 𝐽).

We show that 𝐸[𝑆1(𝜃)] = 0, 𝐸[𝑆2(𝜃)] = 0 and 𝐼13 = 0, implying that each term on the right

hand side of (17) has 0 expectation and 𝛽 is asymptotically unbiased.

Note that expectation of the first term of 𝑆1𝑖(𝜃) is

𝐸[𝐷𝑖𝑀𝑖(𝑌𝑖 − 𝜇𝑖)] = 𝐸[𝐷𝑖𝐹
−1/2
𝑖 [𝐶𝑖 ∙ Δ̃𝑖]𝐹

−1/2
𝑖 (𝑦𝑖 − 𝜇𝑖)].

If both 𝑝(𝑦𝑖∣𝑥𝑖, 𝑧𝑖) and 𝑝(𝑥𝑖∣𝑧𝑖) are correctly specified, then the joint probability 𝑝(𝑦𝑖, 𝑥𝑖∣𝑧𝑖)
is correctly specified, and hence the expectation of the second term of 𝑆1𝑖(𝜃) is

𝐸{𝐸(𝑌 𝑚
𝑖 ,𝑋𝑚

𝑖 ∣𝑌 𝑜
𝑖 ,𝑋𝑜

𝑖 ,𝑍𝑖,𝑅𝑖)[𝐷𝑖𝑁𝑖(𝑌𝑖 − 𝜇𝑖)]}

= 𝐸{𝐸(𝑌 𝑚
𝑖 ,𝑋𝑚

𝑖 ∣𝑌 𝑜
𝑖 ,𝑋𝑜

𝑖 ,𝑍𝑖)[𝐷𝑖𝐹
−1/2
𝑖 [𝐶𝑖 ∙ (11′ − Δ̃𝑖)]𝐹

−1/2
𝑖 (𝑌𝑖 − 𝜇𝑖)]}.

Thus we have

𝐸[𝑆1(𝜃)] = 𝐸[𝐷𝑖𝑀𝑖(𝑌𝑖 − 𝜇𝑖)] + 𝐸[𝐷𝑖𝑁𝑖(𝑌𝑖 − 𝜇𝑖)]

= 𝐸[𝐷𝑖𝐹
−1/2
𝑖 𝐶−1

𝑖 𝐹
−1/2
𝑖 (𝑌𝑖 − 𝜇𝑖)]

= 𝐸[𝐷𝑖𝑉
−1
𝑖 (𝑌𝑖 − 𝜇𝑖)]

= 0

if the distribution of (𝑦𝑖∣𝑥𝑖, 𝑧𝑖) is correctly specified. Similarly, we can prove that 𝐸[𝑆2𝑖(𝜃)] =

0.

If the missing data model is misspecified, then 𝐸[𝑆3(𝛼)] ∕= 0. However, the third term on the

right hand side of (17) still has expectation 0 if 𝐼13 = 0. By using the theory of partitioned

26

http://biostats.bepress.com/uwbiostat/paper373



matrices, we can show that 𝐼13 = 0 if 𝐸[∂𝑆1(𝜃)/∂𝛼] = 0. Note that

𝐸
{∂𝑆1𝑖(𝜃)

∂𝛼𝑗

}
= 𝐸

{
𝐷𝑖𝐹

−1/2
𝑖 [𝐶−1

𝑖 ∙ ∂Δ𝑖

∂𝛼𝑗

]𝐹
−1/2
𝑖 (𝑌𝑖 − 𝜇𝑖)

}
+𝐸
{
𝐸(𝑌 𝑚

𝑖 ,𝑋𝑚
𝑖 ∣𝑌 𝑜

𝑖 ,𝑋𝑜
𝑖 ,𝑍𝑖)[𝐹

−1/2
𝑖 [𝐶−1

𝑖 ∙ (− ∂Δ𝑖

∂𝛼𝑗

)
]𝐹

−1/2
𝑖 (𝑌𝑖 − 𝜇𝑖)]

}
= 0

for 𝑗 = 1, . . . , 𝑝3, where 𝑝3 = dim(𝛼). Then all the three terms on the right hand side of

(17) have expectation 0, and 𝛽 is asymptotically unbiased if the distribution of (𝑦𝑖∣𝑥𝑖, 𝑧𝑖) and

(𝑥𝑖∣𝑧𝑖) are correctly specified.

Proof of Theorem 1.

The regularity conditions required in Theorem 1 include standard conditions that are assumed for

the estimating function theory, plus the requirement for the missing data processes and covariate

process. Specifically, we require 𝑃 (𝑅𝑖𝑗 = 3∣�̄�𝑖𝑗, 𝑌𝑖, 𝑋𝑖, 𝑍𝑖) is bounded away from zero. This

condition ensures that the estimating functions in (7) are bounded, which is necessary for a
√
𝑛-

consistent estimator. Other routine conditions are similar to those in Robins, Rotnitzky, and Zhao

(1995) with a proper modification.

By standard Taylor expansion arguments we have that

𝑛1/2(𝛾 − 𝛾0) = −𝐼−1
2 (𝛾0)𝑛

−1/2

𝑛∑
𝑖=1

𝑆2𝑖(𝛾0) + 𝑜𝑝(1) (18)

and

𝑛1/2(�̂�− 𝛼0) = −𝐼−1
3 (𝛼0)𝑛

−1/2

𝑛∑
𝑖=1

𝑆3𝑖(𝛼0) + 𝑜𝑝(1). (19)

Furthermore, based on the proof of the doubly robust properties, we have 𝐸[𝑆1𝑖(𝛽0, 𝛾0, 𝛼0)] = 0 if

either the missing data model or the covariate model is correctly specified. Thus, another Taylor
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expansion gives

0 = 𝑛−1/2

𝑛∑
𝑖=1

𝑆1𝑖(𝛽0, 𝛾0, 𝛼0) + Γ(𝛽0, 𝛾0, 𝛼0)𝑛
1/2(𝛽 − 𝛽0) + 𝐼12(𝛽0, 𝛾0, 𝛼0)𝑛

1/2(𝛾 − 𝛾0)

+𝐼13(𝛽0, 𝛾0, 𝛼0)𝑛
1/2(�̂�− 𝛼0) + 𝑜𝑝(1). (20)

Replacing (18) and (19) into (20), we obtain

0 = 𝑛−1/2

𝑛∑
𝑖=1

𝑆1𝑖(𝛽0, 𝛾0, 𝛼0) + Γ(𝛽0, 𝛾0, 𝛼0)𝑛
1/2(𝛽 − 𝛽0)

−𝐼12(𝛽0, 𝛾0, 𝛼0)𝐼
−1
2 (𝛾0)𝑛

−1/2

𝑛∑
𝑖=1

𝑆2𝑖(𝛾0)

−𝐼13(𝛽0, 𝛾0, 𝛼0)𝐼
−1
3 (𝛼0)𝑛

−1/2

𝑛∑
𝑖=1

𝑆3𝑖(𝛼0) + 𝑜𝑝(1).

If Γ(𝛽0, 𝛾0, 𝛼0) is nonsingular, we have

𝑛1/2(𝛽 − 𝛽0) = −Γ−1(𝛽0, 𝛾0, 𝛼0)𝑛
−1/2

𝑛∑
𝑖=1

𝑄𝑖(𝛽0, 𝛾0, 𝛼0) + 𝑜𝑝(1).

Then the asymptotic distribution of 𝑛1/2(𝛽 − 𝛽0) follows by the Slutsky’s theorem and the central

limit theorem.
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