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Non-homogeneous Markov Process Models with Incomplete Observations:

Application to an Dementia Disease Study

Abstract

Multi-state models provide a convenient framework for characterizing disease processes.

In many settings, however, individuals are only observed at periodic clinic visits and so

the precise times of transitions are not observed. Further, patients may choose when they

want to visit the clinics, which creates the incomplete data problem. While Markov process

models provide a useful tool for describing disease progression, the literature mainly fo-

cuses on time homogeneous processes, and limited tools are available for dealing with non-

homogeneity. In this paper we develop methods to deal with non-homogeneous Markov

processes with incomplete observations through time scale transformation. Maximum like-

lihood estimation via an EM algorithm is advocated for parameter estimation. Simulation

studies demonstrate that the proposed method works well under a variety of situations. The

proposed method is applied to investigate risk factors for transition rates among normal

cognition, mildly cognitive impairment (MCI), and death.

KEYWORDS: Likelihood; missing at random; missing not at random; Markov model; non-

homogeneous; transition intensity.

http://biostats.bepress.com/uwbiostat/paper372



1. INTRODUCTION

In studies of Alzheimer’s disease (AD), mild cognitive impairment (MCI) is recognized as

an important transitional state between normal cognition and dementia. One of the objec-

tives of the study is to model rates and risk factors for the transitions among these states. In

clinical studies, cognitive status is often assessed only at periodic follow-up visits, with ex-

act times of transition and trajectory of states visited between observations unknown, which

gives rise to interval data. Multi-state models provide a convenient way to characterize the

movement of individuals among distinct states. With continuous time multi-state mod-

els, transition intensities are often of primary interest, and these are perhaps most widely

modeled using Markov models (e.g., Bartholomew 1983; Singer and Spilerman 1976a,

1976b; Wasserman 1980). Various methods based on Markov models have been proposed

in the literature, including discrete time (e.g., Albert and Waclawiw 1998) and continu-

ous time models (Andersen et al. 1993). For continuous times models, when observation

times are not evenly spaced, Kalbfleish and Lawless (1985, 1989) proposed an effective

method for Markov time homogeneous or power function transition intensities. Cook et al.

(2004) described a conditional Markov model with multivariate random effects to handle

clustered, conditionally Markov, multi-state processes. Motivated by studies of smoking

behaviour, Cook, Kalbfleisch and Yi (2002) developed other extensions of Markov models

which accommodate heterogeneity in the patterns of movement between states by allowing

subject-specific absorbing states.

Most applications assume a homogeneous process; that is, the transition probabilities

only depend on the elapsed time between observations. This assumption is not satisfied

when transition probabilities depend on time from the process origin. The general method

to deal with a non-homogeneous model is straightforward, and limited work has been de-

voted to deal with non-homogeneous Markov process models. Kalbfleisch and Lawless

(1985) proposed a method for modeling non-homogeneous multi-state data under panel
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observation, in which the non-homogenous intensity matrix is a product of a baseline ho-

mogeneous intensity matrix and a function of time. Gentleman et al. (1994) considered

piecewise constant transition intensities to deal with non-homogeneous models. A number

of authors have used piecewise homogeneous processes to model temporal homogeneity

with applications (e.g., Saint-Pierre et al. 2003; Ocana-Riola 2005; Perez-Ocon, Ruiz-

Castro and Gamiz-Perez 2001). Hubbard, Inoue and Fann (2008) considered a time trans-

formation method to deal with the non-homogeneity. This method allows for variation in

transition intensities by assuming that the time-varying transition intensity matrix arises

from the product of a baseline transition intensity matrix and a scalar function of time.

In cohort studies, clinical assessments may be scheduled before the study, but patients

may choose when they want to visit clinics for clinical examination according to their

degree of disease activity. Also, there may be other reasons that patients cannot make a

visit. This creates a problem somewhat akin to incomplete data arising in longitudinal

studies. In this case, data may be missing at random (MAR) (Laird 1988; Little and Rubin

2002) if missing status depends on observed (typically past) responses, or missing not at

random (MNAR), where the missing status may depend on the latent disease status. For

example, in AD studies, patients may choose to visit the clinics according to their past

observed disease status or the present disease status, which creates the MAR or MNAR

mechanism.

Little work in the literature has dealt with incomplete data under the framework of

non-homogenous Markov process. Under a MAR or MNAR mechanism, the naı̈ve anal-

ysis method such as the complete case analysis can give biased inferences. In this paper,

we provide a general method to handle incomplete data for the non-homogeneous Markov

processes using the time transformation method (Hubbard, Inoue and Fann 2008). Our

proposed method is very appealing in that it can deal with all types of missing data mecha-

nisms and allow variation in transition intensities under the framework of non-homogeneity.
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Maximum likelihood methods are used with parameter estimation carried out via an EM al-

gorithm (Dempster et al. 1977), and variance estimation is performed using Louis’ method

(Louis 1982).

In the literature of AD studies, time-dependent increases in the rate of progression of

disease are a prominent feature. Yesavage et al. (2002), and Harezlak, Gao, and Hui (2003)

studied the Markov process models using the piecewise constant transition intensities, and

Salazar et al. (2007) addressed a discrete time Markov model for AD through the piecewise

constant transition intensities. Disadvantages of this approach are that it requires a large

study population to obtain precise estimates because transition rates must be estimated

separately in each group. Additionally, transition rates must be assumed constant with

each groups. Our proposed method differs from the piecewise constant model in its use of

a continuous time model, allowing the transition rates change by time. Further, little work

devoted to the missing data problem in the AD studies.

The remainder of this paper is organized as follows. Section 2 reviews models and esti-

mation for continuous time models. Section 3 and Section 4 describe methods for parame-

ter estimation when data are MAR and MNAR. Empirical studies including the simulation

studies and sensitivity analyses are implemented in Section 5 to study the performance of

the proposed method. Data arising from a dementia disease study are analyzed with the

proposed method in Section 6. We conclude the paper with a general discussion in Section

7.

2. NOTATION AND MODEL FORMULATION

2.1 Non-homogeneous Markov Process Model via Time Transformation

Suppose there are K states, 1, 2, . . . , K, and let Y (u) represent the state occupied at time

u ≥ 0, and H(u) = {Y (v), 0 ≤ v < u} denote the history of the response process which

records the states occupied over the interval [0, u). The transition probability function is

3
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written generally as P (Y (u + v) = k|Y (v) = k̃,H(v)) for u, v > 0, but under a Markov

model this simplifies to P (Y (u + v) = k|Y (v) = k̃), which we denote compactly as

Pk̃k(v, v + u). The Markov transition intensity function at time u for transitions from state

k̃ to state k, is

q∗
k̃k

(u) = lim
∆u→0

P (Y (u + ∆u) = k|Y (u) = k̃)

∆u
, k̃ 6= k,

q∗
k̃k̃

(u) = −
∑

k 6=k̃

q∗
k̃k

(u) ,

(Cox and Miller 1977). A multi-state model with state space {1, 2, . . . , K} can then be

described via the transition intensity matrix Q∗(u) with elements q∗
k̃k

(u), k̃, k = 1, . . . , K.

To model the dependence of the transition intensities on risk factors, we may intro-

duce covariates by expressing the transition intensities as functions of time (in the non-

homogeneous case) and the covariates. For a given individual i, we often adopt models of

the form

q∗
ik̃k

(u) = q∗
0k̃k

(u)g(Xik̃k; βk̃k),

where q∗
ik̃k

(u) is the k̃k element of the transition intensity matrix Q∗
i (u), q∗

0k̃k
(u) is the

baseline transition intensity, Xik̃k is the time-invariant covariate vector, and g(·; ·) is any

positive function. Let Xi = (X ′
ik̃k

, k̃, k = 1, . . . , K)′.

Let P (v, u + v) denote the K × K transition probability matrix from time v to time

v + u. For a homogeneous process we assume q∗
k̃k

(u) = q∗
k̃k

, and Pk̃k(v, v + u) = Pk̃k(u)

for k̃, k = 1, . . . , K. In the matrix form, we have

P (u) = exp(Q∗u).

For the non-homogeneous process, we can do some proper time scale transformation

such that the process is homogeneous afterwards (Hubbard, Inoue, and Fann 2008). Specif-

ically, let t = h(u) be a time transformation on which the process is homogeneous with

4
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intensity matrix Q, then

P (u1, u2) = P (t2 − t1) = exp{Q(t2 − t1)}.

It is easy to show that Q∗(u) = Qdh(u)/du, which implies that time scale transformations

leading to a time homogeneous Markov process are possible if the non-homogeneity in the

process is due to a time-varying multiplicative change in the matrix of transition intensities.

Here we assume, after the time scale transformation t = h(u), the transition intensity

matrix for subject i does not depend on time. Then, the model becomes

qik̃k(t) = q0k̃kg(Xik̃k; βk̃k),

where qik̃k is the k̃kth element of the homogeneous intensity matrix for subject i, Qi. Let

Pik̃k(t) denote the transition probability for subject i from states k̃ to k given the covariate

Xik̃k.

The choice of h(·) is very flexible, and we require h(u) ≥ 0 and dh(u)/du ≥ 0, since

h(u) defines a time scale. Often, h(·) is selected by involving some parameter φ. The two

examples used widely in practice, provided by Hubbard, Inoue and Fann (2008), are the

exponential time transformation h(u) = uφu and the nonparametric time transformation

h(u) = uφ(u), where

φ(u) =
d∑

m=1

c(u)φm

{
1

γ
K(

u− ui

γ
)

}
,

c(u) =

{
d∑

k=1

1

γ
K(

u− uk

γ
)

}−1

.

This kernel smoother has knots at uk, k = 1, . . . , d; smoothing parameter φ satisfies con-

straints φk > 0. To make identifiability, we often assume φ1 = 1 or φ(0) = 0.

2.2 Maximum Likelihood Estimation under Independent Inspection Process for Com-

plete Data

With continuous time models and observation schemes, the response process {Y (u), u >

0} may be observed at any time point u over the period observation. If the time of as-

5
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sessment u does not depend on the state of the underlying response process Y , we can

base inference on the response process conditional on the assessment times (Grüger, Kay

and Schumacher 1991), and this is typically an implicit assumption in standard analyses.

In this paper, we consider the problem in which subjects are scheduled to be examined at

pre-specified assessment times denoted u1 < u2 < · · · < uJ . This reflects many common

clinical settings where patients are expected to return for regular follow-up assessment on

annual, say, basis. This enable us to adopt a convenient frame work employed to describe

incomplete longitudinal data since it is then only necessary to indicate whether each as-

sessment as made.

Let Yi = (Yi(u1), . . . , Yi(uJ))′ be a health state vector for subject i at each observation

time points, which takes values 1, . . . , K, i = 1, . . . , n. Let β denote the parameter vector

in the intensity matrix Qi0, as well as the parameter φ in the time transformation function

h(u; φ). Using the time transformation and the homogeneity of the process on the new time

scale we can express the likelihood as, conditional on the initial states,

L(β; Y ) =
n∏

i=1

J∏
j=2

P{Yi(h(uj; φ))|Yi(h(uj−1; φ)), Xi}

given the covariate vector Xi. Maximum likelihood estimation can be obtained via the

Fisher-scoring method.

3. ESTIMATION PROCEDURE UNDER THE MISSING AT RANDOM

MECHANISM

Here we focus on the likelihood based method in which we need to specify the joint dis-

tribution of the observed response variable Y
(o)
i and the missing data indicators Ri, given

the covariates Xi. Here Yi is written as (Y
(o)
i , Y

(m)
i ) to implicitly indicate observed and

missing components, and Ri = (Ri(u1), . . . , Ri(uJ))′ where Ri(uj) = 1 if the response

Yi(uj) is observed, and 0 otherwise. The joint density of the observed data (y
(o)
i , ri) can be

6

http://biostats.bepress.com/uwbiostat/paper372



written as

f(ri, y
(o)
i |Xi; α, β) =

∫
f(ri|y(o)

i , y
(m)
i , Xi; α)f(y

(o)
i , y

(m)
i |Xi; β)dy

(m)
i ,

where α and β are the associated parameters for the missing data process and response

process respectively. Then the joint likelihood for (α, β) is

L(α, β; y(o), r) =
n∏

i=1

∫
f(ri|y(o)

i , y
(m)
i , Xi; α)f(y

(o)
i , y

(m)
i |Xi; β)dy

(m)
i . (1)

When the missing data mechanism is MCAR or MAR, this likelihood becomes

L(α, β; y(o), r) =
n∏

i=1

{
f(ri|y(o)

i , Xi; α)

∫
f(y

(o)
i , y

(m)
i |Xi; β)dy

(m)
i

}

=
n∏

i=1

{
f(ri|y(o)

i , Xi; α)f(y
(o)
i |Xi; β)

}
.

Assuming the parameters α and β are functionally independent, then likelihood inference

for β from the likelihood L(α, β; y(o), r) is equivalent to a likelihood inference for β from

the observed likelihood

L(β; y(o)) =
n∏

i=1

f(y
(o)
i |Xi; β). (2)

Here for incomplete data with missing at random (MAR), we develop two inference

methods in the following two subsections.

3.1 A Fisher-scoring Method

Let j1 < j2 < · · · < jmi
be the ordered observed assessment time points index for subject

i. We assume data are always available in the baseline assessment, so j1 = 1. The observed

likelihood (2) can be written as

L(β; y(o)) =
n∏

i=1

mi∏
m=2

P{Yi(h(ujm ; φ))|Yi(h(ujm−1 ; φ)), Xi}

=
n∏

i=1

mi∏
m=2

K∏

k̃,k=1

{Pik̃k(h(ujm)− h(ujm−1))}I(Yi(h(ujm−1
))=k̃,Yi(h(ujm ))=k),

7
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leading to the score function

S(β) =
n∑

i=1

mi∑
m=2

K∑

k̃,k=1

I(Yi(h(ujm−1)) = k̃, Yi(h(ujm)) = k)

Pik̃k(h(ujm)− h(ujm−1))

∂Pik̃k(h(ujm)− h(ujm−1))

∂β
,

and the second derivative

∂2 log L(β; y(o))

∂β∂β′

=
n∑

i=1

mi∑
m=2

K∑

k̃,k=1

{
I(Yi(h(ujm−1)) = k̃, Yi(h(ujm)) = k)

Pik̃k(h(ujm)− h(ujm−1))

∂2Pik̃k(h(ujm)− h(ujm−1))

∂β∂β′

−I(Yi(h(ujm−1)) = k̃, Yi(h(ujm)) = k)

[Pik̃k(h(ujm)− h(ujm−1))]
2

∂Pik̃k(h(ujm)− h(ujm−1))

∂β

∂Pik̃k(h(ujm)− h(ujm−1))

∂β′

}
.

To solve S(β) = 0 in order to obtain the estimate β̂, we may, in principal, apply the

Newton-Raphson algorithm by using the observed information matrix. This requires the

availability of the second derivatives of the log-likelihood. However, the second derivatives

of the log-likelihood are tedious to derivative and program. Here we develop a Fisher-

scoring method which obviates need for the second derivatives (Kalbfleisch and Lawless,

1985) when the covariates are discrete.

Taking the expectation with respect to the conditional distribution of the response vec-

tors given the covariates, we obtain

E

{
− ∂2 log L(β; y(o))

∂β∂β′

}
=

n∑
i=1

mi∑
m=2

K∑

k̃,k=1

{
P (Yi(h(ujm−1)) = k̃|Xi)

[Pik̃k(h(ujm)− h(ujm−1))]

·∂Pik̃k(h(ujm)− h(ujm−1))

∂β

∂Pik̃k(h(ujm)− h(ujm−1))

∂β′

}

by noting that

E[I(Yi(h(ujm−1)) = k̃, Yi(h(ujm)) = k)] = P (Yi(h(ujm−1)) = k̃|Xi)·Pik̃k(h(ujm)−h(ujm−1))

and
K∑

k=1

Pik̃k(h(ujm)− h(ujm−1)) = 1.

8
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This expectation can be estimated by

M(β) =
n∑

i=1

mi∑
m=2

K∑

k̃,k=1

{
pijm−1k̃

[Pik̃k(h(ujm)− h(ujm−1))]
· ∂Pik̃k(h(ujm)− h(ujm−1))

∂β

·∂Pik̃k(h(ujm)− h(ujm−1))

∂β′

}

when covariates Xi are discrete, where pijm−1k̃ is the proportion of the subjects with co-

variate xi in state k̃ at the (jm−1)th time point.

Then an updated estimate is obtained as

β(h+1) = β(h) + [M(β(h))]−1S(β(h)), h = 0, 1, . . . ,

where M(β(h)) is assumed nonsingular. The iteration is cycled through until convergence

of β(h+1). Let β̂ denote the corresponding limit. Under the regularity conditions for max-

imum likelihood estimators,
√

n(β̂ − β) → N(0, Σ−1) as the sample size n approaches

infinity. Here Σ = E[−∂2 log Li(β; y
(o)
i )/∂β∂β′] with Li(β; y

(o)
i ) the observed likelihood

for subject i. We can estimate the asymptotic covariance matrix of β̂ by [M(β̂)]−1.

3.2 An EM Algorithm

When the number K of states is relatively small, the Fisher-scoring method described above

works well. However, if K is large, the Fisher-scoring method may become computation-

ally burdensome. In this subsection we describe an alternative method–the EM algorithm,

which is simple to implement. The complete data likelihood for subject i is given by

Li(β; yi) =
J∏

j=2

K∏

k̃,k=1

{Pik̃k(h(uj)− h(uj−1))}I(Yi(h(uj−1))=k̃,Yi(h(uj))=k),

leading to the complete data log-likelihood

`i(β; yi) =
J∑

j=2

K∑

k̃,k=1

I(Yi(h(uj−1)) = k̃, Yi(h(uj)) = k) log{Pik̃k(h(uj)− h(uj−1))} .

9
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In the expectation step (E-step), with the estimate β(h) at iteration h, we construct the

conditional expectation Q(β; β(h)) =
∑n

i=1 Qi(β; β(h)), where Qi(β; β(h)) = E[`i(β; yi)|y(o)
i ,

β(h)] =
∑

y
(m)
i

wi(yi; β
(h)) · `i(β; yi), and

wi(yi; β
(h)) =

Li(β
(h); y

(o)
i , y

(m)
i )∑

y
(m)
i

Li(β(h); y
(o)
i , y

(m)
i )

.

The maximization step (M-step) maximizes the function Q(β; β(h)) with respect to the

parameter β, and a Newton-Raphson algorithm can be used for this purpose. Alternatively,

we may employ the Fisher-scoring method discussed in Section 3.1. Specifically, the score

and the expectation of the second derivative are given by

S(β; β(h)) =
n∑

i=1

∑

y
(m)
i

wi(yi; β
(h)) · ∂`i(β; yi)/∂β,

and

M(β; β(h)) = E
{
− ∂2Q(β; β(h))

∂β∂β′

}
=

n∑
i=1

∑

y
(m)
i

wi(yi; β
(h)) · E[−∂2`i(β; yi)/∂β∂β′],

where

∂`i(β; yi)

∂β
=

J∑
j=2

K∑

k̃,k=1

I(Yi(h(uj−1)) = k̃, Yi(h(uj)) = k)

Pik̃k(h(uj))− h(uj−1)))

∂Pik̃k(h(uj)− h(uj−1))

∂β
,

and

E
{
− ∂2`i(β; yi)

∂β∂β′

}
=

J∑
j=2

K∑

k̃,k=1

{P (Yi(h(uj−1)) = k̃|Xi)

Pik̃k(h(uj)− h(uj−1))

∂Pik̃k(h(uj)− h(uj−1))

∂β

·∂Pik̃k(h(uj)− h(uj−1))

∂β′

}
.

If the covariate vector Xi are discrete, we can replace P (Yi(h(uj−1)) = k̃|Xi) by the

proportion of subjects that are in state k̃ at time point uj−1 with covariate Xi.

To obtain the variance estimates for β̂, we may apply the Louis’ method (Louis, 1982):

Σ(β̂) = M(β̂; β̂)−
n∑

i=1

∑

Y
(m)
i

wi(Yi; β̂)

(
∂`i(β̂)

∂β

)(
∂`i(β̂)

∂β

)′

+
n∑

i=1

(
∂Qi(β̂; β̂)

∂β

)(
∂Qi(β̂; β̂)

∂β

)′

,

then [Σ(β̂)]−1 is the estimate of the asymptotic covariance matrix of β̂.

10

http://biostats.bepress.com/uwbiostat/paper372



4. ESTIMATION PROCEDURE UNDER THE MISSING NOT AT RANDOM

MECHANISM

When data are MNAR, the missing data model must be specified to make valid inference

because the likelihood of the observed response Y (o) and the missing process R, (1), can not

be simplified. To exploit (1), we must characterize the missing data process and estimate

the associated parameters. We address this in the following subsection.

4.1 Modeling for the Missing Data Process

A multinomial missing data model introduced by Ibrahim et al. (2001) is often used to

specify the joint distribution of Ri through a sequence of one-dimensional conditional dis-

tributions:

P (Ri|Yi, Xi; α) =
J∏

j=2

P (Ri(uj)|R̄i(uj), Yi, Xi; α) · P (Ri(u1)|Yi, Xi; α), (3)

where R̄i(uj) = {Ri(uj−1), . . . , Ri(u1)} and α is a vector of associated parameters for the

conditional distribution. This accommodates nonmonotone patterns of missing data, and

provides a natural way to specify the joint distribution of the missing data indicators when

knowledge about the missingness of one response affects the probability of missingness of

another. Let λi(uj) = P (Ri(uj) = 1|L̄i(uj); α) denote the conditional probability that the

response is observed at time uj given L̄i(uj) = {R̄i(uj), Yi, Xi}. Typically a logistic link

may relate a linear function of L̄i(uj) to the probability of being observed at time uj for

subject i, i.e. we can specify logit λi(uj) = η(L̄i(uj); α) for certain function η(·; ·). For

example, we may consider the following model, although other forms may be well adopted

for specific applications,

logit λi(uj) = α0 + α1ri(uj−1) + α2ri(uj−1)yi(uj−1) + α3yi(uj) + α′xXi. (4)

If α3 6= 0, the missing mechanism specified by (4) leads to a MNAR mechanism; α3 = 0

but α2 6= 0 lead to a MAR mechanism; both α3 = 0 and α2 = 0 leads to a missing complete

11

Hosted by The Berkeley Electronic Press



at random (MCAR). Let θ = (β′, α′)′.

4.2 An EM Algorithm

Here we advocate the EM algorithm for parameter estimation under a MNAR mechanism.

Conditional on the initial state, the complete data likelihood for subject i is written as

Li(θ; yi, ri) =
J∏

j=2

{
(λi(uj))

ri(uj)(1− λi(uj))
1−ri(uj)

·
K∏

k̃,k=1

{Pik̃k(h(uj)− h(uj−1))}I(Yi(h(uj−1))=k̃, Yi(h(uj))=k)
}

. (5)

leading to the log-likelihood

`i(θ; yi, ri) =
J∑

j=2

{
ri(uj) log(λi(uj)) + (1− ri(uj)) log(1− λi(uj))

+
K∑

k̃,k=1

I(Yi(h(uj−1)) = k̃, Yi(h(uj)) = k) log (Pik̃k(h(uj)− h(uj−1)))
}

.(6)

In the E-step, we calculate the expectation of the complete data likelihood given the

observed data and the hth iteration parameter θ(h). That is, Q(θ; θ(h)) =
∑n

i=1 Qi(θ; θ
(h)),

where Qi(θ; θ
(h)) = E[`i(θ; yi, ri)|y(o)

i ; θ(h)] =
∑

y
(m)
i

wi(yi; θ
(h)) · `i(θ; yi, ri), and

wi(yi; θ
(h)) =

Li(θ
(h); y

(m)
i , y

(o)
i , ri)∑

y
(m)
i

Li(θ(h); y
(m)
i , y

(o)
i , ri)

.

In the M-step, we maximize Q(θ; θ(h)) to get the estimate θ(h+1). Iterate E and M step

until convergence. Denote the limit θ̂. We comment that we can still use the Fisher-scoring

method introduced in Section 3 to obtain the estimate when the covariate Xi is discrete,

which we do not need to calculate the second derivatives of the transition probabilities.

Standard errors for these parameter estimates can be calculated using the Louis’ method

(Louis 1982), which partitions the complete data information into two parts: the informa-

tion associated with the observed data and the one associated with the missing data. The
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estimated observed information matrix of θ based on Louis’ method is given by

Σ(θ̂) = −∂2Q(θ̂; θ̂)

∂θ∂θ′
−

n∑
i=1

∑

y
(m)
i

wi(yi; θ̂)

(
∂`i(θ̂; yi, ri)

∂θ

)(
∂`i(θ̂; yi, ri)

∂θ

)′

+
n∑

i=1

(
∂Qi(θ̂; θ̂)

∂θ

)(
∂Qi(θ̂; θ̂)

∂θ

)′

.

The estimate of the asymptotic covariance matrix of β̂ is the left upper p × p block of

[Σ(θ̂)]−1, where p is the dimension of β.

5. NUMERICAL STUDIES

5.1 Model Assessment for the Proposed Method

Here we consider a three-state transition process with transition intensity matrix

Q =




−0.3 0.2 0.1

0.2 −0.3 0.1

0 0 0




.

We assume the time points are uniformly on (0.5, 2) with equal space interval 0.5. At the

first observation times points, subject are equally likely to be in state one or two. The

number of subjects is 200. we assume the true transformation function h(u) = uφu with

true parameter φ = 1.0.

The missing data model is

logit λi(uj) = α0 + α1ri(uj−1) + α2ri(uj−1)yi(uj−1) + α3yi(uj) (7)

for j = 2, 3, . . .. The true values are α0 = log(0.4), α1 = log(1.2), α2 = log(1.5), and

we change α3 to adjust the missing mechanism and missing proportions. One thousand

simulations are run for each parameter configuration.

Here we compare two methods. One is the proposed method, and the second is the

complete case analysis. Tables 1 and 2 report the result for sample size 200 and 1000

13
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respectively, where BIAS is the relative bias; ASE is the average standard error based on

the Louis’ formula for the proposed method and model based for the naive method; ESE

is the empirical standard derivation; CP is the 95% coverage probability. It is seen that the

proposed method gives satisfactory results with ignorable finite sample biases and good

coverage probabilities. However, the complete case method yields large biases and poor

coverage probabilities.

Insert Tables 1 and 2 here

5.2 Sensitivity Analysis and Model Diagnosis

The validity of this approach relies on correct specification of the structure for the intensity

and correct modeling of the missing data process. Here we investigate the impact of model

misspecification for the missing data process. The model setup for the transition intensity

and transformation of time scale is the same as that in the simulation studies.

We first evaluate the asymptotic biases induced by misspecifying the link function in

the missing data model. We assume the true missing data model is (7), while we use model

probit λi(uj) = α0 + α1ri(uj−1) + α2ri(uj−1)yi(uj−1) + α3yi(uj)

in the estimation procedure, where probit(·) is the cumulative distribution function of the

standard normal distribution. Figure 1 contains plots of the asymptotic percent relative

bias of the regression coefficients, for example, q12, q13 and φ. It can be seen that as the

absolute value of α3 increases, the relative biases increases; however, the relative bias is

very small, which indicates that the estimates are less sensitive to the misspecification of

the link function.

Next we consider the impact of misspecifying the missing data process by assuming it

is MAR when in fact it is MNAR. We assume the true missing data model is (7), while we

14
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use model

logit λi(uj) = α∗0 + α∗1ri(uj−1) + α∗2ri(uj−1)yi(uj−1)

in the estimation procedure. Figure 2 contains plots of the asymptotic percent relative bias

of the regression coefficient q12, q13 and φ. It can be seen that as the absolute value of α3 in-

creases, the relative biases increases; the transition intensity parameters are more sensitive

for the misspecification of the missing data models, while the transformation parameter φ

is less sensitive.

Insert Figures 1 and 2 here

As demonstrated above, estimation of β is sensitive to misspecificatoin of the model for

the missing data process. Therefore careful assessment of the missing data model is war-

ranted. In the framework of likelihood, likelihood ratio test provides a useful tool to test two

nested models. Specifically, the likelihood ratio test statistic 2{log L(θ)− log LR(θ)} →
χ2(k) as n → ∞, where LR(θ) is the likelihood of the reduced model, and k is the dif-

ference of the number of parameters between the full model and the reduced model. For

non-nested models, people may consider Akaike Information Criterion (AIC) or Bayesian

Information Criterion (BIC), etc.

In many applications, however, the data may not be sufficient to distinguish between

alternative nonignorable missing data mechanisms. For this reason, sensitivity analyses are

often advocated (e.g., Ibrahim et al. 2005). Several authors have proposed the use of global

and local influence tools to sensitivity analyses in missing data contexts (e.g., Verbeke et al.

2001; Verbeke and Molenberghs 2000; Molenberghs and Verbeke 2005; Zhu and Lee 2001;

Van Steen, Molenberghs, and Thjis 2001; Molenberghs, Kenward, and Goetghebeur 2001;

Kenward 1998; Jansen et al. 2003). Another route for sensitivity analysis is to consider

pattern-mixture models as a complement to selection models. Other approaches have been

considered by Copas and Li (1997), Copas and Shi (2000), and Copas and Eguchi (2001).
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More detail on some of these procedures can be found in Molenberghs and Verbeke (2005),

and Little and Rubin (2002).

6. APPLICATION TO A DEMENTIA DISEASE STUDY

We apply the proposed method to the National Alzheimer’s Coordinating Center (NACC)

Uniform Data Set (UDS), which is an ongoing longitudinal database of subjects seen at one

of the National Institute on Aging’s 29 funded Alzheimer’s Disease Centers (ADC) located

throughout the USA.

Some studies have found amnestic MCI to be transient because future evaluations could

yield a reversion to normal cognition (here we group normal and “impaired, not MCI” and

denote by normal cognition for simplicity) as opposed to progression to dementia. In this

section, we implement our proposed method to investigate the risk factors for transitions

among normal cognition, MCI, dementia and death. There are 7932 subjects from 29

Alzheimer’s Disease Centers included at the entry of this study. Follow-up visits for sub-

jects are scheduled at approximately one-year intervals, with up to four clinical visits at

present. There are 6722 subjects with complete data observed. The missing proportion is

13.27%.

In this analysis, we treat death as an absorbing state but allow transitions between all

other states. Table 3 lists the total number of transitions between clinical diagnosis states

at successive visits. Risk factor vector Xi includes: sex, congestive heart failure (CVCHF,

yes/no), geriatric depression score (GDS), family history of dementia (fhdem, yes/no), dia-

betes (yes/no), hypertension (yes/no), education (years), MMSE, and age. Table 4 lists the

baseline risk factors for the 7932 subjects.

Insert Tables 3 and 4 here

For simplicity, the four states normal cognition, MCI, dementia and death were coded
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as 1, 2, 3 and 4, respectively. The multiplicative models for transition k̃ to k after the

transformation are

qik̃k(t) = q0k̃k exp(X ′
iβk̃k)

for k̃, k = 1, 2, 3, 4, k̃ 6= k.

The missing data model in the EM algorithm is

logit λi(uj) = α0 + X ′
iαx + α1I(Yi(uj) = 2) + α2I(Yi(uj) = 3).

Tables 5 to 6 list the risk factors for the transitions among these four states. Here,

we compare two methods: the complete case analysis and the proposed method. In this

study we assume a power transformation of the form h(u) = uφu. The estimates of φ are

1.033 with 95% confidence interval (1.015, 1.051) for the complete case analysis and 1.046

with 95% confidence interval (1.030, 1.062) for the proposed method. Both reveal that the

process exhibits significant non-homogeneity, and the rate of evolution if the process is in-

creasing as a function of time. For the assessment to the model fit of the time transformed

process, we can compare goodness-of-fit of the time transformed model to goodness-of-fit

for the homogeneous model and a piecewise constant model using the Bayesian Informa-

tion Criterion (BIC) and a likelihood ratio test in the same spirit of Hubbard, Inous, and

Fann (2007). Here we do not give much details about it, and interested people can refer

Hubbard, Inous, and Fann (2007).

For the risk factors, complete case analysis and the proposed methods give different

estimates. In the transitions between normal cognition and MCI, family history of dementia

and age are significant, indicating that older people and people who have a family history of

dementia have a higher risk of transition from normal cognition to MCI. In the transitions

between normal cognition and dementia, age, GDS and hypertension affect the transition

from normal to dementia (i.e., an older person, a person with higher GDS score or a person

with hypertension is more likely to transition to dementia); and in the transitions from
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normal cognition to death directly, GDS, diabetes and age are significant, indicating that a

person has higher risk of transition to death if he/she has higher GDS score, diabetes, or

is older. In the transitions between MCI and dementia, sex, GDS and age are significant,

indicating that older people or people with higher GDS score have a higher risk of transition

from MCI to dementia, and women have a lower risk of transition from MCI to dementia;

in the direct transition from MCI to death, sex, GDS and age are significant, indicating that

a person with higher GDS score or older age is more easy to death, also a man has a higher

risk to death comparing to a woman; in the transition from dementia to death, sex, CVCHF,

GDS, education and age are significant, indicating that a person has higher risk to death if

he/she has a Congestive heart failure, higher GDS score, higher education or with an older

age, and women has lower risk from dementia to death comparing to men.

Table 7 also lists the result for the missing data model. Significance of sex indicates

that women are more likely to miss the observation than men; significance of fhdem and

hypertension indicates that people with family history of dementia are less likely to attend

this study, and people with hypertension are more likely to attend this study; significance of

MMSE indicates that people with higher MMSE score are less likely to attend this study;

significance of present state occupation indicate that the missing not at random mechanism

is perhaps reasonable, and people are less likely to attend the study if they are in MCI or

dementia comparing to normal cognition.

Insert Tables 5 to 7 here

7. DISCUSSION

In this paper we propose a likelihood-based method for the analysis of incomplete observa-

tions under the framework of non-homogeneous Markov processes using the time transfor-

mation model. This method is very appealing in that it can deal with all kinds of missing
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data mechanisms and allow variation in transition intensities, even under the framework

of non-homogeneity, and little work in the literature has been done to deal with this kind

of data. Several methods are introduced for estimations with incomplete data under MAR

or MNAR, including the Fisher-scoring method. The Fisher-scoring method is appealing

since we do not need the second derivatives of the likelihood if the covariates are discrete.

Applications to the NACC UDS demonstrate the usefulness of the proposed method.

Note that to obtain the consistent parameter estimates under MNAR, both the transition

model and the model for the missing data process must be correctly specified. In practice,

we aim to build a model which provides useful insight into the response process and ob-

servation process. Our strategy is therefore to build models that contain a large number of

covariates, carry out tests of fit of nested models, and ultimately find a parsimonious model

using standard procedures for model selection. The need for generalizations to deal with

more complex models can be assessed by model expansion and the use of general model

selection procedures via likelihood ratio tests.

Our method here assume the covariates are time independent, which is a limitation

as most of other methods to deal with transition models. Relatively little work has been

done on fitting regression models with time-dependent covariates. In the special case of a

single interval-censored covariate that indicates the development of a particular condition,

Goggins et al. (1999) develop methods for Cox regression for a right censored event time.

Chen and Cook (2003) considered models and methods to deal with an interval-censored

progressive covariate processs in recurrent event analyses. Cook, Zeng, and Lee (2008)

consider an extension to the bivariate setting where both the covariate and failure times are

interval-censored. The more general problem of interval-censored time varying covariates

remains relatively open and worthy of future research.
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Figure 1: Asymptotic percent relative bias of transition intensity with correctly specified

linear predictor but the link is misspecified as probit (true link is logit): q12 and q13 are the

transition intensities from state 1 to state 2 and 3 respectively, and φ is the time transfor-

mation parameter
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Figure 2: Asymptotic percent relative bias of transition intensity with correctly specified

link but the linear predictor is misspecified (α3 6= 0 so data are MNAR but are assumed

MAR): q12 and q13 are the transition intensities from state 1 to state 2 and 3 respectively,

and φ is the time transformation parameter
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Table 1: Empirical performance of the proposed method and naive method for simulation

studies with sample size n = 200: α3 6= 0 leads to a missing not at random mechanism;

α3 = 0 leads to a missing at random mechanism; the missing proportions are about 25%,

35% and 40% with α3 = log(2.0), log(1.5) and log(1.0)

Proposed Method Complete Case

α3 Parameters BIAS% ASE ESE CP% BIAS% ASE ESE CP%

log(2.0) q12 -1.7 0.043 0.044 94.2 247.4 0.126 0.124 9.7

q13 -1.6 0.025 0.024 95.2 314.0 0.058 0.061 1.8

q21 -1.1 0.081 0.080 94.8 144.6 0.225 0.222 66.1

q23 -0.8 0.040 0.040 94.7 196.9 0.115 0.115 57.6

φ 1.2 0.094 0.094 94.4 -43.8 0.247 0.249 52.7

log(1.5) q12 1.8 0.081 0.078 94.7 342.3 0.154 0.157 12.7

q13 1.3 0.042 0.039 95.1 443.2 0.069 0.066 3.2

q21 3.7 0.143 0.143 94.4 259.7 0.258 0.261 52.4

q23 0.8 0.098 0.097 95.1 291.8 0.130 0.130 49.2

φ 1.3 0.136 0.137 94.8 -45.6 0.298 0.304 57.1

log(1.0) q12 -1.0 0.100 0.101 94.7 476.7 0.263 0.268 20.3

q13 -1.3 0.040 0.039 95.5 861.8 0.114 0.111 4.3

q21 1.7 0.184 0.185 94.6 718.2 0.399 0.394 27.9

q23 0.7 0.141 0.139 95.7 613.4 0.143 0.145 36.4

φ 1.2 0.131 0.131 94.7 -26.2 0.492 0.488 34.8

The true values of the parameters are q12 = 0.2, q13 = 0.1, q21 = 0.2, q23 = 0.1, and φ = 1.0.
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Table 2: Empirical performance of the proposed method and naive method for simulation

studies with sample size n = 1000: α3 6= 0 leads to a missing not at random mechanism;

α3 = 0 leads to a missing at random mechanism; the missing proportions are about 25%,

35% and 40% with α3 = log(2.0), log(1.5) and log(1.0)

Proposed Method Complete Case

α3 Parameters BIAS% ASE ESE CP% BIAS% ASE ESE CP%

log(2.0) q12 -1.0 0.030 0.030 0.951 171.1 0.105 0.106 10.6

q13 -0.8 0.015 0.014 0.954 139.4 0.046 0.046 11.4

q21 -1.0 0.050 0.050 0.947 124.4 0.184 0.191 42.5

q23 -0.5 0.032 0.032 0.950 81.1 0.095 0.100 23.5

φ 0.7 0.056 0.055 0.949 -54.8 0.219 0.217 62.2

log(1.5) q12 0.3 0.036 0.034 0.955 245.2 0.134 0.136 14.0

q13 0.3 0.018 0.017 0.951 182.8 0.059 0.061 15.5

q21 0.5 0.062 0.061 0.948 164.5 0.243 0.260 38.6

q23 -0.6 0.038 0.037 0.944 128.4 0.126 0.133 22.8

φ 0.1 0.067 0.066 0.945 -61.2 0.238 0.242 58.5

log(1.0) q12 -1.0 0.035 0.034 0.954 113.0 0.402 0.405 13.8

q13 -1.0 0.018 0.017 0.956 234.9 0.143 0.139 20.6

q21 -0.5 0.060 0.060 0.950 138.9 0.534 0.540 19.2

q23 -1.6 0.038 0.039 0.945 95.8 0.292 0.291 26.9

φ 0.4 0.067 0.064 0.956 -43.1 0.422 0.429 34.6

The true values of the parameters are q12 = 0.2, q13 = 0.1, q21 = 0.2, q23 = 0.1, and φ = 1.0.
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Table 3: Number of transitions made between states at successive clinic visits

Normal MCI Dementia Death

Normal 4410 (87.9) 393 (7.8) 65 (1.3) 149 (3.0)

MCI 289 (13.5) 1342 (62.7) 397 (18.6) 111 (5.2)

Dementia 42 (1.3) 62 (1.9) 2702 (82.2) 481 (14.6)

Table 4: Baseline risk factors for the 7962 subjects

Risk factor Summary

Female, % 55.9

Congestive heart failure, % 4.0

GDS 2.0± 2.5

Family history of dementia, % 27.9

Diabetes, % 12.6

Hypertension, % 54.5

Years of education 15.7± 8.5

MMSE 26.3± 8.1

Age 75.5± 9.3
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Table 5: Comparisons of two methods for the multiplicative effects on the transition inten-
sities in the studies of Alzheimer’s disease: hazard ratios and 95% confidence intervals

Complete Case EM Algorithm
Parameter HR 95%LCL 95%UCL HR 95%LCL 95%UCL

Normal → MCI:
SEX(F) 1.055 0.469 2.376 1.018 0.834 1.243
CVCHF 1.003 0.579 1.736 1.000 0.600 1.668
GDS 0.994 0.757 1.305 0.990 0.731 1.342
fhdem 1.388 1.106 1.743 1.269 1.029 1.565
diabete 1.007 0.196 5.174 1.197 0.885 1.619
hypert 0.965 0.365 2.550 0.928 0.274 3.146
EDUC 1.009 0.989 1.029 1.011 0.974 1.049
MMSE 1.024 0.968 1.084 1.025 0.950 1.107
AGE 1.029 1.017 1.042 1.025 1.013 1.037

Normal → Dementia:
SEX(F) 0.846 0.614 1.167 0.919 0.702 1.205
CVCHF 0.252 0.034 1.854 0.237 0.043 1.299
GDS 1.151 1.050 1.263 1.124 1.054 1.199
fhdem 1.383 1.018 1.877 1.206 0.924 1.574
diabete 0.927 0.197 4.360 1.003 0.335 3.000
hypert 1.714 1.048 2.804 1.565 1.185 2.067
EDUC 1.004 0.965 1.044 1.004 0.981 1.028
MMSE 1.010 0.958 1.065 1.010 0.964 1.059
AGE 1.082 1.041 1.125 1.076 1.045 1.108

Normal → Death:
SEX(F) 0.854 0.659 1.106 0.928 0.781 1.102
CVCHF 2.171 0.819 5.750 1.868 0.538 6.486
GDS 1.089 1.003 1.182 1.087 1.033 1.143
fhdem 0.724 0.470 1.114 0.748 0.503 1.111
diabete 1.699 1.066 2.709 1.933 1.273 2.934
hypert 1.197 0.758 1.890 1.138 0.926 1.398
EDUC 1.003 0.978 1.029 1.007 0.991 1.023
MMSE 1.017 0.984 1.052 1.018 0.989 1.049
AGE 1.100 1.059 1.141 1.099 1.071 1.127

MCI → Normal:
SEX(F) 0.776 0.463 1.299 0.819 0.535 1.253
CVCHF 1.629 0.917 2.893 1.797 0.975 3.312
GDS 1.011 0.883 1.157 1.014 0.879 1.170
fhdem 1.001 0.520 1.926 0.882 0.426 1.826
diabete 1.110 0.219 5.623 1.001 0.288 3.475
hypert 1.022 0.491 2.128 1.036 0.626 1.714
EDUC 1.005 0.953 1.060 1.008 0.983 1.034
MMSE 1.025 0.986 1.066 1.026 0.987 1.067
AGE 0.984 0.932 1.040 0.980 0.905 1.062
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Table 6: Comparisons of two methods for the multiplicative effects on the transition in-
tensities in the studies of Alzheimer’s disease: hazard ratios and 95% confidence intervals
(Continued)

Complete Case EM Algorithm
Parameter HR 95%LCL 95%UCL HR 95%LCL 95%UCL

MCI → Dementia:
SEX(F) 0.710 0.591 0.852 0.710 0.596 0.845
CVCHF 0.542 0.265 1.106 0.515 0.264 1.002
GDS 1.084 1.045 1.126 1.076 1.036 1.117
fhdem 1.134 0.932 1.380 1.177 0.981 1.412
diabete 1.000 0.747 1.339 1.029 0.779 1.360
hypert 1.013 0.841 1.220 1.067 0.895 1.273
EDUC 0.986 0.963 1.010 0.984 0.967 1.002
MMSE 1.000 0.977 1.024 0.999 0.978 1.021
AGE 1.021 1.009 1.033 1.024 1.012 1.036

MCI → Death:
SEX(F) 0.708 0.665 0.754 0.592 0.549 0.637
CVCHF 2.221 1.649 2.992 1.998 1.591 2.508
GDS 1.166 1.144 1.190 1.158 1.134 1.184
fhdem 0.579 0.344 0.976 0.552 0.518 0.587
diabete 0.647 0.310 1.353 0.878 0.486 1.587
hypert 1.385 0.895 2.145 1.432 0.954 2.148
EDUC 1.006 0.998 1.014 1.004 0.986 1.022
MMSE 1.012 0.996 1.028 1.013 0.996 1.028
AGE 1.082 1.076 1.089 1.083 1.077 1.090

Dementia → Normal:
SEX(F) 0.683 0.346 1.349 0.719 0.388 1.333
CVCHF 0.000 0.000 Inf 0.000 0.000 Inf
GDS 1.172 1.075 1.278 1.206 1.135 1.281
fhdem 1.003 0.734 1.370 1.132 0.862 1.487
diabete 1.000 0.221 4.523 1.004 0.321 3.142
hypert 0.946 0.578 1.546 0.871 0.643 1.180
EDUC 1.006 0.979 1.034 0.995 0.972 1.019
MMSE 0.994 0.973 1.016 0.995 0.978 1.013
AGE 0.995 0.959 1.033 0.999 0.972 1.027

Dementia → MCI:
SEX 0.535 0.284 1.008 0.569 0.290 1.114
CVCHF 0.904 0.415 1.968 0.751 0.374 1.505
GDS 1.190 1.133 1.250 1.195 1.142 1.250
fhdem 0.986 0.760 1.280 1.067 0.850 1.340
diabete 1.202 0.841 1.717 1.439 0.730 2.835
hypert 1.052 0.825 1.342 0.999 0.799 1.249
EDUC 0.949 0.876 1.029 0.997 0.980 1.015
MMSE 0.991 0.968 1.015 0.986 0.965 1.008
AGE 0.987 0.972 1.003 0.992 0.979 1.006

Dementia → Death:
SEX 0.671 0.627 0.719 0.649 0.591 0.713
CVCHF 1.735 1.573 1.914 1.779 1.551 2.041
GDS 1.140 1.131 1.149 1.130 1.117 1.143
fhdem 1.058 0.972 1.151 1.121 0.925 1.358
diabete 0.823 0.586 1.155 0.808 0.600 1.089
hypert 1.009 0.938 1.085 0.972 0.883 1.070
EDUC 1.008 0.999 1.015 1.009 1.000 1.016
MMSE 0.882 0.879 0.886 0.879 0.874 0.884
AGE 1.050 1.046 1.054 1.046 1.042 1.050
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Table 7: Missing data model in the analysis of Alzheimer’s disease

Parameter Estimate SE p-value

Intercept 3.172 0.271 <0.001
SEX(F) -0.225 0.057 <0.001
CVCHF 0.161 0.153 0.292
GDS -0.005 0.011 0.689
fhdem -1.355 0.060 <0.001
diabete -0.147 0.084 0.081
hypert 0.156 0.058 0.007
EDUC 0.005 0.004 0.213
MMSE -0.009 0.003 0.005
AGE -0.004 0.003 0.204
I(MCI) -1.205 0.069 <0.001
I(Dementia) -0.676 0.070 <0.001
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