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1. Introduction

Longitudinal data arise in many fields of biomedical research. In a longitudinal study, of focus is

to examine the effect of covariate process {Xi(t), t ∈ [0, τ ]} on the outcome process {Yi(t), t ∈
[0, τ ]}, where the predetermined constant τ is the end of study or time at which the last person

to follow drops out. Longitudinal data are often unbalanced and irregularly spaced resulting in

a follow–up that is challenging for the statistical analysis of such data set. That occurs when

designed sampling times are not strictly followed or when the sampling times are observational

times with no direct control over the timing. An example of the first follow–up category, where

there is an extra noise to the pre–defined observation times, is the health services research

study data we analyze in Section 4. It is a study on a population of homeless people, where the

investigators experienced an extreme non–compliance to the scheduled visits. An example of the

second follow–up category are administrative data, where the actual sampling process is not part

of the study. In both situations, the investigator has truly no control over the observation times

and the related frequency of sampling the individuals. These irregular observation times can be

specific to subject’s characteristics. When the outcome and sampling are correlated conditional

on the covariates of the outcome model then that introduces a biased sampling design for the

outcome model. We demonstrate the philosophy of biased sampling with a simple example

taken from air pollution. Assume an air pollution measure at time t as a covariate X(t). Let

the outcome Y (t) be a lung function measure, such as FEV1, the volume exhaled during the first

second of a forced expiratory maneuver started from the level of total lung capacity. Scientists

are interested in quantifying the association of FEV and air pollution. Further assume a binary

indicator, Z(t), of an asthma attack at time t. The lung function measure clearly is associated

both with the air pollution measure and presence or absence of an asthma attack. Also, the

occurrence of an asthma attack may be related to the the air pollution measure. Assume that

a person with an asthma attack searches for medical help more often and that the person has

a lower lung function measure. So, data on individuals with present asthma attacks form the

majority of the observed data. Then, when modeling FEV with the air pollution covariate we

obtain unbiased estimates for those who have come for a visit, primarily people who suffer from

an asthma attack on that day. However, we obtain an exaggerated estimate of the association

of the lung function measure and the air pollution measure for the general public.
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2 Biased Sampling

Under discrete time, when the observation times come from a finite set of points, the sampling

issue can be viewed as a missingness problem. Taxonomy of missingness, as formalized by Rubin

(1976), is based on factors that drive the seeing of observations. The key issue is whether the

fact that data are missing is related to the values of the variables in the data set. For a complete

survey of the current methodology of missing data we refer a keen reader to Little & Rubin

(2002). In discrete time models we can view biased sampling as being equivalent to missingness

at random (MAR) of the outcome given covariates X and Z, that is covariates of the outcome

model as well as covariates of the observation–times model. It is informative missingness (IM)

of the outcome given the covariates X of the outcome model. Other terms that are being

used to describe biased sampling under discrete time are informative inter-mitten missingness

or nonignorable non–monotone follow-up. Under continuous time, when the observation times

come from an interval such as [0, τ ], we can not talk about missingness in the original meaning.

There the data are missing with probability one as the outcome is observed at discrete time

points, not continuously over time as a curve.

Most statistical literature on longitudinal data with unbalanced or irregular follow–up fo-

cuses on drop out, also called right censoring, under discrete observation times. Drop–out under

continuous observation times is presented by Wu & Carroll (1988), Diggle & Kenward (1994)

and Scharfstein et al. (1999). A few articles deal with intermittent missingness under discrete

times, among them the pseudolikelihood procedures of Troxel et al. (1998) suitable for contin-

uous outcome, the autoregressive approach of Albert et al. (2002) for binary outcome and the

weighted generalized estimating equations approach of Preisser et al. (2000) for binary outcome

as well.

Outcome–dependent follow–up under continuous time addresses Lipsitz et al. (2002). Their

approach is likelihood–based and thus, through the nature of likelihood method, it accommo-

dates biased sampling when the observation times depend on the previous value of outcome. It

does not accommodate biased sampling when there are additional covariates, associated with

outcome, such as the indicator of asthma in our example above, that govern the sampling

process. They separate the likelihood function into two components: one for the outcome

process and the other for the observation–times process, where they compute the likelihood of

the time elapsed between two observation times. In order to ignore the later process, Lipsitz
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et al. impose a strong observation–times model assumption of dependence only on history of

observed outcome measurements. Their model is limited to a linear regression model where

the repeated measures of outcome have a multivariate Gaussian distribution. Moreover, their

procedure relies for consistency of the estimators of parameters of interest on correct specifica-

tion of the autocorrelation structure of outcome. Lipsitz et al. themselves point out that “the

potential bias due to misspecification of the covariance can be considerable”.

Recently, H. Lin et al. (2004) developed a class of inverse–intensity of visit process–

weighted estimators, a solution to an estimating equation. The outcome might be observed

in a continuous-time fashion and the weighting, similar to ours, in their estimating equation

accommodates biased sampling. However, their outcome model covariates are fixed over time.

Next, their observation–times model does not allow for pre–specified visit times. Also, most im-

portant, their estimator is fairly complicated, involving specific smoothing techniques of baseline

intensity of visiting to achieve
√

n consistency of the estimator.

We adopt approach of D. Lin & Ying (2001) integrating counting processes techniques into

analysis of longitudinal data. Their estimation approach is based upon a set of estimating equa-

tions for both the observation–times model and the outcome model. Their estimator resembles

a weighted least squares estimator. They use fully marginal models where the assumption

E[Yi(t)|{Xi(s), s ∈ [0, τ ]}] = E[Yi(t)|Xi(t)] is not needed, as discussed in Pepe & Anderson

(1994). This assumption can be hard to satisfy. History of covariates can be incorporated into

the current covariates. But supposing that conditioning on future covariates on top of the cur-

rent one does not alter the mean model is a strong assumption. However, they impose a few

restrictions. First, they consider only a linear regression model. Second, they assume that the

outcome variable is independent of the observation times given the covariates of the outcome

model. That is, the observation times are not allowed to depend on additional covariates not

in the outcome model. In our FEV example the visit timing might depend on previous FEV

measure, asthma history or current asthma severity or other aspects of the patient’s health that

do not belong in the outcome model as covariates. Our philosophy behind choosing covariates

is that the outcome model covariates X should be picked on scientific ground purpose but the

covariates Z for observation–times model should cover the true nature of the sampling process.

In other words, the observation–times model should be predictive whereas the outcome model
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4 Biased Sampling

is an association model where estimation of contrast parameters is of major scientific interest.

In this paper we address parameter estimation under continuous time under generalized

linear models, naturally handling continuous, binary and count outcomes, where the follow–up

is informative for outcome given the covariates of the outcome model. We call those estima-

tors “inverse–intensity rate–ratio–weighted” (IIRR) estimators. Standard statistical software,

e.g. R Development Core Team (2004), can be used to compute the IIRR estimates.

Notation that we use and the class of models for outcome and the observation–times model

is described in Section 2. Our estimation approach is given in Section 3. We illustrate our

methods on a health service research study in Section 4. Homeless people with mental illness

were randomized to three different treatments. Percentage days homeless within the last three

months as an outcome variable and a handful of covariates were recorded at follow–up times

not fixed by design. Treatment efficacy is the scientific question of our interest. This data set

was used in H. Lin et al. (2004). We report results from a simulation study to demonstrate the

estimators performance under finite sample size and to compare the squared errors under the

independent GEE with probit/logit link estimators in Section 5.

2. Notation and models

We consider a fully marginal mean model for outcome Y as a function of covariates X of

individual i ∈ {1, . . . , n} at time t ∈ [0, τ ]. Thus we model E[Yi(t)|Xi(t)], denoted by µi(t)

and called “the outcome model”. We focus on a class of generalized linear regression models,

discussed in McCullagh & Nelder (1989)

g (µi(t)) = βT
0 Xi(t). (1)

The known link function g is monotonic and differentiable. Variance of outcome is v(µi(t))φ

with v a known positive function of the mean and φ a positive scale parameter. The out-

come model (1) may be either based on a likelihood theory for exponential family distributions

or a quasi–likelihood approach. The effect of time-varying covariates Xi is, through the link

function g, modeled parametrically in a linear way. The parameter of major interest, β0, is

a p dimensional vector.

The model for outcome, formulated in equation (1), is a functional full data model. We
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do not, however, observe the outcome continuously over time but at certain times only, that

we call sampling times or observation times. Denote for individual i ∈ {1, . . . , n} the set of

observation times {Ti1, Ti2, . . . , TiKi
} as Ti, with 0 ≤ Ti1 < Ti2 < . . . < TiKi

≤ τ . For the i-th

individual, Ki is a random total number of observed events. Denote T = {Tj, j = 1, . . . , n}
the set of sample’s observation times. Define Ni(t) =

∑Ki

k=1 I(Tik ≤ t) the counting process of

number of events of individual i by time t. The underlying uncensored process we denote as

N∗
i (·), Ni(t) = N∗

i (t∧Ci) where Ci is drop-out time or end of follow-up τ , whatever comes first.

For each individual i ∈ {1, . . . , n} at time t ∈ [0, τ ] we adopt a marginal rate model

for uncensored observation times that we call an observation–times model or a sampling–times

model:

E[dN∗
i (t)|Zi(t)] = exp{γT

0 Zi(t)}dΛ0(t). (2)

Here, Λ0(·) is an unspecified baseline cumulative ( thus non-decreasing function of time t) hazard

function, whereas γ0 is unknown regression parameter. The Λ0(·) is very flexible as we require

it to be only continuous up to countably many points. In our practical settings a finite number

of points suffices.

Two crucial assumptions are non-informative drop-out for the mean of outcome,

E[Yi(t)|Xi(t), Ci ≥ t] = E[Yi(t)|Xi(t)], (3)

saying that EYi(t) depends on covariates Xi(t) and drop-out Ci through covariates Xi(t) only,

and independent sampling assumption,

E[dN∗
i (t)|Zi(t),Xi(t), Yi(t), Ci ≥ t] = E[dN∗

i (t)|Zi(t)], (4)

saying that observation times depend on covariates Zi,Xi, on outcome Yi and drop-out Ci

through covariates Zi only.

D. Lin & Ying (2001) require in their estimation approach an assumption that does exclude

biased sampling. It is that the outcome variable is assumed independent of the observation

times given the covariates of the outcome model. That is, the observation times are not allowed

to depend on additional axillary variables not in the outcome model; covariates Z must be part

of covariates X. In our example of studying an association between a lung function measure

and the air pollution we would either need to include adjusting for the asthma attack in the
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6 Biased Sampling

outcome model or assume an untrue assumption of independence of the sampling–times process

and the lung function measure conditioning on the air pollution alone. Lin & Ying’s independent

sampling assumption is

E[dN∗
i (t)|Zi(t),Xi(t), Yi(t), Ci ≥ t] = E[dN∗

i (t)|Xi(t)]. (5)

The difference between our independent sampling assumption (4) and their independent sam-

pling assumption (5) is conditioning on covariates Z instead of X on the right hand side of the

equations. However, when we allow the two sets of covariates to be arbitrary, we can introduce

a biased sampling scheme into our outcome model and thus to obtain consistent estimates of

β0 we need to account for the biased sampling.

We write ξi(t) = I(Ci > t) for the at-risk process and assume that Pr(Ci ≥ τ) > 0.

Additional technical assumptions are given in the Appendix A.

Note, that although outcome Yi(·) is observed only at random times Tij, the expectation

in (1) does not condition on these times. Similar to Lipsitz et al. (2002), D. Lin & Ying (2001)

and H. Lin et al. (2004), it is a functional or process–like approach. We model the conditional

mean of outcome for a certain individual for any time t. Unlike for instance X. Lin & Carroll

(2001), we do not condition on the set of the individual’s observation times. We say that at

any time t the conditional mean outcome exists and follows our given model or that it only

exists and follows the given model at the observation times but if we had observed outcome at

a different time it would have existed and followed the given model.

3. Estimation

3.1. Biased sampling

We use an approach based on inverse–intensity–rate–ratio weighting. For individual i ∈ {1, . . . , n}
at time t ∈ [0, τ ] define inverse weights ρi(t; γ, h) as

ρi(t; γ, h) =
exp{γT Zi(t)}

h(Xi(t))
. (6)

In the denominator we can include any function h(·) that is a deterministic function of the out-

come model covariates Xi(t). The inverse weight is proportional to the probability of individ-

ual i, relative to other individuals, having an observation at time t under the observation–times
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model (2). Motivated by Hernán et al. (2002) we find it useful to incorporate a function h0(·)
that decreases the variability of the weights. We pick

h0(Xi(t)) = exp{δT
0 Xi(t)}

and we call the weight ρi(t; γ, h0) a stabilizing weight. We find the estimator of δ0 when fitting

a proportional rate model, similar to model (2), conditioning on covariates X only. When

observation–times model covariates Z are a subset of the outcome model covariates X, then

the inverse weight ρi(t; γ, h0) equals one for all individuals at all times, using the independent

sampling assumption (4).

3.2. Observation–times model

Based on the proportional rates model (2) and the drop-out part of assumption (4), a parameter

vector γ0 of length g can be consistently estimated by γ̂, the solution to a set of estimating

equations U †(γ̂) = 0. The estimating function U †(γ) is defined as

U †(γ) =
n∑

i=1

∫ τ

0
{Zi(t) − Z̄(t; γ)}dNi(t), (7)

where the weighted average for variable Z at time t is defined as

Z̄(t; γ) =

n∑

i=1

Zi(t)
ξi(t) exp{γT Zi(t)}∑n

j=1 ξj(t) exp{γT Zj(t)}
. (8)

The weights there are proportional to the probability of the individual having an observation

at time t. Estimation of γ0 is β0-free. Solution of (7) and derivation of asymptotic properties

of the estimator are based on a zero mean random process Mi(·; γ0,Λ0(·)) defined as

Mi(t; γ,Λ(·)) = Ni(t) −
∫ t

0
ξi(s) exp{γT Zi(s)}dΛ(s). (9)

Though the estimating function (7) is the same as under the Cox proportional hazards model,

the asymptotic variance is different due to imposing weaker assumptions in the proportional rate

model (2). Define the asymptotic weighted mean curve of a covariate process {Z(t), t ∈ [0, τ ]}
as

z̄(t; γ) = lim
n→∞

Z̄(t, γ) =
E[Z1(t)ξ1(t) exp{γT Z1(t)}]

E[ξ1(t) exp{γT Z1(t)}]
.
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8 Biased Sampling

The asymptotic variance of
√

n(γ̂ − γ0) is Γ, Γ = A−1ΣA−1, where

A ≡ lim
n→∞

E
1

n

[−∂U †(γ)

∂γ
|γ0

]

= E

∫ τ

0
[Z1(t) − z̄(t; γ0)]

⊗2 ξ1(t) exp{γT
0 Z1(t)}dΛ0(t) (10)

Σ ≡ lim
n→∞

Cov

[
1√
n

U †(γ0)

]

= E

[∫ τ

0
[Z1(t) − z̄(t; γ0)] dM1(t; γ0,Λ0(·))

∫ τ

0
[Z1(u) − z̄(u; γ0)]

T dM1(u; γ0,Λ0(·))
]

.

Notation x⊗2 = xxT stands for the outer product of a vector x. The matrix A is further used

in the formula for variance of estimator of β0 in the outcome model (1) that is dependent upon

estimation of the parameter γ0. There is a straightforward consistent estimator of Γ denoted

by Γ̂, Γ̂ = Â−1Σ̂Â−1, where

Σ̂ =
1

n

n∑

i=1

∫ τ

0

[
Zi(t) − Z̄(t; γ̂)

]
d̂Mi(t)

n∑

k=1

∫ τ

0

[
Zk(u) − Z̄(u; γ̂)

]T
d̂Mk(u)

Â =
1

n

n∑

i=1

∫ τ

0

[
Zi(t) − Z̄(t; γ̂)

]⊗2
ξi(t) exp{γ̂T Zi(t)}dΛ̂(t)

with

d̂Mi(t) = Ni(t) −
∫ t

0
ξi(s) exp{γ̂T Zi(s)}dΛ̂(s)

and Aalen–Breslow estimator of Λ0(t)

Λ̂(t) =

n∑

i=1

∫ t

0

dNi(s)∑n
j=1 ξj(s) exp{γ̂T Zj(s)}

.

See D. Lin et al. (2000) for detailed derivation of the parameter estimation in the observation–

times model (2) and comparison to the widely used proportional mean model.

3.3. Outcome model

Motivated by generalized estimating equations, GEE, we define our estimating function as

U(β; γ, h) =

n∑

i=1

∫ τ

0
W (t)Xi(t)

{
dg(µ)

dµ
|µi(t;β)

}−1

v(µi(t;β))−1 ×

× [Yi(t) − µi(t;β)]
1

ρi(t; γ, h)
dNi(t). (11)

The estimating equation is

U(β; γ̂, h) = 0.
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Estimator γ̂ of the observation–times proportional rates model parameter γ0 is based on setting

the estimating function (7) equal to zero. The estimating function (11) resembles GEE under

the assumption of working independence that is being weighted by a function of time W (t) but

mainly by the inverse weight ρi(t; γ, h). The weight W (t) can for instance reflect the reliability

of the data over time. D. Lin & Ying (2001) discus that topic on page 106.

When we use a canonical link for a given exponential family distribution, the estimating

function (11) simplifies to

U(β; γ, h) =

n∑

i=1

∫ τ

0
W (t)Xi(t) [Yi(t) − µi(t;β)]

1

ρi(t; γ, h)
dNi(t).

At point {β0, γ0} equation (11) has zero mean for any function h of covariates Xi(t). To see

that, we proceed as follows:

EU(β0; γ0, h) = E

n∑

i=1

∫ τ

0
W (t)Xi(t)

{
dg(µ)

dµ
|µi(t;β0)

}−1

v(µi(t;β0))
−1 ×

× [Yi(t) − µi(t;β0)]
h(Xi(t))

exp{γT
0 Zi(t)}

dNi(t)

= E

n∑

i=1

∫ τ

0
W (t)Xi(t)

{
dg(µ)

dµ
|µi(t;β0)

}−1

v(µi(t;β0))
−1 ×

×h(Xi(t))E

{
[Yi(t) − µi(t;β0)]

dNi(t)

exp{γT
0 Zi(t)}

|Xi(t)

}
.

Using iterated expectation formula by further conditioning on {Zi(t), Yi(t)|Xi(t)} and using both

assumptions of non–informative drop–out for the outcome model as defined in equation (3) and

the independent sampling assumption defined in equation (4) we conclude that

E

{
[Yi(t) − µi(t;β0)]

dNi(t)

exp{γT
0 Zi(t)}

|Xi(t)

}
= 0

for any i ∈ {1, . . . , n} and any time t ∈ [0, τ ].

Similarly to the generalized estimating equations, the estimator of β0 can be obtained in

an iterative procedure based on linearization in β of the estimating function (11). Solution

to U(β; γ̂, h) = 0 is
√

n-consistent and asymptotically normal. The asymptotic variance of
√

n(β̂(γ̂, h) − β0) is

D−1V D−1.

The square matrix of derivatives D is defined as

D ≡ lim
n→∞

E

[
− 1

n

∂U(β; γ0, h)

∂β
|β0

]
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10 Biased Sampling

and the square matrix of covariances V as

V ≡ lim
n→∞

Cov

[
1√
n

U(β0; γ̂, h)

]

= lim
n→∞

Cov

[
1√
n

U(β0; γ0, h) − 1

n

∂U(β0; γ, h)

∂γ
|γ0

(
1

n

∂U †(γ)

∂γ
|γ0

)−1
1√
n

U †(γ0)

]
.

We account for estimation of γ0 by including the second term on right–hand side. The asymp-

totic variance is consistently estimated by D̂−1V̂ D̂−1, where we replace the true value of the

parameters with their estimates in the matrix D. In canonical links, this simplifies to

D̂ =
1

n

n∑

i=1

∫ τ

0
W (t)Xi(t)

∂µi(t;β)

∂β
|β̂ 1

ρi(t; γ̂, h)
dNi(t).

A consistent estimator of the matrix V is

V̂ =
1

n

n∑

i=1

[∫ τ

0
W (t)Xi(t)

{
dg(µ)

dµ
|µi(t;β̂)

}−1

v(µi(t; β̂))
−1 ×

×
[
Yi(t) − µi(t; β̂)

] 1

ρi(t; γ̂, h)
dNi(t)−

−ĤÂ−1

∫ τ

0

[
Zi(t) − Z̄(t; γ̂)

]T
dMi(t, γ̂, Λ̂(·))

]⊗2

,

where the random process {M(t), t ∈ [0, τ ]} is defined in equation (9), the matrix Â in (11)

and Ĥ is

Ĥ = −
n∑

i=1

∫ τ

0
W (t)Xi(t)

{
dg(µ)

dµ
|µi(t;β̂)

}−1

v(µi(t; β̂))
−1 ×

×
[
Yi(t) − µi(t; β̂)

] 1

ρi(t; γ̂, h)
Zi(t)

T dNi(t).

Instead of using a general function h for optimality reasons we prefer using the h0(δ0,X(t))

function as explained in Section 3.1. As δ0 is unknown we estimate it. We have derived the

asymptotic properties generally for any h and thus for any δ fixed. But using arguments similar

to Liang & Zeger (1986), asymptotically we obtain equivalent expressions when plugging in a

random variable δ̂ instead of any fixed δ, for any δ̂ with asymptotic standard error Op(n
1/2).

A recently published paper H. Lin et al. (2004) supports our claim that scenario studied

in this paper is of a scientific interest. They approach the same problem as we do, namely
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P. B̊užková and T. Lumley 11

analysis of longitudinal data under continuous times with irregular, outcome–dependent follow-

up and suggest a class of consistent and asymptotically normal estimators for the parameters of

marginal generalized linear model. There are many similarities between their approach and ours

and their solutions and ours. However, they do not enable to include time-varying covariates

in the outcome model but instead assume fixed covariates. They assume that censoring is

independent of outcome given outcome model covariates, a stronger assumption to our non-

informative drop–out assumption (3) about mean of outcome. To model the sampling times

they use a similar Cox–type intensity model with a similar assumption to our independent

sampling assumption (4). Unfortunately, to estimate consistently the parameter of primary

interest β0, they need an estimator of the baseline intensity to be consistent at a rate bigger than

n
1

4 . In order to do that they use a kernel–smoothed estimator with a sample–size–dependent

bandwidth based on the Breslow’s estimator of the cumulative baseline intensity. They start

with a general sampling intensity model but then, due to the curse of dimensionality, assume

a proportional hazard form. Their sampling–times model differs from ours in the sense that

they require conditioning on the observed history whereas our model is a fully marginal model

allowing for that but not requiring it. The sampling–times model, that we refer to as “without

biased sampling” they call a “null” model. The sampling–times model we refer to as “under

biased sampling” they call “predictor adjusted” model. They run into the same problem in

the sampling–times model with observing covariate process over time. To avoid the necessity of

knowledge of the process of sampling–times model covariates over time they base their sampling–

times model directly on the covariates values observe at the previous event or all the history of

previous events. So, unlike us, they assume a model that is unlikely to be true but then they

do not need to approximate the true covariate process to arrive at a feasible estimator.

4. Example

In 1992, the US Department of Housing and Urban Development (HUD) and the US Depart-

ment of of Veterans Affairs (VA) established the HUD–VA Supported Housing (HUD–VASH)

program. The study took place at 4 sites across the country. Veterans were eligible if they were

homeless at the time of outreach assessment, had been homeless for 1 month or longer, and

had received a diagnosis of a major psychiatric disorder or an alcohol or drug abuse disorder.
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12 Biased Sampling

All veterans provided written informed consent to participate in the study. The 460 homeless

veterans were randomly assigned to 1 of 3 intervention groups:

• HUD–VASH intervention consisting of case management and housing vouchers (182 indi-

viduals);

• case management (90 individuals);

• standard VA homeless services (188 individuals).

Vouchers authorized payment of a standardized local fair–market rent less 30% of the individual

beneficiary’s income. The important question is whether setting aside housing resources is either

necessary or sufficient for facilitating exit from homelessness in this population. The primary

outcome was percentage of days homeless during the last 3 months. Auxiliary time–dependent

variables collected during the study were income in the past three months and whether social

security or VA benefits were received during the past three months. Follow–up interviews were

scheduled for every 3 months. However, subjects often missed assessment and came between

scheduled interviews. Concern is raised that there as an association between the visit process

and the outcome process. For detailed study description see Rosenheck et al. (2003). It also

contains cost-effectiveness considerations for the 3 interventions.

In the analysis of the data, we set τ to 48 months and Ci = τ for all individuals i ∈
{1, . . . , 460}. That means that we do not allow anybody to drop–out of the study sooner

than at the 48 months. There is not any drop–out by protocol that would exclude certain

individuals after study beginning and if no event occurs by the study end we consider that just

an intermittent missing data. The 460 individuals made a total of 2855 follow–up visits by 48

months since randomization. Quantiles of the total counts of follow–up visits per treatment

arm, shown in Table 1, suggest highest follow–up for the HUD–VASH intervention group, lower

for the case–management group and lowest for the standard VA care. Figure 1 shows the

average percentage homeless during the last 3 months specific for each treatment group. In

both figures the time discretization is based on 6 months intervals. A crude view at the data

suggests that the HUD–VASH intervention is more effective in reducing homelessness that the

other two interventions that appear comparable. The HUD–VASH intervention group has the

highest level of follow–up visits and the standard care group the lowest level of visiting.
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Table 1: HUD–VASH: quantiles of number of follow–up visits per individual by treatment arm.

minimum 25% median 75% maximum

HUD–VASH 1 7 9 10 12

case management 1 5 7 9 12

standard care 1 3 6 8 12

Figure 1: HUD–VASH: averaged percentage days homeless during the last three months by

treatment arm.
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To answer the question of efficacy of intervention we model the percentage days homeless

during the last three months, denoted as PH, as a function of treatment assignment. We

consider a logit–link model:

logitE [PHi(t)|Trti] = β00f(t) + β01I(Trti = HUD–VASH)

+ β02I(Trti = case management), (12)

where f(t) is a natural cubic spline with 4 degrees of freedom parametrically modeling the

intercept, β00 is a 4–dimensional parameter vector and β0 = (β01, β02)
T is the 2-dimensional
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14 Biased Sampling

parameter vector of primary interest. It quantifies the association of the outcome and interven-

tions contrasts. The standard VA homeless service arm is the reference group.

The sampling–times model we define in equation (13) as a proportional rate model. The

covariates were suggested by the primary investigator Dr. Rosenheck. The time–invariant

predictors of timing of visits are intervention assignment, income at baseline, in thousands of

dollars, denoted as IB, an indicator of receiving any social security or VA benefits at baseline,

BB and a Lehman measure of the quality of life at baseline. Time–varying predictors for the

sampling–times model are percentage homeless approximated by previous value carried forward,

denoted by PH?, and cumulative number of visits so far, denoted by N−.

E [dN?
i (t)|Trti, IBi, BBi, PH?

i (t), QLBi,N−i(t)] = exp {γ01I(Trti = HUD–VASH)+

+ γ02I(Trti = case management) + γ03IBi + γ04BBi + γ05PH?
i (t) + γ06QLBi+

+γ07N−i(t) + γ08N
HUD–VASH
− i(t) + γ09N

case management
− i(t)

}
dΛ0(t) (13)

We estimate the parameter γ0 of dimension 9. Parameter estimates, as shown in Table 2, suggest

that higher intensity of visiting is associated with lower baseline income, lower baseline quality

of life, receiving any social or VA benefits at baseline, having higher approximated percentage

days homeless and higher cumulative number of visits so far, differentiated by treatment arm.

At any time, individual in the HUD–VASH intervention arm is more likely to have a visit

than an individual under only case management, comparing two individuals on the same level

of baseline income, with the same quality of life baseline measure, indicator of social or VA

benefits at baseline, approximated percentage days homeless and having the same number of

visits so far, assuming that the number of visits so far is in the range of (0, 11). Similarly,

individual under case management is more likely to have a visit than an individual on standard

care, comparing two individuals on the same level of baseline income, with the same quality of

life baseline measure, indicator of social or VA benefits at baseline, approximated percentage

days homeless and having the same number of visits so far, ranging from 0 to 11.

There is positive statistically significant difference on the 5% level of proportion of days

homeless within the last 3 months between the HUD–VASH intervention and standard VA

care, favoring the HUD–VASH intervention. Comparing the two treatment arms in averaged
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Table 2: HUD–VASH: parameter estimates and their standard errors in the intensity rate

model (13) for sampling times.

γ̂0 SE(γ̂0)

HUD–VASH 0.359 0.044

case management 0.217 0.054

IB -0.172 0.482

BB 0.104 0.041

PH? 0.001 0.001

QLB -0.007 0.019

N− 0.044 0.015

NHUD–VASH
− -0.018 0.016

N case management
− -0.014 0.023

percentage days homeless during the last 3 months under logit model is time specific, but we

can compare the two treatment arms by the odds ratio of probability of being homeless during

the last 3 months. There, the odds ratio is 0.42, with 95% confidence interval (0.28, 0.62). The

estimate of β02 suggests decrease of proportion days homeless comparing the case management

group to the standard VA care group. However, we lacked power to show that the outcomes

in the two arms really differ. These findings support the conclusion that setting aside housing

resources through the HUD–VASH intervention is necessary and sufficient for facilitating exit

from homelessness in this population.

Table 3: HUD–VASH: estimates of primary parameter of interest β0 = (β01, β02)
T for

model (12). Standard errors are included.

Intervention group

HUD–VASH Case management

β̂0 -0.879 -0.028

SE(β̂0) 0.210 0.223
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16 Biased Sampling

We also computed the naive estimates using GEE that do not adjust for the possibility

of biased sampling. The naive parameter estimates, shown in Table 4, suggest qualitatively

the same answer. However, we see a decrease in favoring the HUD–VASH treatment and the

estimate of β02 has a positive sign. That suggests that the case management intervention has

a negative effect which is however not significantly different from zero on 5% α level. Fitting

the sampling–times model (13) we learned that individuals who were worse off, which is those

with more homelessness, lower baseline income and receiving baseline benefits, tended to have

increased intensity of visiting. Similar to H. Lin et al. (2004), we conclude that the data tend

to be biased upwards. This biasness is deferent for the treatment arms, as suggested by fitting

a sampling–times model with interaction of treatment arm and the other covariates.

Table 4: HUD–VASH: naive GEE estimates of primary parameter of interest β0 = (β01, β02)
T

for parametric model (12). Standard errors are included.

Intervention group

HUD–VASH Case management

β̂0 -0.774 0.081

SE(β̂0) 0.208 0.163

Our results support the idea that the bias due to informative follow–up can be avoided if

the sampling times are modeled properly and the outcome model estimation takes that into

consideration.

5. Simulation Study

We consider a logistic regression model

E[Yi(t)|Xi(t)] =
exp{α0(t) + β0Xi(t)}

1 + exp{α0(t) + β0Xi(t)}
, (14)

where the parameter of primary interest is β0 of dimension 1 and we are interested in the

association of mean of the outcome and the covariate X at time t. We simulate the data using

a probit link, because under probit link marginalization is easy and logit and probit are very
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similar functions, once normalized by π/
√

3, see Figure 2. That is

Φ

(
α0(t) + β0Xi(t)

π/
√

3

)
≈ exp{α0(t) + β0Xi(t)}

1 + exp{α0(t) + β0Xi(t)}
.

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

for Probit link normalized by π 3
x

Probit
Logit

Figure 2: Comparing the Probit link and the Logit link; that is the distribution function of the

standard Normal distribution, Φ( x
π/

√
3
) and distribution function of the Logistic distribution,

exp(x)
1+exp(x) , respectively.

The covariate X has a Binomial distribution with probability of success 0.8 at any time

point based on a grid of 100 per time unit. The intercept α0(t) is 2 − t.

Denote X?
i (t) = Xi(t)/(π/

√
3). The outcome model (14), using the approximation above,
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18 Biased Sampling

is based on the following equation for outcome:

Yi(t) = I (α?
0(t) + β?

0X?
i (t) + θ (Zi(t) − µZ) + φi + εi(t) > 0) , (15)

where µZ = E(Zi(t)|Xi(t)) and where we include the random effect term φi to model exchange-

able correlation on outcome within the same individual as well as the error term εi(t). To

avoid confounding we incorporate additional covariate Zi(t) in a perpendicular way to the co-

variate Xi(t). All three components are mutually independent and Normally distributed. The

random effect and the error have mean 0 and variance σ2
φ and σ2, respectively. The covariate

Zi(t) has mean µZ and variance σ2
Z conditional on Xi(t). A proper marginalization over the

random effect, the covariate Zi(t) and the error term yields

β?
0 = β0

√
σ2 + σ2

φ + θ2σ2
Z

α?
0(t) = α0(t)

√
σ2 + σ2

φ + θ2σ2
Z

π/
√

3

because based on expression (15)

E(Yi(t)|Xi(t)) = P (α?
0(t) + β?

0X?
i (t) + θ (Zi(t) − µZ) + φi + εi(t) > 0)

= P


−θ (Zi(t) − µZ) + φi + εi(t)√

σ2 + σ2
φ + θ2σ2

Z

<
α?

0(t) + β?
0X?

i (t)√
σ2 + σ2

φ + θ2σ2
Z




= Φ


 α?

0(t) + β?
0X?

i (t)√
σ2 + σ2

φ + θ2σ2
Z


 .

The Z covariate is a mixture of two Normal distributions, to be specific

Z|X ∼ (1 − X)N(µZ1, σ
2
Z1) + XN(µZ2, σ

2
Z2).

We set σ = 1, σφ = 0.5, β0 = 1, θ = 0.5, µZ1 = 2, µZ2 = 0, σZ1 = 1, σZ2 = 2.

For the sampling–times model, the observation times follow a random-effect Poisson count-

ing process with intensity λi(t) = ηi exp{γ01Xi(t) + γ02Zi(t)}. Random effect ηi is Gamma

distributed with mean µη = 1 and variance σ2
η = 0.01. Thus for each individual the times of

observations are positively correlated unless ση = 0. Parameter γ1 we set to 0.2, γ2 to 0.3.

The censoring variable C is distributed uniformly on the interval (τ/2, τ). Parameter τ

has the meaning of the median number of observations per individual. Setting τ to 4 and 8
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should demonstrate cases of a few and many observations per person. The resulting quantiles of

number of observations taken over all individuals and simulations are in Table 5. The parameter

assigning weight to time is set to 1 over the entire time span.

Table 5: Quantiles of number of observations per person.

minimum 25% median 75% maximum

τ = 4 1 3 4 5 17

τ = 8 1 6 8 10 25

Table 6: Summary statistics of the estimator of β0 for the simulation studies. We present bias

(Bias), sampling standard errors (SSE), sampling mean of estimated standard errors (SEE),

coverage probability of the true β0 (CP) and two measures (M1,M2) comparing squared errors

between the proposed estimator and the GEE estimator.

Bias SSE SEE CP M1 M2

n = 20 τ = 4 −0.049 0.388 0.399 0.95 2.59 4.97

τ = 8 −0.078 0.258 0.289 0.96 4.31 7.47

n = 50 τ = 4 −0.041 0.225 0.244 0.96 5.43 10.83

τ = 8 0.039 0.164 0.168 0.95 7.69 14.35

n = 200 τ = 4 −0.029 0.106 0.108 0.94 11.82 21.31

τ = 8 −0.023 0.079 0.081 0.94 14.20 21.16

n = 500 τ = 4 0.018 0.068 0.071 0.94 16.71 22.37

τ = 8 −0.009 0.051 0.053 0.95 19.11 22.79

In Table 6 we present bias, sampling standard error of β̂, SSE, and sampling mean of

estimated standard errors, SEE, taken over 1000 simulations. The estimated standard errors are

based on a sandwich–form estimator of variance. We also present two measures of squared errors

comparison between the two estimation approaches, the proposed biased sampling adjusted

estimator and the traditional GEE estimator with independent working assumption. Measure

M1 based on mean of the ratio of empirical mean squared error of estimate (11) of β0 over

empirical mean squared error of GEE estimate of β0. Measure M2 is based on empirical median
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of ratios of squared errors, a more robust efficiency estimate motivated by Pitman closeness.

We report 95% sampling coverage probability. Because we run 1000 simulations, the precision

of the coverage probability is 1.4%. Number of individuals in a sample is set to 20, 50, 200 and

500.

The bias of the IIRR estimates is negligible relative to the sampling standard error. The

sampling mean of estimated standard errors is very close to the sampling standard errors,

suggesting that the sandwich variance estimator is a good statistic to estimate the variance of

the parameter β0. We note that in our simulations it always slightly overestimates the true

standard errors. The coverage probabilities of the IIRR estimates are also very close to the

ideal 95%. The traditional GEE estimator has failed under the biased settings, systematically

overestimating the parameter β0. We see the inconsistency from the statistics M1 and M2

comparing the squared errors between the proposed IIRR estimates and the traditional GEE

estimates.

6. Discussion

In survival analysis settings, knowledge of the covariate process over time up to dropout is a

standard assumption. In our notation it means knowledge of covariates Z over time if those

are time–varying. On the contrary, in longitudinal analysis settings, the usual assumption is

that covariates X are known at sampling times only. Our IIRR estimator, combining survival

analysis and longitudinal analysis approaches together, requires knowledge of both covariate

processes X and Z over time up to dropout, actually only at the data set’s sampling times T.

The covariate process X is needed over time because it is used in the stabilized weight h0(·).
Using approximations of the covariate process X or Z cause the IIRR estimators to be biased.

However, subcohort sampling techniques such as case–cohort design, pioneered by Prentice

(1986), seem promising in keeping consistency of the estimator.

Separation of the sampling–times model and the outcome model as two distinct models

enables to perform model checking separately. A range of model checking techniques of the

sampling–times model (2) was suggested in Section 4 of Lin et al. (2000) using cumulative sums

of residuals based on the process {M(t), t ∈ [0, τ ]} defined in equation (9). We keep in mind that

those residuals are not martingales and thus present a technical challenge to construct formal
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tests. Those model checking techniques include both graphical and numerical inspections for

functional form of covariates, exponential link function and proportional rates assumptions. For

the last we can plot Schoenfeld residuals against time with a fitted smoother, just as described

in Grambsch & Therneau (1994) for checking proportional hazard assumption. Also an omnibus

test for checking the overall fit of the model was constructed. Lin et al. (2002) in Section 3

provide a guideline on constructing cumulative and moving sums of residuals for longitudinal

marginal models. Those should graphically and also numerically, using the Kolmogorov–type

supremum test, help to determine the nature of model misspecification. We would like to address

similar matter for the outcome model in our future work.

Similarly to H. Lin et al. (2004), we can expand the class of the outcome models from

generalized linear models to a broader class, defined as

E [Yi(t)|Xi(t)] = µ(t,Xi(t);β0) ∀t ∈ [0, τ ], (16)

where the mean of outcome at time t is function of time, covariates at that time and the unknown

parameter vector β0.

D. Lin & Ying (2001) introduced the integration of counting processes with linear regression

models where they allow for an unspecified intercept function α0(t). Their semiparametric

outcome model is

E[Yi(t)|Xi(t)] = α0(t) + βT
0 Xi(t) ∀t ∈ [0, τ ]. (17)

Bůžková & Lumley (2005) describe the extension of Lin and Ying’s approach into biased sam-

pling for linear regression models and models with log–links, accommodating the unspecified

intercept feature. For the class of generalized regression models this feature seems unattainable.

Acknowledgments

The HUD–VASH study data were obtained from H. Lin at Yale University, New Haven with

permission from the study primary investigator R. Rosenheck at Veterans Affairs Northeast

Program Evaluation Center, West Haven.

Hosted by The Berkeley Electronic Press



22 Biased Sampling

Appendix A: Assumptions

We assume that (Yi(·),Xi(·), Zi(·),N∗
i (·), ξi(·)) are i.i.d. quintuples of random processes over

time t ∈ [0, τ ] for individuals 1 through n. The counting uncensored process of events at the

end of follow-up τ, Ni(τ), is required to be bounded by a constant. Both mean outcome model

covariates Xi(·) and sampling times model covariates Zi(·) need to have bounded total variations

by a constant for all individuals i = 1, . . . , n. That is |Zji(0)| +
∫ τ
0 |dZji(t)| ≤ K, j = 1, . . . , g

and |Xji(0)| +
∫ τ
0 |dXji(t)| ≤ K, j = 1, . . . , p. Total number of observations per individual i,

denoted by Ki, is bounded. The weight function W (·) is a difference of two monotone functions,

each of which converges to a deterministic function. We denote the limit of W (·) by w(·). We

assume that the function h(·) has bounded variation. That is for some K < ∞

|h(0)| +
∫ ∞

0
|dh(x)| ≤ K.

Appendix B: Implementation of the estimation procedure

The estimating procedures developed in this paper can be implemented in S-plus/R with extreme

ease. The sampling–times model (2) can be fitted by function coxph in package survival in order

to obtain the estimate of γ0. To fit the outcome model (1) we can use the function glm from the

stats package that produces estimates of β0 by the iteratively reweighted least squares procedure

as described in Chambers & Hastie (1991). We only need to specify the inverse weights correctly.

The standard errors of the estimate of β0 can be obtained by bootstrapping or implementing

the sandwich estimates provided in the article.

References

Albert, P. S., Follmann, D. A., Wang, S. A., & Suh, E. B. (2002). A latent autoregres-

sive model for longitudinal binary data subject to informative missingness. Biometrics 58,

631–642.
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