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1. Introduction

Microarray technology provides the ability to measure the expression levels
of thousands of genes at once (Schena et al., 1995; Nguyen et al., 2002). For
microarray experiments, two common objectives are to detect differentially
expressed genes and to cluster co-expressed genes. Differentially expressed
genes can serve as disease-specific markers for disease diagnosis in clinical
research (Pepe et al., 2003), while co-expressed genes can contribute to our
understanding of the regulatory network of gene expression (Eisen et al.,
1998).

To answer either question, repeated measurements are needed. In mi-
croarray experiments, repeated measurements are often obtained by mea-
suring the expression levels of (1) multiple samples at one time point, or
(2) a single sample at multiple time points, or (3) multiple samples each at
multiple time points, which we refer to here as type I, II, and III data, re-
spectively. For type I and type III data, samples can be either homogeneous
or heterogeneous.

In the past decade, many statistical methods have been proposed for
the differential expression question. (Note that ”differential expression” was
originally used to refer to the comparison of expression levels between two
conditions, but it is now often used for a more general regression setting,
e.g., the comparison among two or more conditions or patterns of expression
over time.) Examples of analytic methods for type I, IT and III data include
the two-sample t test and its modified versions (Tusher et al., 2001; Baldi
and Long, 2001) and ANOVA (Dudoit et al., 2002; Kerr, 2003), the single
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pulse model (Zhao et al., 2001), and the linear mixed model with B-spline
basis for time (Storey et al., 2004), respectively. Despite the different forms
that those per-gene models assume, they all share the common feature of
modeling the expression data with a gene-specific regression function, i.e.,
a mean function dependent on covariates and gene-specific parameters, and
differential expression of each gene is assessed by formal inference procedures

applied to the gene-specific model parameters. For example,

(a) The two-sample t test assumes a simple linear regression model, for

gene g, with covariate = (1,zp)" and regression coefficient 8, =

(5907 Bgl)T:
Ygi = 1(i; By) + €9 = Bgo + Tpifg1 + €gi;

where y,4; is the expression value for sample 7 and gene g, xp; is the
indicator of disease status for sample ¢, and €, is the measurement

error.

(b) The linear mixed effects model with spline basis for multiple-sample
time series data models the expression value for gene g and sample ¢

at time t;, ygi, as
Ygi = p(xi; By) + €git = w(tiz)Tﬂg + ib‘(tz'z)Tbgi + €gi,

where x; = x(t;) is a vector of spline basis (Green and Silverman,
1994) evaluated at time ¢; for sample 4, B, is the fixed effects for gene
g, by is the random effects for gene g and sample ¢, and ¢4 is the

measurement error.
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Motivated by this common regression modeling structure for per-gene
models, we propose a new clustering method that employs the same regres-
sion model structure so as to provide a natural complementary analysis tech-
nique. This method — the clustering of regression models (CORM) method —
groups genes that share a similar relationship to the covariate(s). The CORM
method provides a unified framework for a family of model-based clustering
methods that specifically incorporate experimental design information and
other (biologically or clinically) interesting covariates. It can be applied to a
wide range of data types.

Previous model-based clustering methods for gene clustering include the
multivariate normal mixture model (Yeung et al., 2001) for type I and II
data and the clustering of mixed-effects model with B-spline basis method
(Luan and Li, 2003) for type II data. The multivariate normal mixture
model assumes that the vector of expression values for a gene is distributed
as a mixture of multivariate normals and does not incorporate experimen-
tal design information, e.g., disease status, time ordering, and (biological)
replicates. Luan and Li’s method is a special case of the CORM method
with the regression model being the mixed-effects model and the number of
samples being one. Clustering methods were also proposed in the Bayesian
hierarchical model framework (Ramoni et al., 2002; Wakefield et al., 2003;
Oh and Raftery, 2003). We will focus on likelihood-based methods in this
paper.

The outline of this paper is as follows. In section 2, we describe the
CORM method, including the model, the model fitting, and a new method

to select the number of clusters. In section 3 the CORM method is applied
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to a breast cancer dataset and a yeast cell cycle dataset. Some discussion

and remarks are provided in section 4.

2. The Clustering of Regression Models Method
2.1  The model

The CORM method uses regression to model systematic variation in gene
expression levels as with per-gene methods but, in addition, assumes that
gene clusters exist and that genes belonging to the same cluster share the
same values of regression coefficients.

We now introduce some notation for type III data, which includes type
[ and type II data as special cases. Let y,; (ngi x 1) denote the expression
values measured for gene g and sample i, X, (ng x p) the design matrix
for gene g and sample ¢, and €, (ng x 1) the vector of measurement error.
Assume that there are K clusters. Let F be the conditional distribution
of y, with mean yp and parameters £ and 8 = (BT, ..., BT, u(;.) the
regression function, and B, (p X 1) the regression coefficient vector for genes
in cluster k. Denote the cluster membership for gene g as u,; or equivalently,
write ug as uy, = (Ug1, - .., ugx)", of which only the u,th element equals 1 and
the others equal 0. The essential modeling elements underlying the CORM

method can be written as

ygi|(u9 = k’ XQZ) ~ FBk"Ek’ (1)
with HF = N(Xgi; /Bk)a

u, ~ Multinomial (),

K
with = (71,...,7x)", 7 > 0, and Zﬂ'k =1.
k=1

Complete specification of the CORM modeling framework requires identifi-

4
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cation of the error structure which, in turn, depends on the particular form
of the regression model in (1).

The specific form of the conditional distribution function F' used for the
CORM method is flexible; to name a few, it can be the classical linear model,
the linear mixed model, the generalized linear model, and the nonlinear re-
gression model. The choice of the regression model should depend on the
nature of the data and the specific scientific question; it should also be in-
formed by the per-gene analysis. For example, if one wants to use type I data
to identify groups of genes that have similar expression levels in both can-
cer samples and normal samples, one can use the clustering of linear models

(CLM) method to model the expression data for gene g and sample i as

Vil (ug = k,xgi) = @LBy + €gi, (2)
€gi ™~ N(O,az),

u, ~ Multinomial(m),

where z, = (1, rp;)" and zp; is the indicator of disease status for sample 1.
The measurement error variance, oz, can be either cluster-specific or com-
mon to all clusters. If samples are measured repeatedly across time, one may
use the linear mixed effects model to model the correlation between measure-

ments on the same sample and to identify genes that have similar expression

profiles over time. Specifically, the model for the clustering of linear mixed
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models (CLMM) method models type III data as

ygi|(ug =k, Xgi) = X 4By + €gi, (3)
€gil(ug =k) ~ MVN(0,Vi(&)),
ng(Sk:) = ZgszZZ;Z +0—]3I7

u, ~ Multinomial (),

where D), is the variance matrix for random effects in cluster £ and I is
an identity matrix. The random effects variance and the measurement error
variance can be either cluster-specific or common to all clusters. The design
matrix for fixed effects X ;; could be the spline basis of time and the design
matrix for random effects Z; is usually a subset of X j;. The CLMM model
can also be applied for type II data with : = 1. To our knowledge the CORM
method is the only method available for gene clustering with type III data.

It is worthy to note that one can apply the CORM method to cluster
data with multiple outcomes in general; gene expression data is only one of
the possible applications.
2.2 Model fitting

Because the cluster membership indicator u,’s are not observable, we treat
them as missing data and fit the CORM model with the EM algorithm using
mixture or classification likelihood (Dempster et al., 1977). Implementation
details depend on the specific type of the regression model used. We have
implemented the fitting procedures for the CLM method and the CLMM
method, which are presented in Appendix A and B, respectively.

To obtain a starting value for the parameters, a regression model is fitted

for observations on each gene and the corresponding gene-specific parameters
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are clustered either randomly or via an empirical clustering procedure (e.g.,
K-means). Then set the cluster centers to be BECO) and the proportion of genes
in the corresponding cluster to be W,(CO). The model fitting via EM algorithm
should be carried out with different starting values to guard against iden-
tifying a local maxima as the global maxima. Different starting values can
be obtained by re-clustering gene-specific regression parameters (using the
same or different clustering methods) or by clustering gene-specific regression
parameter estimates based on random subsets of the original sample.

Besides parameter estimates, the fitting procedure also generates an es-
timate for the cluster membership u,’s. The estimated cluster membership
not only offers insight about the underlying structure of the large number
of genes, but also can form a classifier for samples or a predictor for future
samples.
2.3 Selecting the number of clusters

So far we have assumed that the number of clusters K is known; however,
this is rarely true. One important aspect of cluster analysis is to empirically
determine the number of clusters. Many existing methods for this prob-
lem focus on the within cluster dispersion and exploit the so called ”elbow”
phenomenon (Milligan and Cooper, 1985; Gordon, 1999). New methods for
selecting the number of clusters have recently been proposed in the context
of sample clustering with gene expression data, including Tibshirani et al.
(2001) and Dudoit and Fridlyand (2002). These methods base the choice of
K on the reproducibility of sample clustering and require the definition of
some measure of agreement between two clusterings.

In real data, however, there is no ”true” number of clusters, but only a
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choice of a useful value of K that results in stable and replicable results that
provide a good (e.g., efficient) fit to the data. As such we consider choice of
K a matter of empirically informed judgment rather than a matter of formal
inference and prefer informal selection based on specified guidelines than a
purely automated approach. Two features are critical in guiding our selection
of K: efficiency of data description and stability of cluster centers. For the
CORM method, cluster centers correspond to the cluster-specific regression
coefficient B, ’s.

To measure the efficiency of data description, we choose to use Bayesian

Information Criterion (Schwarz, 1978; Fraley and Raftery, 2002):
BICYy = 2log-likelihood — plog(N),

where p is the number of covariates in the model and N is the number
of observations. Stability of a random variable is often quantified by its
variance. However, for each fitted cluster center, the variance is often a
covariance matriz, say 2, and there is a covariance matrix for each of the K
clusters. To obtain a single numerical summary for stability of cluster centers,

we propose a new measure — Bootstrapped Maximum Volume (BMV):
BMVy = )}
Vi kglﬁ?,(z({wlume( k) }

The BMV measure first summarizes each covariance matrix with its volume
(Banfield and Raftery, 1993) and then summarizes the set of volumes for K
clusters with their maximum value.

Specifically, the BIC/BMV method is to,

(i) for each candidate K, compute the BIC' value;

8
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(ii) for each candidate K, compute the BMV value by

a. drawing B bootstrap samples and for each bootstrap sample

e fitting the CORM model;

e relabeling the estimated coefficient vector for this bootstrap sample
to minimize its Euclidean distance to the estimated coefficients for
the original data;

b. computing the covariance matrix for the estimated coefficients obtained
in (a) for each of the K clusters;

c. computing the maximum volume of the K covariance matrices;

(iii) select the number of clusters to be the K value that has a large BIC

value and a small BMV value.

3. Data Analysis

We now illustrate the application of the proposed methodology using two
real datasets from microarray experiments, one by Zhao et al. (2004) and
the other by Spellman et al. (1998). We will briefly describe the two studies
here and the readers are refered to the original publications for more detailed
reports.
3.1  Breast Cancer Data

Zhao et al. (2004) studied the gene expression profiles of two major
histological types of breast cancer — invasive ductal carcinoma (IDC) and
invasive lobular carcinoma (ILC). They analyzed the expression profiles of
38 IDC samples and 21 ILC samples, using cDNA arrays spotted for 42,000
clones. A common reference sample is used for all arrays. With SAM analysis
(Tusher et al., 2001), they identified a total of 474 clones that were differen-
tially expressed between IDCs and ILCs, representing 354 unique genes. To
illustrate our methodology, we applied the BIC/BMV method and the CLM
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method to the log ratios of those 354 genes (measurement of multiple clones
corresponding to the same gene are averaged).

The BIC/BMV method shows that K = 9 and K = 14 offer better
trade-off between BIC and BMYV measures than other candidate values
of K (Figure 1). Figure 2 shows the clustering results when the CLM
model is fitted with 9 clusters and with 14 clusters. When K = 9, genes
CRBPIV, FABP4, LPL, and PLIN are grouped in cluster 3, which are in-
volved in Lipid/fatty acid transport and metabolism; genes HISTIH2AL,
HIST1H2BD, HIST2H2A A, HIST2H2BE, HIST1H2BK, HIST1H2BL, and
HIST3H2A are all involved in nucleosome assembly, but the first four genes
are grouped in cluster 9, while the last three in cluster 7. It also shows that
all but two clusters fitted for K = 14 are roughly subsets of one of the clus-
ters fitted for K = 9, which suggests that subgroups are further separated
as K increases from 9 to 14 and provides a somewhat hierarchical view of

clustering for those genes.
[Figure 1 about here.]

[Figure 2 about here.]

3.2 Yeast Cell Cycle Data

Spellman et al. (1998) monitored the genome-wide mRNA levels for 6,108
yeast ORFs at 7-min intervals for 119 min, relative to a reference mRNA
from an asynchronous yeast culture, in a cell culture synchronized by cdc15,
cde28, or a factor. These three datasets were analyzed by Zhao et al. (2001)
using the single pulse model; a total of 256 genes were identified to oscillate

significantly in at least two datasets. For illustration purpose, we fit the
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CLMM model to the log ratios of those 256 genes synchronized using «
factor. Data from the last two time points are excluded from this analysis
because the amount of missing data at these two time points implies poor
data quality and because these two time points are at the end of the second
cell cycle with weak cell cycle signal due to loss of synchrony. The design
matrix for fixed effects is the B-spline basis with 7 equally spaced knots and
so is the design matrix for random effects. The number of knots is set to
be 7 to allow a flexible modeling of the curve and at the same time to avoid
overfitting; within a reasonable range, the clustering results are not sensitive
to the number of degrees of freedom for the B-spline basis.

Figure 3 shows the clustering result when the CLMM model is fitted
with six clusters. Of these 256 genes, 229 genes have been previously clas-
sified into five clusters — G1, S, S/G2, G2/M, and M/G1 — by Spellman et
al. (1998) based on the estimated time to the first peak (http://genome-
www.stanford.edu/cellcycle/data/rawdata/). Figure 4 compares the fitted
clustering using the CLMM method with Spellman et al.’s clustering (la-
beled as ’expected clustering’). Fitted cluster 1, 2, and 3 seem to divide G1
cluster into three clusters — early, middle, and late G1 clusters, while fitted
cluster 5 consists roughly S/G2 cluster and G2/M cluster, suggesting that
those two clusters have a similar expression profile. Figure 4 also shows that
the fitted clusters seem to be shifting along the cell cycle phases and echoes

the fact that the cell cycle is a continuous process.
[Figure 3 about here.]

[Figure 4 about here.]

11
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4. Discussion

The CORM method can be considered as an application of finite mixture
models (McLachlan and Basford, 1988). Traditional finite mixture models
consider that an observation comes from a mixture of marginal distributions.
In 1970’s, switching regression models (Kiefer, 1978) were studied for the
problem of switching regime, where some observations on an outcome vari-
able come from one regression line and other observations come from another.
Switching regression models consider that, conditional on the covariate, an
observation on the outcome variable comes from a mixture of conditional
distributions. Now microarray technology offers a wealth of data with mul-
tiple outcome variables. The CORM method assumes that (observations
on) an outcome variable comes from a mixture of conditional distributions.
The CORM method groups outcome variables, while the switching regres-
sion model groups observations on a single outcome variable. For the CORM
method, the availability of outcome-specific regression parameter estimates
makes it relatively easy to find starting values for the EM algorithm.

The CORM method can naturally accommodate missing data on any
gene or any sample, while algorithmic clustering procedures (e.g., K-means)
and the multivariate normal mixture model cannot. Computer programs
for the CLM method and the CLMM method have been implemented in R.
Alternatively, one can also implement the estimation of the CORM method
in a Bayesian framework using standard computer packages, such as BUGS.

The BMV measure can be used for not only the CORM method but also
many other model-based clustering methods (together with the BIC mea-

sure or some other goodness-of-fit measure) or empirical clustering methods
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(together with some cluster-tightness measure, e.g., the within-cluster disper-
sion). As an example, for K-means clustering, one can use the BMV measure
together with the within-cluster sum of squares to choose a K value that has
both a small variability and a small within-cluster dispersion.

In this paper, we have assumed that data are properly normalized and
transformed (Yang et al., 2002). As with many parametric statistical meth-
ods, the choice of normalization and transformation methods can significantly
alter the analysis results and need to be chosen carefully (Qin et al., 2004).
After identifying differentially expressed genes and clustering co-expressed
genes, the natural next step of analyzing microarray data would be to inves-
tigate the available functional information on the genes. Libraries of infor-
mation are available from the public and private domains, among which is
the Gene Ontology Consortium (http://www.geneontology.org/). By exam-
ining the functions of co-clustered genes, one can obtain biological insights
into the pathways, functions of unknown genes, and pathogenesis of diseases.

In summary, the CORM method provides a flexible tool to cluster high-
dimensional data and can be applied to a wide range of experimental designs
and scientific questions. When used in combination with regression-based
per-gene analyses of differential expression, it forms the basis for an inte-
grated analytic framework for the analysis of microarray data. We expect
this framework to be increasingly useful as microarray measurements are

obtained over a broader and more complex set of experimental conditions.
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APPENDIX A

Model fitting for the CLM method

For notational convenience, we drop the subsript for ng and m,; the ex-

tension is straightforward. Let y, = (y},,...,y5)", Y = (y]....,y5)"

Y

X, = (X7,....X,)" X = (X{,...,X0)", u = (u,...,ue)", and
0 = (B],...,8%,&")T, where 6 represents all parameters involved in the

component distributions and the definition of £ depends on the form of x().

To fit the CLM model, we need to estimate wand @ = (8, ...,Bx,0%,...,0%).
By treating u,’s as missing data, we can use the EM algorithm to find the
MLE iteratively. The expected value of u,’s, i.e., the probability for one
gene belonging to each cluster, is first calculated given the current parame-
ter estimates (E-step); then the parameters are estimated given the current
expected values of u,’s (M-step). We implemented the model fitting proce-
dure with the mixture likelihood; alternatively, one can fit the CLM model
with the classification likelihood with a slight modification to the E-step of
the proposed algorithm.

The complete data likelihood factors into two distinct parts, each involv-

ing a separate subset of parameters. Specifically,

f(Y,u|X;0,m) = f(ulm)f(Y|X,u;0)

= [ﬁﬁﬂzgk] [ﬁﬁ{fk(yg|xg;9)}ugk :

g=1k=1 g=1k=1
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Up to additive constants, the complete data likelihood can be written as

G K
I, = ZZqu log (),

g=1 k=1
G K m T3 \2
=323 > g lostod) + = 2o,
The E-step finds the expectation of the log likelihood function of 8 based
on the complete data conditional on the observed data and 8 from the pre-
vious iteration, Q(0]6")). For the CLM method, this amounts to calculating

E(uge = 1ly,, 0") since Q(0|0") is linear in ug.

W,(ct)PT(’nggk _ l.e(t))
S ) Pr(y, luge = 1,00)

ﬁgk = E(ng = 1|yg)

gi —T l'B
where Pr(yg|u9k =1 075) Hz 1f(ygz|ugk - ]' 0( )) Hz 1¢(y (g) )
#(.) denotes the density function for the standard normal distributlon.

The M-step updates @ with the value 8¢*Y that maximizesQ(8]6"). For

the CLM method, the specific calculation of the M-step is

G
NS .
Ty = E :ugk

g=1
A (t+1) L 1 &
By = (ZaangTXg) > i X5y,
g=1 g=1
G
Az(tﬂ) g {Z@gk(yg—Xf ](€t+1)) ( _X-T t+1 } {Zmugk}
g=1
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APPENDIX B

Model fitting for the CLMM method

To fit the CLMM model, we need to estimate = and @ = (84, ..., 8, D1, ...,
Dy, 0%,...,0%). By treating both u,’s and b,;’s as missing data, we can use
the EM algorithm to find the MLE iteratively. Cluster membership indicators
and corresponding random effects are estimated given the current parameter
estimates (E-step); then the parameters are estimated given the cluster as-
signment and the expected values of random effects from the previous E-step
(M-step). The complete data likelihood factors into three distinct parts, each

involving a separate subset of parameters.
10,7y, ., Ye, bi,...,bg,u) = l1(m;u)
+l3(Dy,...,Dg; by, ..., bglu)
+ 03By By Oty O Yy Y|l -, by ),
where by = (b, ..., b, )"
Furthermore, the three components of the complete data likelihood can,

up to additive constants, be written as

¢ K
I = ZZqu log (),

g=1 k=1
1 G K m
= =3 223 3 ua{log(IDil) + 61D by}
9=1 k=1 i=1
1 G K m
b= =5 D03 > uge{log(10P ) + o).
g=1 k=1 i=1

where 7gix = ygi — X giBy — Z 4ibyi-
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The BE-step finds Q(0]0")). For the CLMM method, this is to calculate

W,(Ct)Pr(yg|ugk =1, O(t))
Z;f ) w,(ct)PT(nggk =1, 0(t)),
boit = E(byily,, uge = 1;00) = DY 2LV 19y, — X,:80),

gtk
b2 = E (Zbgibg;wg,ugk = 1;61)

- Z bglkbgzk + D ( Z Z gzk gz) Dgct)’

€gik = (egZ|"Jga g = 1; e(t)) =Y — giﬁk - Zgii’gikv

29 = E (Zegleg,wg,ugk 1;0(t)>

Ugr = E(uge = 1|y,; o)) =

=3 (g + o2t ( — 2OV A0}
=1

The M-step updates the parameters as

t-l—l
E ugk:a

~(t41) Z?:l Ugk bAzgk

Dk} — G N )
m Zg:l ng
G . -
~2(t41) Zg:l Ugk€2gp,
O - G .

nm 2921 U,

G m ., G
Y = (XY X ix,) " 3
g=1

m

@gkX;(yg — ZgiBgik)-
1

For both the CLM method and the CLMM method, convergence is consid-
ered to be achieved when the increase of the log-likelihood from one iteration

to the next is less than 0.01.
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Figure 1. BMV and BIC values vs. candidate values for K.
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Figure 2. Scatter plots for the difference of gene-specific means among IDC
samples and that among ILC samples versus their average. Fitted clusters
for K =9 are labeled with numbers 1 — 9 and fitted clusters for K = 14 are
labeled with 1 —9 and A—E.
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Figure 3. Fitted and observed expression profiles over time for the 256
genes from Spellman et al. (1998). Each of the six panels plots the fitted
profile (solid line) of one cluster and the observed profiles (dotted line) of
genes in that cluster versus time in minutes. The number of genes in each
fitted cluster is labeled in the bottom right corner of each panel. Clusters
are ordered by the estimated time to the first peak.

24

http://biostats.bepress.com/uwbiostat/paper239



10 -
:o4 24 14 21 s

~ - 23 )

1 (2 :

I I I I I
Gl S SIG2 G2/M M/G1

Expected Clustering

Figure 4. Compare the fitted clustering based on the CLMM model with
Spellman et al.’s clustering for the 256 genes. The six fitted clusters seem to
be shifting from cell cycle phase M/G1 to phases G1, S, S/G2, and G2/M.
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