
UW Biostatistics Working Paper Series

11-13-2003

A Corrected Pseudo-score Approach for Additive
Hazards Model With Longitudinal Covariates
Measured With Error
Xiao Song
University of Washington, songx@u.washington.edu

Yijian Huang
Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, yhuang5@sph.emory.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Song, Xiao and Huang, Yijian, "A Corrected Pseudo-score Approach for Additive Hazards Model With Longitudinal Covariates
Measured With Error" (November 2003). UW Biostatistics Working Paper Series. Working Paper 217.
http://biostats.bepress.com/uwbiostat/paper217

http://biostats.bepress.com/uwbiostat


1. Introduction

In medical studies, information is often collected on several time-dependent and time-
independent covariates, along with a possible censored time-to-event. It is of interest to
characterize the relationship between the covariates and the time-to-event. However, time-
dependent covaritates are usually collected intermittently and with error. An example is
the AIDS Clinical Trial Group (ACTG) 175 study, a randomized clinical trial to compare
zidovudine alone, zidovudine plus didanosine, zidovudine plus zalcitabine and didanosine
alone in treating HIV-infected subjects (Hammer et al., 1996). As a time-dependent covari-
ate, CD4 count is measured about every 12 weeks. It is well known that CD4 measurements
are subject to considerable intra-subject variation and measurement error. An objective is
to characterize the relationship between progression to AIDS or death and CD4.
To model such data, recent interests focus on the proportional hazards model framework,

with longitudinal data jointly modeled using a mixed effects model. Various approaches
were proposed for such joint models, including the regression calibration (e.g. Pawitan and
Self, 1993; Tsiatis et al., 1995) and likelihood based approaches (e.g. Schluchter, 1992;
DeGruttola and Tu, 1994; Wulfsohn and Tsiatis, 1997; Faucett and Thomas, 1996; Hen-
derson et al., 2000; Xu and Zeger, 2001). However, these approaches depend on parametric
(normal) assumptions of the random effects and the error. In addition, the regression cali-
bration might give biased estimation (Tsiatis and Davidian, 2001). Some recent approaches
were devoted to relaxing the assumptions on the distribution of the random effects. The
semiparametric likelihood approach (Song et al., 2002b) assumes the random effects have
a “smooth” density and the conditional score approach (Tsiatis and Davidian, 2001; Song
et al., 2002a) requires no distributional assumption on the random effects. The corrected
score approach (Nakamura, 1992) was originally proposed to deal with error contaminated
time-independent covariates, but can be extended to time-dependent covariates directly.
However, these approaches are still based on the normality assumption of the errors. In
the ACTG data case, our preliminary study indicates that the joint distribution of the
random effects is not normal (Song et al., 2002b) and the error might deviate from the
normal (Song et al., 2002a). In such cases, approaches based on normality assumption on
either the random effects or the error might lead to biased estimation. Furthermore, all
these approaches might encounter intractable numerical difficulties in practice. The regres-
sion calibration and the likelihood based approaches can be computationally intensive and
infeasible to be implemented when multiple time-dependent covariates are measured with
error. The conditional score approach might have multiple solutions; in addition, like the
corrected score approach, it might break down in the situation of small sample and large
measurement error.
The restrictions of these error dealing approaches under the proportional hazards model

motivate us to consider an alternative framework, namely the additive hazards model.
Like the proportional hazards model, the additive hazards model has sound biological and
empirical bases (Breslow and Day 1980, pp. 53–59; 1987, pp. 122–131). When the covariates
are not measured with error, Lin and Ying (1994) proposed a pseudo-score approach for
the additive hazards model. In the case that time-independent covariates are measured
with error, Kulich and Lin (2000) proposed a corrected pseudo-score estimator based on
a validation data set. However, little has been done for the additive hazards model with
longitudinal covariates measured with error.
In this paper, we propose a simple corrected pseudo-score approach for estimating the

regression parameters of the additive hazards model with time-dependent covariates mea-
sured with error. In contrast to the approaches under the proportional hazards model, this
approach requires only assumptions on the variance structure of the error process and no
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assumption at all on the random effects. The resulting estimator has an explicit form and
easy to compute. We describe the model in Section 2 and derive the estimator in Sec-
tion 3. The asymptotic properties are given in Section 4. We illustrate the finite sample
performance in Section 5 and apply it to the ACTG 175 data in Section 6.

2. Model Definition

For each subject i, i = 1, . . . , n, let Ti denote failure time and Ci denote censoring time.
The observed survival data are Vi = min(Ti, Ci) and ∆i = I(Ti ≤ Ci), where I(·) is
the indicator function. Let Xi(u) = {Xi1(u), . . . , XiK(u)}

T denote K underlying time-
dependent covariates at time u, and let the r × 1 vector Zi denote r time-independent
covariates, which are not subject to measurement error. We assume each of the covariate
process Xik(u), k = 1, . . . ,K, satisfies

Xik(u) = αT
ikfk(u), (1)

where fk(u) is a known (qk × 1) vector of functions of u, αik is a (qk × 1) random effect,
and fk(u) and αik may be different for each k. This allows flexibility in representing the
time trajectory of each covariate via polynomial or spline models. The covariate processes
Xik(u) are not observed directly; rather, longitudinal measurements Wik(tikj) on the kth
covariate are taken at times tikj , j = 1, 2, . . . ,mik, for each i, where

Wik(tikj) = Xik(tikj) + eikj , (2)

and eikj are independently distributed, mean-zero “errors” with variance σ
2
k that may reflect

both biological variation and measurement error. Thus, (2) along with (1) is a linear mixed
effects model, and Xik(u) may be regarded as the “inherent” trajectory for subject i and
covariate k.

We assume that the longitudinal measurements are sufficiently separated in time such
that the errors are independent across time; however, for the hazard formulation given
below, this could be relaxed and other correlation structures could be considered. We allow
measurements on different covariates at the same time to be correlated to represent possible
correlation between the biological variation and measurement error for different covariates.
More formally, we may write cov(eikj , eik′j′) = σkk′I(tikj = tik′j′), for k, k′ = 1, . . . ,K,
j = 1, . . . ,mik, and j′ = 1, . . . ,mik′ . This formulation subsumes the case that σkk′ = 0
for all k 6= k′. Let ei = (eTi1, . . . , e

T
iK)

T , where eik = (eik1, . . . , eikmik
)T . And αi, ti,

tik, Wi, Wik and mi are defined similarly. We assume that (Ti, Ci,αi,Zi, ti,mi, ei) are
independent and identically distributed across i.

The hazard of failure depends on the random effects and other covariates through the
following additive hazards model

λi(u) = limdu→0du
−1Pr{u ≤ Ti < u+ du|Ti ≥ u,αi, Ci, ei, ti}

= λ0(u) + γT
0Xi(u) + ηT

0 Zi, (3)

where λ0(u) is an unspecified function; γ0 and η0 are K×1 and r×1 vectors of parameters,
respectively. This formulation implies that censoring, measurement error and timing of
measurements are noninformative. Interest focuses on estimation of β0 = (γ

T
0 ,ηT

0 )
T .

http://biostats.bepress.com/uwbiostat/paper217



3

3. Corrected Pseudo-score Estimator

Let τ be a fixed time. When the true covariate processes Xi(u) were known, we might
consider the following estimating function

Ũ(β;X) = n−1
n
∑

i=1

∫ τ

0

{

Si(u)− S(u)
} [

dNi(u)− Yi(u)S
T
i (u)βdu

]

, (4)

where β = (γT ,ηT )T , S(u) = {XT (u),ZT }T , S(u) =
∑

n

i=1
Yi(u)Si(u)

∑

n

i=1
Yi(u) , Ni(u) = I(Vi ≤

u,∆i = 1,mik(u) ≥ qk, k = 1, . . . ,K) is the counting process, Yi(u) = I(Vi ≥ u,mik(u) ≥
qk, k = 1, . . . ,K) is the at risk process, and mik(u) is the number of the observations up to
time u for the kth covariate. Estimating function (4) is similar to Lin and Ying’s pseudo-
score function (Lin and Ying, 1994), only with the replacements of N ∗

i (u) = I(Vi ≤ u,∆i =
1) by Ni(u) and Y ∗i (u) = I(Vi ≥ u) by Yi(u). Noting that Ni(u) = N∗

i (u)I{mik(u) ≥
qk, k = 1, . . . ,K} and Yi(u) = Y ∗i (u)I{mik(u) ≥ qk, k = 1, . . . ,K}, it is easy to see that (4)
is a weighted pseudo-score function with predictable weights I{mik(u) ≥ qk, k = 1, . . . ,K}.
The reason to use these weights will become clear below.
Using the empirical mean operator Ê(·) with Ê(a) = n−1

∑n
i=1 ai, (4) can be rewritten

as

Ũ(β;X) =

∫ τ

0

(

dÊ {S(u)N(u)} − Ê

{

dS(u)

du
N(u)

}

du− Ê
{

Y (u)S(u)ST (u)β
}

du

−
Ê {Y (u)S(u)}

Ê {Y (u)}

[

dÊ {N(u)} − Ê
{

Y (u)ST (u)β
}

du
]

)

. (5)

Here dS(u)
du = (dX

T (u)
du ,0Tr )

T , and 0r is r × 1 zero vector. The empirical processes in (5)
converge almost surely by the extended strong law of large numbers in Appendix III of
Andersen and Gill (1982). Thus, Ũ(β;X) converges almost surely to

U(β;X) =

∫ τ

0

(

dE {S(u)N(u)} − E

{

dS(u)

du
N(u)

}

du− E
{

Y (u)S(u)ST (u)β
}

du

−
E {Y (u)S(u)}

E {Y (u)}

[

dE {N(u)} − E
{

Y (u)ST (u)β
}

du
]

)

,

which, by some simple algebra, reduces to

U(β;X) =

∫ τ

0

(

E
[

S(u)
{

dN(u)− Y (u)ST (u)βdu
}]

−
E {Y (u)S(u)}

E {Y (u)}

[

E
{

dN(u)− Y (u)ST (u)βdu
}]

)

.

In practice, the true covariate processes Xi(u) are unknown. One major technique to
deal with covariate measurement error is the corrected score method, see Carroll, Ruppert
and Stefanski (Chapter 6, 1995) for a detailed description. The idea of this approach is to
remove bias induced by measurement error by correction of the “score” function. To use
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this technique, we replace Xi(u) in (4) by ordinary least square estimates. We consider
two ways for computation of the least square estimate. A natural consideration along the
line of counting process and martingale theory is to compute the ordinary least square
estimates based on observations prior to u, as utilized by Tsiatis and Davidian (2001)
for the conditional score approach for the proportional hazards model. This might not
be efficient since only part of the longitudinal information are used, which motivate us to
consider a more efficient method, that is, to compute the estimates based on all longitudinal
observations. The derivation in the sequel utilizes this second method; The derivation using
the first one is similar. We compare these two approaches in Section 5.

Thus, let X̂ik(u) be the ordinary least square estimate of Xik(u) based on all the longitu-
dinal data for the ith subject, that is, based on tik. The estimation of X̂ik(u) is possible only
if mik ≥ qk, which explains the usage of the weights I{mik(u) ≥ qk, k = 1, . . . ,K} in (4).
Let ξ0 = {σkk′ : k ≥ k′} denote the distinct parameters characterizing the error covariance.

For now, we assume ξ0 is known. Let X̂i(u) = {X̂
T
i1(u), . . . , X̂

T
iK(u)}

T . For k = 1, . . . ,K,
define Fik = [fk(tik1), . . . , fk(tikmik

)]T , (mik × qk), and let Iikk′ be the (mik ×mik′) matrix

whose (j, j′) entry is I(tikj = tik′j′), for j = 1, . . . ,mik, j
′ = 1, . . . ,mik′ . Let q =

∑K
k=1 qk

and

F(u) =











fT1 (u) 0q2 . . . 0qK

0q1 fT2 (u) . . . 0qK

...
...

. . .
...

0q1 0q2 . . . fTK(u)











, (K × q).

Since Xi(u) = F(u)αi, following Song et al. (2002a), conditional on {αi,Zi, ti}, the co-

variance of X̂i(u) is equal to F(u)Gi(ξ0)F
T (u), where

Gi(ξ0) =











Gi11(ξ0) Gi12(ξ0) · · · Gi1K(ξ0)
Gi21(ξ0) Gi22(ξ0) · · · Gi1K(ξ0)

...
...

. . .
...

GiK1(ξ0) GiK2(ξ0) · · · GiKK(ξ0)











, (q × q),

and Gikk′(ξ0) = σkk′{F
T
ikFik}

−1FT
ikIikk′Fik′{F

T
ik′Fik′}

−1, (qk × qk′).

With similar arguments to those for Ũ(β;X), Ũ(β; X̂) converges to U(β; X̂), which, by
some simple algebra, is equal to

U(β;X)−

∫ τ

0

E {Y (u)H(u, ξ0)β} du,

where

Hi(u, ξ0) =

[

{F(u)Gi(ξ0)F
T (u) 0K×r

0r×K 0r×r

]

,

and 0a×b is a a× b zero matrix. Therefore, an unbiased “pseudo-score” can be obtained by
adding a consistent estimator of

∫ τ

0
E {Y (u)H(u, ξ0)β} du to U(β; X̂). Hence we propose

the corrected pseudo-score estimating equations

Û(β, ξ0) = n−1
n
∑

i=1

Qi(β, ξ0) = 0, (6)

http://biostats.bepress.com/uwbiostat/paper217
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where

Qi(β, ξ) =

∫ τ

0

({

Ŝi(u)− Ŝ(u)
}

[

dNi(u)− Yi(u)S
T
i (u)βdu

]

+ Yi(u)Hi(u, ξ)βdu
)

,

Ŝi(u) =
{

X̂T
i (u),Z

T
i

}T

, and Ŝ(u) =
∑

n

i=1
Yi(u)Ŝi(u)

∑

n

i=1
Yi(u) . The resulting estimator takes the

explicit form given by

β̂ =

(

n
∑

i=1

∫ τ

0

Yi(u)

[

{

Ŝi(u)− Ŝ(u)
}⊗2

−Hi(u, ξ0)

]

du

)−1

×

[

n
∑

i=1

∫ τ

0

{

Ŝi(u)− Ŝ(u)
}

dNi(u)

]

, (7)

where a⊗2 = aaT .
In practice, the vector of error variance ξ0 is usually unknown. Following Song et al.

(2002a), an unbiased estimator of ξ0 is ξ̂, with element σkk′ estimated by

σ̂kk′ =

∑n
i=1 I(mik > qk,mik′ > qk′ ,mikk′ > 0)R

T
ikIikk′Rik′

∑n
i=1 I(mik > qk,mik′ > qk′ ,mikk′ > 0)tr{PikIikk′Pik′I

T
ikk′}

, (8)

where mikk′ is the number of common time points that covariates k and k′ are observed,
Rik = PikWik, Wik = {Wik(tik1), . . . ,Wik(tikmik

)}T , Pik = Imik
− Fik(F

T
ikFik)

−1FT
ik,

Imik
is a mik-dimensional identity matrix.

4. Large Sample Properties

From (6) and (8), the combined estimating equations for (β0, ξ0) are

Φ(β, ξ) = n−1
n
∑

i=1

ϕi(β, ξ) = 0, (9)

whereϕi(β, ξ) =
{

QT
i (β, ξ),hTi (ξ)

}T
, hi(ξ) is a vector with the elements I(mik > qk,mik′ >

qk′ ,mikk′ > 0)[R
T
ikIikk′Rik′ − σkk′tr{PikIikk′Pik′I

T
ikk′}], k ≥ k′.

Let (β̂, ξ̂) be the solution to (9). Let ‖a‖ denote the norm of vector a. To derive the

asymptotic properties of (β̂, ξ̂), we make the following assumptions:

A. Pr{Yi(τ) = 1} > 0;

B. For k, k′ = 1, . . . ,K,

sup
u∈[0,τ ]

‖fk(u)‖ <∞, sup
u∈[0,τ ]

‖dfk(u)/du‖ <∞,

E ‖αik‖
4
<∞, E

∥

∥{FT
ikFik}

−1FT
ikeik

∥

∥

4
<∞, E ‖Zi‖

4
<∞,

E

[

sup
u∈[0,τ ]

∣

∣fTk (u){F
T
ikFik}

−1FT
ikIikk′Fik′{F

T
ik′Fik′}

−1fk′(u)
∣

∣

2

]

<∞,

Hosted by The Berkeley Electronic Press
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C. Γ0 = E
{

−∂U(β;X)

∂βT

}

=
∫ τ

0
E

(

[

Y (u)S⊗2(u)
]

−
[E{Y (u)S(u)}]

⊗2

E{Y (u)}

)

du is positive defi-

nite;

D. E
∣

∣tr{PikIikk′Pik′I
T
ikk′}

∣

∣ <∞, E
[

I(mik > qk,mik′ > qk′ ,mikk′ > 0)tr{PikIikk′Pik′I
T
ikk′}

]

6=

0, E
{

∣

∣eTikPikIikk′Pik′eik′
∣

∣

2
}

<∞, k, k′ = 1, . . . ,K.

Under these assumptions, we can show that
(

β̂
T
, ξ̂

T
)T

is consistent and asymptotically nor-

mal with variance consistently estimated by the sandwich estimator n−1V̂ = n−1Â−1B̂
{

Â−1
}T

,

where Â = n−1∂Φ(β̂, ξ̂)/∂(βT , ξT ), B̂ = n−1
∑n

i=1 ϕ
∗
i (β̂, ξ̂)ϕ∗Ti (β̂, ξ̂), ϕ∗i (β̂, ξ̂) = (ω̂T

i (β̂, ξ̂),hTi (ξ̂))
T ,

ω̂i(β, ξ) =

∫ τ

0







Ŝi(u)−
Ê
{

Y (u)Ŝ(u)
}

Ê {Y (u)}





{

dNi(u)− Yi(u)Ŝ
T
i (u)β

}

−





Yi(u)Ŝi(u)

Ê {Y (u)}
−

Yi(u)Ê
{

Y (u)Ŝ(u)
}

Ê2 {Y (u)}



 Ê
[

{N(u)} − Y (u)ŜT (u)β
]

+Yi(u)Hi(u, ξ)β

)

du.

The proof is sketched in the Appendix.

5. Simulation Studies

To evaluate the performance of this approach, we conducted simulations under the follow-
ing scenarios, which mimicked typical AIDS clinical trials. In all cases, for each of n = 500
or 1000 subjects, the longitudinal observations Wij of a time-dependent covariate Xi(u) =
αi0+αi1u were generated at times tij = 0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 weeks accord-
ing to the linear mixed effects model (2), with a 10% missingness rate at any time after week
16. The random effects followed a truncated normal distribution taking only negative sam-
ples for the slope; the underlying normal has mean (2.603,−0.0023) and distinct covariance
matrix elements {var(αi0), cov(αi0, αi1), var(αi1)} = (0.146, 0.00265, 0.00324). The errors
were generated from either a normal or a skewed bimodal mixture of normal as described
in Davidian and Gallant (1993) with mixing proportion p = 0.3 and sep=3. For both, the
mean is zero and variance σ2 = 0.20 or 0.60. A treatment indicator Zi with P(Zi = 1) = 0.5
was generated. The hazard relationship was taken to be λi(u) = λ0(u)+γXi(u)+ ηZi with
γ = −0.01, η = 0 and λ0 = 0.05. Censoring was generated from an exponential distribution
with mean 110 weeks and truncated at the maximum follow-up time 80 weeks, leading to a
censoring rate of 24%.
For each scenario, 1000 Monte Carlo data sets were simulated. For each data set, we

fitted the model above four ways: (i) using Lin and Ying’s estimator, called the ‘ideal’ esti-
mator, in which the true Xi(u) is used; (ii) using naive regression where the true values of
Xi(u) in Lin and Ying’s estimator were substituted by the ordinary least square estimates;
(iii) using the corrected pseudo-score estimator with X̂i(u) computed based the observa-
tions prior to u. (iv) using the corrected pseudo-score estimator given in section 3. To

http://biostats.bepress.com/uwbiostat/paper217
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discriminate (iii) from (iv), we called (iii) type I corrected pseudo-score estimator and (iv)
type II corrected pseudo-score estimator, respectively. In all cases, 95% Wald confidence
intervals for γ and η were constructed. Results are given in Table 1. In all cases and for
both sample sizes, the corrected pesudo-score estimators show negligible bias close to that of
the unachievable ‘ideal’ estimator, and their coverage probabilities are close to the nominal
level. In contrast, the naive regression approach can yield biased estimates and coverage
probabilities well below the nominal level. In addition, the type II corrected pesudo-score
estimator is more efficient than the type I estimator, as expected.

The simulation evidence suggests that the corrected pseudo-score estimators yield reli-
able inferences regardless of the distribution of error under moderate sample sizes.

6. Application to ACTG 175

We apply the approach to the ACTG 175 data. We are interested in assessing the effect of
CD4 counts on time to AIDS or death in antiretroviral-naive patients. In the study, 1,067
patients had no antiretroviral theropy at baseline. Figure 1 presents log10-transformed CD4
profiles for 10 randomly selected subjects and shows an apparent initial increase, with a
peak at week 12, followed by a linear decline. Only 1 event occurred before week 12. For
simplicity, we consider the post-twelve-week data and assume Xi(u) = αi0+αi1u represents
“inherent” log10 CD4 count for subject i at time u and model (2) with error variance σ2.
The primary analysis found zidovudine alone to be inferior to the other three therapies;
thus, further investigations focused on two treatment groups, zidovudine alone and the
combination of the other three. We took the hazard for AIDS or death to be as in (3) with
Zi = I( treatment 6= zidovudine). We estimated the regression parameters using the naive
and corrected score approaches.

Results are shown in table 2. The naive regression estimate of γ is smaller in magnitude.
The corrected pseudo-score estimates are close with smaller standard errors for the type
II estimates. The results suggested that there is a strong relationship between hazard and
log(CD4); moreover, once this is taken into account, there appears to be no association be-
tween prognosis and treatment, that is, the treatment effect is mediated through log(CD4).
The estimated error variance is 0.010.

7. Discussion

We have proposed a semiparametric approach for a joint model for survival and longitudinal
data with assumptions on only the variance structure of the error process and no distri-
butional assumption on the random effects. The estimator has a closed form formula and
is simple to compute. It uses efficiently the longitudinal information by utilizing the least
square estimates based on all longitudinal observations. The same idea could be applied to
the corrected score approach for the proportional hazards model.

The model as presented here may be extended to more complicated situations. For
example, it is possible to consider models with trajectories nonlinear in individual random
effects, and models with more complicated error structure. Moreover, the model may be
extended to involve nonlinear functions of the random effects in the hazard using linear
approximation by analogy to Song et al. (2002a). In such cases, the estimator might no
longer have an explicit form.
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Appendix A. Large sample properties of β̂

For now, we assume the vector of error variances ξ is known. Then β̂ satisfies Û(β̂, ξ0) = 0.

First, we show the consistency of β̂. Let B be a compact set including β0 as a internal point.
Since Û(β, ξ) = Ũ(β; X̂) + n−1

∑n
i=1

∫ τ

0
Hi(u, ξ)βdu, using the empirical mean operator

Ê , at ξ = ξ0, (6) can be rewritten as

Û(β, ξ0) =

∫ τ

0

(

dÊ
{

Ŝ(u)N(u)
}

− Ê

{

dŜ(u)

du
N(u)

}

du− Ê
{

Y (u)Ŝ(u)ŜT (u)β
}

du

−
Ê
{

Y (u)Ŝ(u)
}

Ê {Y (u)}

[

dÊ {N(u)} − Ê
{

Y (u)ŜT (u)β
}

du
]

+Ê{Y (u)H(u, ξ0)β}du

)

, (10)

Under condition B, it is easy to show that

E

[

sup
u∈[0,τ ]

ST (u)S(u)

]

<∞, E

[

sup
u∈[0,τ ]

dXT (u)

du

dX(u)

du

]

<∞,

E






sup

u∈[0,τ ]
β∈B

{

ST (u)β
}2






<∞, E






sup

u∈[0,τ ]
β∈B

{

ST (u)β
}2
ST (u)S(u)






<∞,

E






sup

u∈[0,τ ]
β∈B

{

βTHT (u, ξ0)H(u, ξ0)β
}






<∞.

And condition A implies that E{Y (u)} is bounded away from zero for u ∈ [0, τ ]. Hence,
by using the extended law of large numbers in Appendix III of Anderson and Gill (1982),
the empirical processes in (10) converge almost surely to their limits uniformly in u ∈ [0, τ ]

and β ∈ B and hence Û(β, ξ0) converges uniformly to U(β;X) in β ∈ B. Since Û(β, ξ0)

and U(β;X) are linear functions of β and U(β0;X) = 0, the consistency of β̂ follows.

Next, we show that n1/2{Û(β0, ξ0)−U(β0;X)} converges to a normal distribution. Let
Λ(u,β, ξ0) denote the vector composed of the empirical processes in (10). Following the
proof of Lemma 5.1 in Tsiatis (1981), under condition B, n1/2[Λ(u,β0, ξ0)−E{Λ(u,β0, ξ0)}]

converges to a Gaussian process. Coupled with Û(β0, ξ0) being Hadamard differentiable

as a functional of Λ, the asymptotic normality of n1/2Û(β0, ξ0) follows by the functional
delta method. Using the functional Taylor expansion, with some algebra, we can show that

n1/2Û(β0, ξ0) = n−1/2
n
∑

i=1

ωi(β0, ξ0) + op(1), (11)

Hosted by The Berkeley Electronic Press
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where

ωi(β, ξ) =

∫ τ

0







Ŝi(u)−
E
{

Y (u)Ŝ(u)
}

E {Y (u)}





{

dNi(u)− Yi(u)Ŝ
T
i (u)β

}

−





Yi(u)Ŝi(u)

E {Y (u)}
−

Yi(u)E
{

Y (u)Ŝ(u)
}

E2 {Y (u)}



E
[

{N(u)} − Y (u)ŜT (u)β
]

+Yi(u)Hi(u, ξ)β

)

du.

By the central limit theorem, n1/2
{

Û(β0, ξ0)−U(β0;X)
}

converges to a normal distribu-

tion with mean 0 and variance Ω(β0, ξ0) = var{ωi(β0, ξ0)}. By empirical processes theory,

we can show that Ω̂(β, ξ0) = n−1
∑n

i=1

{

ω̂i(β, ξ0)− ω̂(β, ξ0)
}⊗2

converges almost surely

to Ω(β, ξ0) uniformly in β ∈ B, where ω̂(β̂, ξ) = Ê{ω̂(β̂, ξ)}. With simple algebra, we can

show Ω̂(β̂, ξ0) = n−1
∑n

i=1 ω̂i(β̂, ξ0)ω̂
T
i (β̂, ξ0).

Since Û(β, ξ) is a linear function of β,

0 = n1/2Û(β̂, ξ0) = n1/2Û(β0, ξ0)− Γ̂(ξ0)n
1/2(β̂ − β0),

where

Γ̂(ξ) = −
∂Û(β, ξ)

∂β
= n−1

n
∑

i=1

∫ τ

0

(

Yi(u)

[

{

Ŝi(u)− Ŝ(u)
}⊗2

−Hi(u, ξ)

])

du

=

∫ τ

0



Ê
{

Y (u)Ŝ(u)ŜT (u)
}

−
Ê
{

Y (u)Ŝ(u)
}

Ê
{

Y (u)ŜT (u)
}

Ê {Y (u)}
− Ê {Y (u)H(u, ξ)}



 du.

By the extended strong law of large numbers Γ̂(ξ) converges almost surely to

Γ(ξ) =

∫ τ

0



E
{

Y (u)Ŝ(u)ŜT (u)
}

−
E
{

Y (u)Ŝ(u)
}

E
{

Y (u)ŜT (u)
}

E {Y (u)}

−E {Y (u)H(u, ξ)}

]

du

uniformly in a neighborhood of ξ0. It is easy to show that Γ(ξ0) = Γ0. Thus, under

condition C, the asymptotic normality of n1/2(β̂ − β0) follows from that of n
1/2Û(β0, ξ0)

with asymptotic variance Σ(β0) = Γ
−1
0 Ω(β0, ξ0)

{

Γ−1
0

}T
. An estimator for Σ(β0) is Σ̂(β̂) =

Γ̂(ξ0)
−1Ω̂(β̂, ξ0)

{

Γ̂(ξ0)
−1
}T

. The consistency of Σ(β0) then follows from the almost surely

convergence of Ω̂(β, ξ0) uniformly in β ∈ B.

When ξ is unknown, following Song et al.(2002a), ξ̂ is a consistent estimator of ξ0 under

condition D. Now β̂ is obtained by replacing ξ with ξ̂ in (7), the denominator of which is

equal to nΓ̂(ξ̂). It has been shown that Γ̂(ξ̂) converges almost surely to Γ(ξ) uniformly in a

http://biostats.bepress.com/uwbiostat/paper217
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neighborhood of ξ0. This, together with the continuity of Γ(ξ) and consistency of ξ̂, implies

that Γ̂(ξ̂) converges to Γ0. The consistency of β̂ then follows. Using similar arguments as

those when ξ is known, we can show that n1/2
{

(β̂
T
, ξ̂

T
)T − (βT

0 , ξT0 )
T
}

converges to a nor-

mal distribution with variance V = A−1B
{

A−1
}T
, where A = E

{

∂Φ(β0, ξ0)/∂(β
T , ξT )

}

and B = var{ϕ∗(β0, ξ0)}, ϕ
∗
i (β0, ξ0) = {ω

T
i (β0, ξ0),h

T
i (β0, ξ0)}

T , and V is consistently

estimated by V̂.
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Table 1. Simulation results †

n = 500 n = 1000
σ

2 = 0.2 σ
2 = 0.4 σ

2 = 0.2 σ
2 = 0.4

I NR CSI CSII NR CSI CSII I NR CSI CSII NR CSI CSII

Normal Error
γ B −0.26 0.94 −0.26 −0.24 1.76 −0.30 −0.24 −0.11 1.01 −0.14 −0.13 1.80 −0.17 −0.14

SD 2.27 2.18 2.66 2.54 2.13 2.99 2.78 1.59 1.53 1.85 1.79 1.49 2.07 1.94
SE 2.06 2.14 2.50 2.46 2.18 2.85 2.77 1.46 1.51 1.74 1.72 1.54 1.98 1.94
CP 92.5 91.8 92.8 94.0 86.6 93.8 94.8 92.5 88.5 93.4 94.4 77.2 94.4 95.3

η B −0.13 −0.17 −0.19 −0.19 −0.17 −0.18 −0.20 −0.06 −0.06 −0.06 −0.06 −0.06 −0.07 −0.06
SD 3.47 3.36 3.71 3.69 3.35 3.75 3.70 2.38 2.31 2.55 2.53 2.30 2.58 2.54
SE 3.39 3.27 3.63 3.61 3.26 3.66 3.62 2.38 2.30 2.54 2.53 2.30 2.56 2.54
CP 94.5 93.6 93.7 93.8 93.7 93.9 93.9 95.4 94.7 94.4 94.8 94.4 94.3 94.7

σ
2 B — — −0.25 −0.25 — −0.51 −0.51 — — −0.17 −0.17 — −0.33 −0.33

SD — — 6.87 6.87 — 13.73 13.73 — — 5.00 5.00 — 10.01 10.01
SE — — 6.97 6.97 — 13.95 13.95 — — 4.93 4.93 — 9.85 9.85
CP — — 95.2 95.2 — 95.2 95.2 — — 94.1 94.1 — 94.1 94.1

Skewed Bimodal Error
γ B −0.14 0 .97 −0.21 −0.20 1.77 −0.27 −0.24 −0.09 1.04 −0.07 −0.09 1.84 −0.07 −0.09

SD 2.25 2.12 2.59 2.49 2.07 2.92 2.72 1.62 1.54 1.87 1.80 1.49 2.08 1.95
SE 2.05 2.13 2.49 2.46 2.19 2.84 2.78 1.46 1.51 1.74 1.73 1.54 1.98 1.95
CP 92.8 91.9 94.7 95.2 88.0 95.3 96.2 92.5 86.8 93.8 94.4 75.8 93.7 95.2

η B −0.00 −0.04 −0.04 −0.03 −0.04 −0.03 −0.03 0 .13 0.11 0.13 0.11 0.10 0.14 0.11
SD 3.34 3.24 3.55 3.54 3.22 3.58 3.55 2.39 2.32 2.56 2.54 2.32 2.58 2.55
SE 3.38 3.26 3.62 3.60 3.25 3.66 3.62 2.38 2.30 2.54 2.53 2.29 2.56 2.54
CP 95.6 95.0 95.0 95.0 94.9 95.4 95.2 94.1 94.6 94.4 94.4 94.6 94.1 94.2

σ
2 B — — −0.01 −0.01 — −0.02 −0.02 — — −0.09 −0.09 — −0.17 −0.17

SD — — 6.26 6.26 — 12.51 12.51 — — 4.51 4.51 — 9.02 9.02
SE — — 6.28 6.28 — 12.57 12.57 — — 4.44 4.44 — 8.88 8.88
CP — — 95.5 95.5 — 95.5 95.5 — — 94.1 94.1 — 94.1 94.1

† I, ‘ideal’ method; NR, naive regression; CSI, type I corrected pseudo-score; CSII, type II corrected pseudo-score; B, bias
(×1000); SD, empirical standard deviation across simulated data sets (×1000); SE, average of estimated standard errors
(×1000); CP, coverage probability (%) of 95% Wald confidence interval.
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Table 2. Results for ACTG 175 data †

γ η σ
2

Est SE Est SE Est SE

NR -0.00611 0.00088 -0.00007 0.00021 — —
CSI -0.00981 0.00237 0.00017 0.00033 0.01041 0.00077
CSII -0.00936 0.00214 0.00010 0.00031 0.01041 0.00077

† NR, naive regression; CSI, type I corrected pseudo-score; CSII, type II corrected pseudo-
score.
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Fig. 1. Trajectories of log CD4 for 10 randomly selected subjects.
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