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Abstract

In this paper, for time-to-event data, we propose a new statistical framework for casual infer-

ence in evaluating clinical utility of predictive biomarkers and in selecting an optimal treatment

for a particular patient. This new casual framework is based on a new concept, called Biomarker

Adjusted Treatment Effect (BATE) curve, which can be used to represent the clinical utility

of a predictive biomarker and select an optimal treatment for one particular patient. We then

propose semi-parametric methods for estimating the BATE curves of biomarkers and establish

asymptotic results of the proposed estimators for the BATE curves. We also conduct exten-

sive simulation studies to evaluate finite-sample properties of the proposed estimation methods.

Finally, we illustrate the application of the proposed method in a real-world data set.

Keywords: Predictive biomarker; cutoff points; interaction; BATE curve; time-to-event outcome;

varying-coefficient.

1. INTRODUCTION

Due to complexity of cancer, current staging and risk-stratification methods in oncology, while

helpful, often fail to adequately predict malignancy aggressiveness and/or response to a specific

treatment. The rapid advance of molecular genetic technology and accompanying proliferation of
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molecular diagnostics companies have set the stage for a new era in personalized medicine. This

development allows the tumor-node-metastasis (TNM) staging system to incorporate additional

biomarkers, such as gene expression data, which could provide more precise information for risk

stratification and treatment selection. By identifying patients who are at high risk and who are

more likely to benefit from a given treatment, we hope to be able to provide the most effective

treatment to those who are most in need.

A predictive marker is a biomarker that predicts the differential efficacy (benefit) of a par-

ticular therapy based on the value of a biomarker (e.g., only patients expressing the biomarker

will respond to the specific treatment or will respond to a greater degree than those without the

biomarker) (Sargent 2005). To apply these exciting results to maximize patient benefit, we need to

develop a systematic statistical methodology to assess the clinical utility of promising biomarkers

for predicting patients’ responses to particular treatments.

Most of the current statistical methods for assessing the clinical utility of a predictive biomarker

are based on a comparison of estimated survival curves between a treatment and control group,

stratified by the biomarker values. Such an approach has two main limitations. First, if the

biomarker yields a continuous-scale, such the approach requires dichotomization, which is artificial

and may lose important information. Second, such the approach does not adequately quantify the

clinical utility of predictive biomarkers. Specifically, many biomarkers that may have a significant

p-value but do not have true clinical utility. Statistical significance does not imply clinical relevance.

Other two methods for assessing clinical utility of predictive biomarkers have been also proposed

in the literature (Freidlin and Simon, 2005; Jiang, 2007). Freidlin and Simon (2005) proposed a

design that combines prospective development of a gene expression-based classifier to select sensitive

patients with a properly powered test for overall effect, by assuming the biomarker is binary. Jiang

et al. (2007) extended Freidlin’s design to allow a continuous-scale biomarker and proposed a

parametric model to select a cut point for a pre-specified biomarker of the sensitive subpopulation.

Both these methods have limitations. The first drawback is the strong assumption that the effect

of the interaction between the biomarker and the treatment group on patient outcomes is a step-

function with only one jump of the biomarker value. However, when the biomarker is continuous,

it’s most likely that the interaction continuously varies with the value of the biomarker. Another
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main drawback of Jiang’s method is that the proposed model with a unknown cut point is not

identifiable. One additional limitation of all above mentioned existing methods is that they are not

based on a causal framework.

In this paper, for a randomized clinical trial with full compliance, we propose a new statis-

tical framework for casual inference in assessing the effectiveness of predictive biomarkers and in

selecting sensitive patients to one particular treatment. Our new statistical framework overcomes

the limitations of the existing methods for evaluating predictive biomarkers in selecting optimal

treatments for individual patients. Specifically, in this paper, we introduce a new concept, called

the Biomarker Adjusted Treatment Effect (BATE) curve, which is a graphical plot of the treatment

effect as a function of the biomarker value and can be used to select an optimal treatment for an

individual patient. Compared to the existing methods, the BATE curve can visually display the

treatment effect on the patient’s outcome as a function of the biomarker value.

This article is organized as follows. In Sections 2 and 3, we illustrate the mathematic definitions

and applications of our proposed BATE curves to select cutoff points, compare biomarkers, choose

the optimal treatment for individual patients for the situation with multiple treatments, and test

the usefulness of a predictive biomarker, In Section 4, we propose an estimation method for BATE

curves and derive asymptotic properties of the estimated BATE curves. In Section 5, we derive

the asymptotic distribution of the maximum deviations of the estimated BATE curves from the

true BATE curves, and use it to construct the test statistics for the null hypothesis that the BATE

curve is a constant and to construct simultaneous confidence bands for the BATE curve. Simulation

studies and a real data example are reported in Sections 6 and 7, respectively. We give detailed

proofs of the asymptotic results in Appendix C.

2. THE BATE CURVE FOR A TWO-ARM RANDOMIZED CLINICAL TRIALS WITH

FULL COMPLIANCE

As discussed above, it is reasonable to assume that the treatment effect is a continuous curve of the

biomarker value. This curve, which is named as the Biomarker Adjusted Treatment Effect (BATE)

curve, is also flexible enough to indicate both local and global association between treatment and

the biomarker value. In this section, for the randomized clinical trial with full compliance and with
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one experimental and one control arms, we define the BATE curve mathematically for time-to-

event outcome based on a casual framework, and demonstrate its detailed applications, such as the

selection of sensitive patients and the identification of cutoff points. We then extend the BATE

curve to the randomized clinical trial with full compliance and with multiple treatment arms in

Section 3.

We first give some necessary notation and definitions.

2.1 Notation

Suppose that n independent subjects are randomized over experimental treatment or control. We

let Ti(1) be the event time of a subject that would be observed if the ith subject had received

the experimental arm and Ti(0) be the event time that would be observed if the ith subject had

received the control arm. For one single biomarker V , we further define two potential conditional

hazard rate functions as follows:

λ(1)(t|v) = lim
∆t→0

P (t < Ti(1) ≤ t + ∆t|Ti(1) > t, Vi = v)
∆t

,

λ(0)(t|v) = lim
∆t→0

P (t < Ti(0) ≤ t + ∆t|Ti(0) > t, Vi = v)
∆t

.

Let Ti denote the event time, and we let Ci denote the censoring time and let Xi = min(Ti, Ci)

denote the observed time for the ith individual, i = 1, · · · , n. Let ∆i be an indicator which equals

1 if Xi is an event time and 0 otherwise. Let Vi and Zi denote the biomarker value and treatment

group indicator for the ith individual, respectively, where Zi = 1 if individual i is assigned to the

experimental group and Zi = 0 otherwise, i = 1, · · · , n. We assume that the censoring times are

independent of the failure times conditional on the covariates and that the observation period is

[0, τ ], where τ is a constant denoting the time for end of the study.

2.2 The BATE Curve

To evaluate the treatment effect adjusted for one single continuous biomarker V , we assume that the

multiplicative interaction is of interest, we define the biomarker-adjusted treatment effect (BATE)

curve at time t as follows:

β(v; t) = log

{
λ(1)(t|v)
λ(0)(t|v)

}
. (1)
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Here β(v; t) is an unknown smooth function of v for any fixed t ∈ (0, τ).

In a randomized clinical trial with full compliance, since λ(1)(t|v) = λ(t|Z = 1, V = v) and

λ(0)(t|v) = λ(t|Z = 0, V = v), we can express the BATE curve as

β(v; t) = log
{

λ(t|Z = 1, V = v)
λ(t|Z = 0, V = v)

}
. (2)

In this paper, we focus on a special case that β(v; t) ≡ β(v). This assumption holds under

many well known models, such as Cox’s model and varying-coefficient Cox’s model. To get our

idea across, hence we assume the observed data follow the following varying-coefficient proportional

hazard regression model:

λ(t|Zi, Vi) = λ0(t) exp{β(Vi)Zi + g(Vi)}, (3)

where β(·), an unknown smooth function, is the BATE curve, and g(·) is an unknown smooth

function. Here λ(t|Zi, Vi) is the conditional hazard function of the observed event time T , given Zi

and Vi. Next we give a detailed discussion on the use of the BATE curve β(v).

First, the BATE curve β(·) can be used graphically to identify a subset of patients who will not

benefit or even may be harmed by the new treatment, and define the cutoff points based on different

clinical significant levels in order to identify sensitive patients for the new treatment. For example,

a monotonically increasing BATE curve implies that patients with lower biomarker levels are more

likely benefited from the new therapy, see Figure 1(A). In Figure 1, we let α = − log(8) ≈ −2.08,

which means that the risk of the event for patients in the control group is eight times as large as

the risk in the experimental group. Without loss of generality, we also assume that the range of the

biomarker is [0,1]. In this situation, the constant cα such that β(cα) = α, will be the standard cutoff

point, and patients with the biomarker levels falling into [0, cα] should be the sensitive patients.

Conversely, a monotonically decreasing BATE curve implies that patients with higher biomarker

levels are more likely benefited from the new therapy, see Figure 1(B). We choose the cutoff point,

cα, such that β(cα) = α, and patients with the biomarker levels in [cα, 1] should be the sensitive

patients. For a non-monotonically BATE curve, such as the one in Figure 1(C), patients with

medium biomarker levels are more likely benefited from the new therapy. Note that there are two

cutoff points in this case. They are c1
α and c2

α such that β(c1
α) = β(c2

α) = α. Hence patients with

biomarker levels in [c1
α, c2

α] should be sensitive patients.
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[Figure 1 about here.]

Secondly, researchers often want to know if a biomarker is good enough as a predictive marker

to distinguish sensitive patients from nonsensitive patients for the new treatment. This amounts to

a hypothesis testing that β(·) ≡ C. In this regard, if β(·) ≡ C, then the corresponding biomarker

can not predict the differential responses of individual patients to the new treatment. In this paper,

we test the null hypothesis of β(·) ≡ C based on the asymptotic distributions of the normalized

maximum deviations of the estimated BATE curves from the true BATE curves. We introduce two

methods for solving this problem. One is by constructing a test statistics, and the other one is by

constructing simultaneous confidence bands.

Thirdly, researchers are interested in comparing the clinical utility of different biomarkers based

on their capacities for predicting responses to a treatment. However, the definition (2) may not be

appropriate for such a comparison due to potentially different measurements of different biomarkers.

To compare different biomarkers, we may give a slightly modified definition of the BATE curve at

time t based on the quantile of the biomarker:

ψ(p, t) = log
{

λ(t|Z = 1, V = πp)
λ(t|Z = 0, V = πp)

}
, (4)

where πp is the pth quantile of the biomarker V , that is πp = inf{y : Fv(y) ≤ p}. Here, Fv(·) is

the cumulative distribution function of V . Similarly, in the special case that the BATE curve is

independent with time, we have ψ(p, t) ≡ ψ(p) for any t ∈ (0, τ).

Since ψ(p) is defined on the same scale between 0 and 1, we can compare the BATE curves of

two biomarkers to identify the more powerful one; that is we can distinguish “weak” and “strong”

predictive biomarkers. Take Figure 2 as an example. A weak predictive biomarker is the biomarker

whose BATE curve is near a constant (see the dashed line in Figure 2).

[Figure 2 about here.]

3. THE BATE CURVES OF A MULTIPLE-ARM RANDOMIZED CLINICAL TRIAL WITH

FULL COMPLIANCE

In Section 2 when there is one treatment arm, we proposed to use the BATE curve to select sensitive

patients for the treatment. When multiple treatments are involved in a randomized clinical trial,
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we further extend the use of the BATE curve to select the optimal treatment for an individual

patient. Next, we give detailed discussions on this extension .

3.1 Notation and Definitions

We first give some necessary notations. Let Z = (Z1, · · · , ZK)T be a vector of treatment group

indicators, where Zk = 1 for the kth treatment group and Zk = 0 otherwise, k = 1, · · · ,K, K > 1.

For i = 1, · · · , n, we let Ti(k) be the event time of an individual that would be observed if the

individual had received the kth treatment arm, where k = 1, · · · ,K, and Ti(0) be the event time

that would be observed if the individual had received the control arm. We also define the potential

conditional hazard rate functions as

λ(k)(t|v) = lim
∆t→0

P (t < Ti(k) ≤ t + ∆t|Ti(k) > t, Vi = v)
∆t

, k = 1, · · · ,K,

λ(0)(t|v) = lim
∆t→0

P (t < Ti(0) ≤ t + ∆t|Ti(0) > t, Vi = v)
∆t

.

Hence the BATE curve, at time t, of the kth treatment versus the control , based on the

multiplicative interaction, is defined as follows:

log

{
λ(k)(t|v)
λ(0)(t|v)

}
= βk(v, t). (5)

Similarly to the discuss in Section 2, in a randomized clinical trial with full compliance, we can

express the BATE curve, at time t, of the kth treatment as

log
{

λ(t|V = v,Z = ek)
λ(t|V = v,Z = 0K)

}
= βk(v, t), (6)

where λ(t|V = v,Z = ek) is the conditional hazard function of the observed survival time T , given

V = v and Z = ek.

We can also define the modified definition of the BATE curve at time t based on the quantile

of the biomarker as

log
{

λ(t|V = πp,Z = ek)
λ(t|V = πp,Z = 0K)

}
= ψk(p, t). (7)

Since we are focus on the special case that the BATE curve for each treatment arm is independent

with time, we have βk(v, t) ≡ βk(v) and ψk(v, t) ≡ ψk(v), for each k = 1, · · · ,K and for any
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t ∈ (0, τ). Consequently, we assume the following varying-coefficient proportional hazard regression

model for event time:

λ(t|Zi, Vi) = λ0(t) exp{βT (Vi)Zi + g(Vi)}, (8)

where β(·) = (β1(·), · · · , βK(·))T denotes the vector of the BATE curves. Apparently, the model

(3) is a special case of the model (8). This model has been studied by Fan, et al. (2006) and Cai,

et al. (2007). They proposed the estimates of coefficient functions by local partial likelihood and

established their pointwise asymptotic normalities. Their results, however, can only be used to

construct pointwise confidence intervals but cannot be used to construct simultaneous confidence

bands.

Since K > 1, we may also want to compare different treatments in order to find the optimal

treatment for individual patients. This amounts to the problem of comparing the estimated BATE

curves. We take Figure 3 (K = 3) as an example, which is also under the assumption that the

range of the biomarker is [0,1]. From Figure 3, we see that β3(v) < β2(v) < β1(v) < 0 when

v ∈ [0, a], that β2(v) < β3(v) < β1(v) < 0 when v ∈ (a, b], and that β1(v) < β2(v) < β3(v) < 0

when v ∈ (b, 1]. Hence, we would assign patients with the biomarker values in [0, a], (a, b] and (b, 1]

to receive Treatment 3, Treatment 2 and Treatment 1, respectively.

[Figure 3 about here.]

4. ESTIMATION AND ASYMPTOTIC PROPERTIES

Since the model (3) is a special case of the model (8), in this section we focus on estimation for the

model (8).

4.1 Estimation of BATE Curves and Cutoff Points

We are using a partial likelihood function with local polynomial (linear) fitting to estimate β(v)

and g(v).

For any given point v0, by Taylor series expansions, we obtain that

β(v) ≈ β(v0) + β′(v0)(v − v0) ≡ δ + γ(v − v0), and

g(v) ≈ g(v0) + g′(v0)(v − v0) ≡ a + b(v − v0). (9)
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Let R(t) denote the set of the individuals at risk prior to time t and assume the observations

are independent. Using (9) for the data around v0 and utilizing a kernel function, we obtain the

following logarithm of the local partial-likelihood:

`n(δ, γ, b; v0) (10)

=
1
n

n∑

i=1

Kh(Vi − v0)∆i

{
δT Zi + γT Zi(Vi − v0) + b(Vi − v0)

− log(
∑

j∈R(Xi)

Kh(Vj − v0) exp{δT Zj + γT Zj(Vj − v0) + b(Vj − v0)})
}

,

where Kh(·) = K(·/h)/h is a symmetric kernel function, and h is a bandwidth. Suppose that (10)

is maximized at (δ̂, γ̂, b̂). Then β̂ = δ̂ is a local linear estimator of the coefficient function β(·)
at the point v0. An estimator of g′(·) at v0 is simply the local slope b̂(v0), i.e., ĝ′(v0) = ĝ. The

estimated curve ĝ(·) can be obtained by integrating ĝ′(v0), using the Trapezoidal rule (Hastie and

Tibshirani, 1990). For the purpose of ensuring the identifiability of g(·), we set g(0) = 0 without

loss of generality.

Next, we consider the estimation of the modified BATE curve ψ(p) = (ψ1(p), · · · , ψK(p))T . Note

that ψ(p) = β(πp). Hence, based on β̂(·), it remains to estimate the quantile πp of the continuous

biomarker V . The estimator π̂p is given by inf{y : F̂v(y) ≥ p}, where F̂v(·) denotes the empirical

estimator of Fv(·). As a result, the estimator of ψ(p) has the following form

ψ̂(p) = β̂(π̂p) = (β̂1(π̂p), · · · , β̂K(π̂p))T .

Since π̂p is a unique sample quantile, according to Koenker and Bassett (1978), if Fv(·) is continuous

and has a continuous and positive density, fv(·), at πp, then
√

n(π̂p− πp) converges to a mean zero

normal distribution, with the variance ω2 = p(1− p)/f2
v (πp).

Given a clinical significant level α, since β(·) is a vector of smooth functions, and since Fv(·)
is continuous and has a continuous and positive density, we can directly select the tolerant cutoff

points cα,i such that βi(cα,i) = α, for the ith treatment arm.

Note that, for i = 1, · · · ,K, the tolerant cutoff points cα,i may not be unique due to the potential

non-monotonicity of βi(·). Hence we select the cutoff points as follows:

cα,i = {c : β̂i(c) = α}, and pα,i = {p : ψ̂i(p) = α},

i = 1, · · · ,K. Obviously, for i = 1, · · · ,K, we can also get pα,i by letting pα,i = F̂p(cα,i).

9
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4.2 Asymptotic Properties

To obtain asymptotic properties of the maximum partial likelihood estimator β̂1(v), we need a

few notations on the counting process. Let Ni(t) = I(Ti ≤ t,∆i = 1) and Yi(t) = I(Xi ≥ t).

Define Ft,i to be the failure, censoring and covariate information up to time t, and let Mi(t) =

Ni(t) − Yi(t)λ(t|Zi, Vi) be the Ft,i- martingale. Let µi =
∫

viK(v)dv, and νi =
∫

viK2(v)dv,

i = 1, 2, · · · . Let β0(·) and g0(·) be the true functions of β(·) and g(·), respectively. Denote

ρ(u, z, v0) = P (X ≥ u|z, v0) exp{βT
0 (v0)z + g0(v0)}.

For k = 0, 1, 2 and l = 0, 1, 2, we define

akl(u, v0) = f(v0)µlE{ρ(u,Z, v0)Z⊗k|V = v0},

where f(·) is the density of V and Z⊗k = 1,Z and ZZT for k = 0, 1 and 2, respectively.

Proposition 1: Under Conditions in the Appendix, we can obtain the following results:

(1). As n →∞,

sup
v∈V

|(β̂(v)− β0(v))| P−→ 0,

(2). For each v0 ∈ V,

√
nh(β̂(v0)− β0(v0)− µ2

2
h2β′′(v0))

L−→ N(0, ν0Σ−1(v0)).

Here V is the compact support of the biomarker V , and β′′(v0) is the second derivative of β(v) at

v0 and

Σ(v0) =
∫ τ

0
{a20(u, v0)

− a10(u, v0)aT
10(u, v0)a−1

00 (u, v0)λ0(u)}du.

Proof of Proposition 1 can be found in Fan, et al. (2006), and is omitted here for saving some

space.

Let ψ0(·) denote the true function of ψ(·). Next, we state the pointwise asymptotic distribution

of ψ̂(p),
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Theorem 1 Under Conditions in the Appendix, if fv(·) is continuous and positive at πp, we can

obtain the following asymptotic normality result:

√
nh(ψ̂(p)− ψ0(p)− µ2

2
h2β′′(πp))

L−→ N(0, ν0Σ−1(πp)).

The proof of Theorem 1 can be directly obtained by Proposition 1 and the fact that π̂p is
√

n-

consistent.

5. HYPOTHESIS TESTING BASED ON ASYMPTOTIC DISTRIBUTIONS OF THE

NORMALIZED MAXIMUM DEVIATIONS

As discussed in Section 2, the usefulness of a predictive biomarker can be tested, based on a null

hypothesis that the BATE curve is a constant. In this section we propose two methods to test this

null hypothesis. The basic idea is using the asymptotic distribution of the normalized maximum

deviations of the estimated BATE curves from the true BATE curves.

5.1 Asymptotic Distributions of the Normalized Maximum Deviations

For any function b(v) and any matrix B(v) = (bij(v))K , we define ‖b‖∞ = supv∈[0,1] |b(v)| and

‖B‖∞ =

(
K∑

i=1

K∑
j=1

‖bij‖∞
)1/2

. We now give our main results below.

Theorem 2 Assume that Conditions in the Appendix hold, if [0, 1] ⊆ V, and h = n−d, 1/5 ≤ d <

1− 2/s, s > 2, then we have for k = 1, · · · ,K,

P{{2 log(1/h)}1/2
(
‖ β̂k−βk−bias(β̂k)

σk
‖∞ − dn

)
< x}

→ exp{−2 exp(−x)}, (11)

where σ2
k(v) is the kth diagonal element of ν0Σ(v), bias(β̂k(v)) = eT

k,K
µ2

2 h2β′′(v), ek,K is a K−dimensional

vector with the kth element 1 and else 0. Here

dn = {2 log(1/h)}1/2 +
1

{2 log(1/h)}1/2
log

{∫
(K ′(v))2dv

4ν0π

}
.

If the supremum in Theorem 2 is taken on an interval [a, b] instead of [0, 1], then by replacing

log(1/h) in (11) and dn with log((b − a)/h), Theorem 2 continues to hold. The proof of Theorem

2 is given in Appendix C.
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5.2 Hypothesis Testing of the BATE Curves

Researchers often want to know if a biomarker is good enough as a predictive marker to distinguish

sensitive patients from nonsensitive patients for one treatment of interest, or if one particular

treatment is noneffective for all patients. This amounts to testing whether its BATE curve is

equivalent to a non-zero constant or zero. Without loss of generality, suppose that we are interested

in the kth (1 ≤ k ≤ K) treatment, and we consider the hypothesis problem over [0, 1]. Hence we

state the null and alternative hypothesis as follows:

H0 : βk(v) = C v.s H1 : βh(v) 6= C (12)

or

H∗
0 : ψk(p) = C v.s H∗

1 : ψk(p) 6= C. (13)

Under the null hypothesis H0, the model (8) is a semiparametric varying coefficient Cox’s hazard

ratio model. We are estimating C using a profile method.

Note that σk(v) and bias(β̂k) in (11) are unknown, we can not directly use Theorem 2 to

construct test statistics. Hence it’s required to first estimate the bias and variance of β̂k(u),

k = 1, · · · ,K. From the expressions for the asymptotic bias, bias(β̂(v)), and variance, Σ(v), of

β̂(v) in Appendix A-C, we can obtain their consistent estimators b̂ias(β̂(v)) and Σ̂(v) , which are

also given in Appendix A-C before the proof of Theorem 3.

Theorem 3 Under the conditions of Theorem 2, if the third derivative of β(·) is continuous on

[0, 1], then we have for k = 1, · · · ,K,

P{{2 log(1/h)}1/2
(
‖ β̂k−βk−b̂ias(β̂k)

σ̂k
‖∞ − dn

)
< x}

→ exp{−2 exp(−x)} , (14)

where σ̂2
k(v) is the kth diagonal element of ν0Σ̂(v) and b̂ias(β̂k(v)) is the kth element of b̂ias(β̂(v)).

Next, we establish the the asymptotic distribution of the maximum deviation of ψ̂(p).

Theorem 4 Under the conditions of Theorem 2, if the third derivative of β(·) is continuous on

[0, 1] and fv(·) is continuous and positive, then we have for k = 1, · · · ,K,

P{{2 log(1/h)}1/2
(
‖ ψ̂k(p)−ψk(p)−b̂ias(ψ̂k(p))

σ̂k
‖∞ − dn

)
< x}

→ exp{−2 exp(−x)} , (15)
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where b̂ias(ψ̂k(p)) is same as b̂ias(β̂(πp)).

The proofs of Theorem 3 and Theorem 4 are given in Appendix C.

According to Theorem 3 and Theorem 4, we can test the null hypothesis, defined by (12) (or

(13)), by calculating the following test statistics

{2 log(1/h)}1/2(‖ β̂k − Ĉ − b̂ias(β̂k)
σ̂1

‖∞ − dn),

or

{2 log(1/h)}1/2(‖ ψ̂k − Ĉ − b̂ias(ψ̂k)
σ̂1

‖∞ − dn)

and rejecting H0 (or H∗
0 ) when test statistic exceeds the asymptotic critical value vα∗ = − log(−0.5 log(1−

α∗)) for the nominal level α∗.

An alternative method for the hypothesis testing problem (12) (or (13)) is to see whether Ĉ

falls inside the simultaneous confidence band of βk(v) (or ψk(p)), which can also be constructed

based on the asymptotic distribution of the maximum deviations. It is followed from Theorem 3

and Theorem 4 that for k = 1, · · · ,K, the (1− α∗)% confidence bands of β̂k(v) and ψ̂k(p) on [0, 1]

is

(β̂k(v)− b̂ias(β̂k(v))± qn,k(v)), (16)

and

(ψ̂k(p)− b̂ias(ψ̂k(p))± qn,k(πp)), (17)

respectively, where qn,k(v) = (dn + [log 2− log{− log(1− α∗)}](2 log(1/h))−1/2)σ̂k(v).

Remark 1 Note that, by using the MSE optimal bandwidth hopt, whose converge rate is Op(n−1/5),

we obtain a asymptotically biased estimator, β̂k(v), of βk(v). Although we can propose a consistent

estimate of the asymptotic bias of β̂k(v), it is unstable. According to Theorem 2, we can choose a

bandwidth which converges to 0 at a slightly faster rate than the optimal bandwidth rate Op(n−1/5)

to obtain an asymptotically unbiased estimate. In the simulation studies, we ignore the asymptotic

biases based on the two-stage method of Fan and Zhang (2000): We first select the optimal bandwidth

hopt for estimating the coefficient functions, and then use hopt/2 for calculating test statistics or

constructing confidence bands.
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Remark 2 It’s well known that based on the asymptotically unbiased estimator by choosing a band-

width which converges to 0 at a slightly faster rate than the optimal bandwidth rate, the test statistics’

approximations are not very accurate (Hall 1993). Tian, Zucker and Wei (2005) argued that by

employe an alternative strategy based on the Lin, Fleming and Wei (1994) stochastic perturbation

technique, we can obtain a more accurate approximation to the distribution of the maximum devi-

ations of β̂k(·) from βk(·). However, our simulations studied in the next section show that by using

the two-stage method, we can also obtain accurate approximations.

6. SIMULATION STUDIES

In this section, we carried out two simulation studies to examine the finite-sample properties of the

proposed methods. The first simulation study assessed the performance of the proposed estimators

for the BATE curves, and the second simulation study evaluated the type I error rate of the

proposed test for the null hypothesis that some BATE curves are a constant. In both simulation

studies, the sample size was set to be 500, and the number of the simulation was chosen to be 500.

In the first simulation study, we generated the failure time data from the following varying-

coefficient hazard regression model: λ(t|V,Z1, Z2) = λ0(t) exp{β1(V )Z1 + β2(V )Z2 + g(V )}, where

β1(v) = 3v(1.5 − v), β2(v) = 2 sin(3v), g(v) = v2 and λ0(t) = 3t2/5. We then generated V from

a normal distribution with mean 1 and variance 1/9. Covariates Z1 and Z2 were generated form

multiple Bernoulli random variables (z1, z2, z1 + z2), and each component took value 0 or 1 with

probability of being 1 as 0.3, 0.35 and 0.65, respectively. We generated the censoring time C from

an exponential distribution with mean cc, where cc was chosen to yield a approximately censoring

rate (CR) of 20% and 40%, respectively. For each censoring rate, we also calculated the standard

deviations (SDs), the average standard errors (SEs), and the 95% confidence interval coverage rates

(CPs) of β̂1(v), β̂2(v) and ψ̂1(p), ψ̂2(p). Simulation results are represented in Table 1 and Figure

4-5. The results show that the proposed estimators perform well.

[Figure 4 about here.]

[Figure 5 about here.]

[Table 1 about here.]
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In the second simulation study, we focus on the performance of the proposed hypothesis test

for the first null hypothesis that the functional coefficient β1(·) is a constant. That is we consider

the null hypotheses: H0 : β1(·) ≡ C, which implies that the causal effect of the first treatment

versus control does not depend on the value of the biomarker. We generated failure times from

the hazard regression model λ(t|V, Z1, Z2) = 0.6t2 exp{β1(V )Z1 + β2(V )Z2 + V 2}. To evaluate

the proposed method, we carried out several different simulation studies. We let β1(v) = −1 and

β2(v) = 2 sin(3v),− exp(v), 0, respectively. For each case, we calculated the type I error rates

based on 500 simulations and 500 sample size, for the significant level α∗ = 0.05, 0.01, respectively.

Results are reported in Table 2. For each case, we chose cc to yield an approximately censoring rate

of 20%, and generated covariates Z1, Z2 and V in the same way as in the first simulation study.

[Table 2 about here.]

In the both simulation studies, we adapted the method of Fan and Huang (2005) to select

the optimal bandwidth ĥopt, which was found to be round 0.113 in our setting, for estimating

the coefficient functions, and then as discussed in Remark 1, we used ĥopt/2 for calculating test

statistics or constructing confidence bands (Fan and Zhang 2000).

From Table 2, we see that by using the two-stage method for calculating test statistics or

constructing confidence bands, type I error rates are very close to their corresponding significant

levels α∗.

7. EXAMPLE

We illustrate the application of the proposed method in a real-world clinical study on the role

of c-myc in selecting the optimal treatment for patients with colon cancer (Augenlicht (1997)).

In this clinical trial, patients with colon cancer can be treated by surgery alone or surgery plus

chemotherapy. Surgery alone is less invasive and less expensive than surgery plus chemotherapy. It

is desirable to identify the patients who may benefit more from surgery plus chemotherapy based

on their biomarkers. Based on a study conducted by the Eastern Cooperative Oncology Group

(ECOG), Augenlicht (1997) suggested that the c-myc oncogene may be a predictive biomarker for

patients with colon cancer. Using a subset of the cases from this clinical trial, Li and Ryan (2006)
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found that there might be an interaction between the c-myc oncogene expression level and the two

treatments on overall survival and disease progression free survival.

In this section, we apply our method to this data set to assess the role of c-myc oncogene in

predicting response to treatment and distinguish sensitive patients from nonsensitive patients based

on their c-myc levels. Disease progression free survivals of a total of 124 patients randomized to

receive surgery alone or surgery plus chemotherapy or other treatments were measured. We let Vi

be the c-myc oncogene expression level of the ith patient, Zi1 and Zi2 be the indicators of receiving

other treatments and receiving surgery plus chemotherapy, respectively. We consider the following

model:

λ(t|Zi, Vi) = λ0(t) exp{β1(Vi)Zi1 + β2(Vi)Zi2 + g(Vi)}. (18)

We fit the model (18) for the progression free survival. The 95% confidence limits and 95%

confidence band are calculated by a sandwich method. The Gaussian kernel is employed, and the

bandwidth is chosen to be 25% of the interval length. Results are presented in Figure 6 and Figure

7.

[Figure 6 about here.]

[Figure 7 about here.]

First we consider the hypothesis problems of whether the BATE curves or modified BATE curves

are constants. We perform the following four hypothesis tests. H01 : β1(v) ≡ 0; H02 : β1(v) ≡ C1;

H03 : β1(v) ≡ 0; and H04 : β1(v) ≡ C2, where C1 and C2 are unspecified constants. We obtain the

p−value of each null hypothesis as follows: p1 = 0.056, p2 = 0.002, p3 = 0.052 and p4 = 0.005,

respectively. The results show (1) that the effect of the treatment arm of surgery only versus the

other treatment arm does not depend on the biomarker c−myc value and (2) that the treatment

effect of the treatment arm of surgery plus chemotherapy versus the surgery varies with patients’

c−myc levels.

As we discussed in Section 5, we can also test the null hypothesis problems by constructing

confidence bands of the estimators of β1(v) and β2(v), and the resulting confidence bands are

displayed in Figure 6 and Figure 7. From Figure 6, we can see that the constant curve 0 falls between
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the upper and lower confidence bands of the BATE or modified BATE curve of the treatment arm

of other treatments. This result is same as the conclusion (1) as above, which also implies that the

treatment effect of the other treatment versus the surgery only does not depend patient’s c−myc

levels. From Figure 7, we can see that, for the treatment arm of surgery plus chemotherapy, we

reject the null hypothesis that the treatment effect of the surgery plus chemotherapy versus surgery

only is the same, regarding less patient’s c−myc values. This conclusion implies that the biomarker

c−myc is capable of predicting the treatment effect of surgery plus chemotherapy, selecting cutoff

points and distinguishing sensitive patients from nonsensitive patients.

Next, for the treatment arm of surgery plus chemotherapy, we consider three different clinical

significant levels: α1 = − log(8) ≈ −2.08, α2 = − log(4) ≈ −1.39 and α3 = − log(2) ≈ −0.69, which

imply that the risks of having cancer recurrence for patients in control group (surgery only) are

eight times, four times and twice, respectively, as large as the risk in the treatment group of surgery

plus chemotherapy. The cutoff points for the chosen clinical significant levels are shown in Figure 7.

From Figure 7(A), we see that a patient with c−myc level no less than the cutoff point cα1 ≈ 3.254

should be treated by surgery plus chemotherapy, if this patient is willing to take at most one eighth

risk of having cancer recurrence, as large as being treated by surgery only. Similarly, a patient

with c − myc level no less than the cutoff point cα2 ≈ 2.689 (cα3 ≈ 1.716) should be treated by

surgery plus chemotherapy, if one-fourth (a half) risk of having cancer recurrence can be acceptable.

Based on the quantile of c −myc, we also get the cutoff points for each clinical significant levels,

see Figure 7(B). From Figure 7(B), we can see that the cutoff points are pα1 = F̂p(cα1) ≈ 0.955,

pα2 = F̂p(cα2) ≈ 0.923 and pα3 = F̂p(cα3) ≈ 0.737, respectively. Then we can conclude that, if

taking the treatment of surgery plus chemotherapy, only around 4.5% patients will reduce the risk

of having cancer recurrence to one eighth of the risk if taking surgery only, around 7.7% patients

will reduce the risk of having cancer recurrence to one fourth of the risk if taking surgery only, and

around 26.3% patients will reduce the risk of having cancer recurrence to a half of the risk if taking

surgery only. These results are very helpful for making medical policies.
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8. DISCUSSION

In this paper, we have introduced a new concept, the BATE curve, to represent the predictive

ability of a biomarker in selecting patients who respond better to one particular treatment over

another treatment, called sensible patients, when patient’s outcome is time-to-event. Compared

to the existing methods, the BATE curve not only visually displays the treatment effect on the

patient’s outcome as a function of the biomarker value but also allows one to compare the relative

performance of different predictive biomarkers that may have different scales. We have also pro-

posed semi-parametric time-varying coefficient regression methods for estimating the BATE curves

and their confidence bands.

The proposed estimation methods have the following technical advantages over the existing

methods. (1) By assuming the interaction between a continuous-scale biomarker and the treatment

group is a continuous function of the biomarker, the proposed varying coefficient models are flexible

enough to indicate both local and global association between treatment and the biomarker value.

(2) We propose a new semi-parametric test for the null hypothesis that the entire BATE curve of

a biomarker is constant; that is, the biomarker does not have predictive power in selecting sensible

patients to one particular treatment.

Although this paper has focused on multiplicative interaction to represent the treatment effect

when the patient’s outcome is time-to-event, the proposed methods can be easily extended to

the additive interaction between the treatment groups and biomarkers. In fact, we have already

developed the BATE curve and associated inference procedures for the additive interactions. Since

in the survival analysis, the multiplicative interaction effects, which describes derivations from

multiplicative joint effects, are commonly used, due to the limited space in this paper, we have only

reported the results for multiplicative interaction effects. The results on the BATE curves, based

on additive interactions, will be reported in a technical report.
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APPENDIX A: ASSUMPTIONS

We list the following assumptions in the Appendix for our results.

1. For s > 2, E|Zj |2s < ∞, j = 1, · · · ,K.

2. The biomarker V has a compact support V, in which fv(v) is continuous, and infv∈Vε fv(v) > 0

for some ε > 0, where Vε = {v : inf
v0∈V

|v − v0| ≤ ε}.
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3. Let Ω(v) = diag (Σ(v),Γ(v)), where

Γ(v) =




∫ τ
0 a22(u, v)dΛ0(u)

∫ τ
0 a12(u, v)dΛ0(u)

∫ τ
0 aT

12(u, v)dΛ0(u)
∫ τ
0 a22(u, v)dΛ0(u)


 .

Then Ω(v) is non-singular for any v ∈ Vε, Σ(v) is positive definite for any v ∈ Vε, and the

elements in Ω(v) are continuous on the compact support V.

4. E(Z2s
j |V = v) is bounded for v ∈ V, j = 1, · · · ,K.

∫
λ0(t)dt < ∞, and ‖fv(v)‖V < ∞, where

‖ · ‖V is the sup-norm of a function on V.

5. Functions β(·) and g(·) have continuous second derivatives on the compact support V.

6. The kernel function K(·) is a bounded, symmetric density function and uniformly continuous.

Furthermore, K(x) → 0 as x →∞,
∫ |K(x)|dx < ∞ and

∫
K2(x)dx < ∞.

7. The conditional probability P (X ≥ u|z, v) is equi-continuous in the arguments (u, v) on [0, τ ]×
Vε.

8. Let

s∗k(u, ζ, v0) = f(v0)
∫

E
[
P (X ≥ u|z, v0)Φ(ζ, y)R(y)⊗k|v = v0

]
K(y)dy,

where k = 0, 1, 2, R(y) = (ZT ,ZT y, y)T , and

Φ(ζ, y) = exp{ζTR(y) + βT (v)Z}.

We suppose that for k = 0, 1, 2, s∗k(u, ζ, v) is bounded away form 0 on the product space

[0, τ ]×C1 × Vε, where C1 ∈ R2K+1; that is

inf
u∈[0,τ ]

inf
ζ∈C1

inf
v∈Vε

s∗k(u, ζ, v) > 0,

and

sup
(βT

,g)∈C2

E|Z|2 exp{βTZ + g} < ∞,

where C2 ∈ RK+1

9. We have nh/ log n →∞ as n →∞, and nh5 is bounded.
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APPENDIX B: TECHNICAL LEMMAS

Before we prove the theorems, we present several lemmas first as follows. Lemma 1-lemma 3 are

needed for the proofs of lemma 4, Theorem 2, Theorem 3, and Theorem 4. Lemma 4 is needed for

the proof of Theorem 2.

Given t ∈ [0, τ ], let (ξ1(t), V1), · · · , (ξn(t), Vn) be an i.i.d. random sample from (ξ(t), V ). We

assume that V and the kernel function K(·) satisfy the conditions in A.1. We further assume that

ξ satisfies the following three conditions: (1) for an s > 2, sup
t∈[0,τ ]

E|ξ(t)|s < ∞; (2) the function

σ2(v) is bounded away from zero for v ∈ [0, 1] and has a bounded first derivative on [0,1], where

σ2(v) = E{∫ τ
0 ξ2(t)λ(t)dt|V = v}; and (3) supx supt∈[0,τ ]

∫ |y(t)|sf(y(t), x)dy = cx < ∞, where

f(y(t), x) is the joint density of (ξ(t), V ). Let

m(v) =
1
n

σ−1(v)f−1/2(v)
n∑

i=1

∫ τ

0
ξi(t)Kh(Vi − v)dMi(t).

For the process m(v), we have the following lemma 1

Lemma 1 Suppose Assumptions 6-7 hold. If h = n−b, for some 0 < b < 1− 2/s, we have

P{(−2 log h)1/2
(√

nh]ν−1/2
0 ‖m(v)‖∞ − dn

)
< x}

→ exp{−2 exp{−x}}. (19)

Proof. Note that

m(v) =
1
n

σ−1(v)f−1/2(v)
n∑

i=1

∫ τ

0
ξi(t)Kh(Vi − v)dMi(t)

=
1
n

σ−1(v)f−1/2(v)
n∑

i=1

Kh(Vi − v)
∫ τ

0
ξi(t)dMi(t),

with M∗
i (s, v) =

∫ s
0 ξi(t)dMi(t) being a Fs martingale for s ∈ (0, τ ] and i = 1, · · · , n. Then

M∗
i (τ, v), i = 1, · · · , n, is an i.i.d. random variable sequence, E|M∗

i (τ, v)|s < ∞, E{M∗
i (τ, v)} = 0,

and V ar{M∗
i (τ, v)} = σ2(v) for any v ∈ [0, 1]. Hence, according to Lemma 1 of Fan and Zhang

(2000), (19) follows.

Similarly, we define

m∗(v) =
1
n

σ∗−1(v)f−1/2(v)
n∑

i=1

∫ τ

0
ξi(t)Kh(Vi − v)dΛi(t),

22

http://biostats.bepress.com/uwbiostat/paper376



where σ∗2(v) = V ar{∫ τ
0 ξ(t)λ(t)dt|V = v}, and σ∗2(v) is bounded away from zero for v ∈ [0, 1] and

has a bounded first derivative on [0,1]. Hence for the process m∗(v), we have a similar lemma to

lemma 1, as stated as lemma 2 below.

Lemma 2 Suppose Assumptions 6-7 hold. If h = n−b, for some 0 < b < 1− 2/s, we have

P{(−2 log h)1/2
(√

nh]ν−1/2
0 ‖m∗(v)− E{m∗(v)}‖∞ − dn

)
< x}

→ exp{−2 exp{−x}}. (20)

The proof of lemma 2 can be obtained directly by the Lemma 1 of Fan and Zhang (2000).

Lemma 3 Let θ(v0) = (δT , hγT , hb)T , Z∗i = (ZT
i ,ZT

i (Vi− v0)/h, (Vi− v0)/h)T , where i = 1, · · · , n.

Let θ0(v0) = (βT
0 (v0), hβ

′T
0 (v0), hg′(v0))T be the true value of θ(v0), for any v0 ∈ V. Define

Snkl(t, θ0(v0)) =
1
n

n∑

i=1

Yi(t) exp{θT
0 (v0)Z∗i + g0(v0)}Kh(Vi − v0)(Z⊗k

i )(
Vi − v0

h
)l,

S∗nkl(t, v0) =
1
n

n∑

i=1

Yi(t) exp{βT
0 (v0)Zi + g0(v0)}Kh(Vi − v0)(Z⊗k

i )(
Vi − v0

h
)l,

for k = 0, 1, 2, l = 0, 1, 2. Then if Assumptions 1-7 hold, we have

sup
t∈[0,τ ]

‖S∗nkl(t, v0)− akl(t, v0)‖∞ = Op

({
log(1/h)

nh

}1/2
)

,

and

sup
t∈[0,τ ]

‖Snkl(t, θ0(v0))− akl(t, v0)‖∞ = Op

({
log(1/h)

nh

}1/2

+ h2

)
,

where k = 0, 1, 2, l = 0, 1, 2.

Proof. Note that for any t ∈ [0, τ ], k = 0, 1, 2, l = 0, 1, 2 and v0 ∈ V , akl(t, v0) = E{S∗nkl(t, v0)},
and Cov{√nS∗nkl(t, v0)} = Op(h). Hence according to Theorem 1 of Silverman (1978), we obtain

the following result:

{1
h

log(
1
h

)}−1/2√n sup
t∈[0,τ ]

sup
v∈V

|S∗nkl(t, v0)− akl(t, v0)| = Op(1),

which yields that

sup
t∈[0,τ ]

‖S∗nkl(t, v0)− akl(t, v0)‖∞ = Op

({
log(1/h)

nh

}1/2
)

,
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k = 0, 1, 2, l = 0, 1, 2. Furthermore, since

sup
t∈[0,τ ]

‖Snkl(t, θ0(v0))− akl(t, v0)‖∞
≤ sup

t∈[0,τ ]
‖Snkl(t, v0)− S∗nkl(t, v0)‖∞ + sup

t∈[0,τ ]
‖S∗nkl(t, v0)− akl(t, v0)‖∞,

we just need to prove that the first term on the right-hand side has the order of Op(h2) to complete

the proof. Notice that for k = 0, 1, 2, l = 0, 1, 2,

sup
t∈[0,τ ]

‖Snkl(t, θ0(v0))− S∗nkl(t, v0)‖∞

= sup
t∈[0,τ ]

‖ 1
n

n∑

i=1

Yi(t)Kh(Vi − v0)(Z⊗k)(
Vi − v0

h
)l

[exp{θT
0 (v0)Z∗i + g0(v0)} − exp{βT

0 (v0)Zi + g0(v0)}]‖∞
= sup

t∈[0,τ ]
‖ 1
n

n∑

i=1

Yi(t)Kh(Vi − v0)(Z⊗k)(
Vi − v0

h
)l

exp{ηi(v0)}1
2
[β′′T0 (V ∗

i )Zi + g′′0(V ∗
i )](Vi − v0)2‖∞,

where ηi(v0) is between βT
0 (v0)Zi + g0(v0) and θT

0 (v0)Z∗i + g0(v0), and V ∗
i is between v0 and Vi,

i = 1, · · · , n. Hence it follows from Theorem 1 of Silverman (1978) that

sup
t∈[0,τ ]

‖ 1
n

n∑

i=1

Yi(t)Kh(Vi − v0)(Z⊗k)(
Vi − v0

h
)l

exp{ηi(v0)}1
2
[β′′T0 (V ∗

i )Zi + g′′0(V ∗
i )](Vi − v0)2‖∞

= sup
t∈[0,τ ]

‖h2

n

n∑

i=1

Yi(t)Kh(Vi − v0)(Z⊗k)(
Vi − v0

h
)l+2

exp{ηi(v0)}1
2
[β′′T0 (V ∗

i )Zi + g′′0(V ∗
i )]‖∞

= Op(h2).

Thus lemma 3 follows.

Lemma 4 If Assumptions 1-7 hold, then

‖ − ∂2`n(θ∗(v0); v0)
∂θ∂θT

|θ=θ∗(v0) − Ω(v0)‖∞

= Op

({
log(1/h)

nh

}1/2

+ h2 + ‖θ̂(v0)− θ0(v0)‖∞
)

, (21)

where θ∗(v0) is between θ̂(v0) and θ0(v0), for any v0 ∈ V.
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Proof. Let

Φ(t, θ∗(v0)) =

{



Sn20(t, θ∗(v0)) Sn21(t, θ∗(v0)) Sn11(t, θ∗(v0))

Sn21(t, θ∗(v0)) Sn22(t, θ∗(v0)) Sn12(t, θ∗(v0))

Sn11(t, θ∗(v0)) Sn12(t, θ∗(v0)) Sn02(t, θ∗(v0))




Sn00(t, θ∗(v0))

−




Sn10(t, θ∗(v0))

Sn11(t, θ∗(v0))

Sn01(t, θ∗(v0))




⊗2

}
S−2

n00(t, θ
∗(v0)), and

ϕ(t, v∗) =

{



a20(t, v∗) a21(t, v∗) a11(t, v∗)

a21(t, v∗) a22(t, v∗) a12(t, v∗)

a11(t, v∗) a12(t, v∗) a02(t, v∗)




a00(t, v∗)

−




a10(t, v∗))

a11(t, v∗)

a01(t, v∗)




⊗2

}
a−2

00 (t, v∗),

where v∗ ∈ V such that θ0(v∗) = θ∗(v0). Hence,

‖ − ∂2`n(θ∗(v0); v0)
∂θ∂θT

|θ=θ∗(v0) − Ω(v0)‖∞

≤ ‖ 1
n

n∑

i=1

∫ τ

0
{Φ(t, θ∗(v0))− ϕ(t, v∗)}dNi(t)‖∞ + ‖ 1

n

n∑

i=1

∫ τ

0
ϕ(t, v0)dMi(t)‖∞

+‖ 1
n

n∑

i=1

∫ τ

0
{ϕ(t, v0)− ϕ(t, v∗)}dNi(t)‖∞

+‖ 1
n

n∑

i=1

∫ τ

0
ϕ(t, v0)Yi(t) exp{βT

0 (Vi)Zi + g0(Vi)}dΛ0(t)− Ω(v0)‖∞

≡ In1 + In2 + In3 + In4. (22)

According to Lemma 3, we have In1 = Op

({
log(1/h)

nh

}1/2
+ h2

)
. Notice that it follows from lemma

1 and lemma 2 that

‖ 1
n

n∑

i=1

Kh(Vi − v)
∫ τ

0
ξi(t)dMi(t)‖∞ = Op

({
log(1/h)

nh

}1/2
)

, (23)

‖ 1
n

n∑

i=1

Kh(Vi − v)
∫ τ

0
ξi(t)dNi(t)− E{m∗(v)}‖∞ = Op

({
log(1/h)

nh

}1/2
)

, (24)
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for any compact support V of V . Since

In2 = ‖ 1
n

n∑

i=1

∫ τ

0

∂ϕ(t, v)
∂θ

|θ=θ0(v0){θ0(v∗)− θ0(v0)}(1 + op(|θ0(v∗)− θ0(v0)|))dNi(t)‖∞,

it follows from (24) that In2 = Op(‖θ0(v∗) − θ0(v0)‖∞) = Op(‖θ̂(v0) − θ0(v0)‖∞). Similarly, since

K(·) is symmetric, (23) yields that In3 = Op

({
log(1/h)

nh

}1/2
)

and Lemma 3 yields that In4 =

Op

({
log(1/h)

nh

}1/2
)

. Thus Lemma 4 holds.

APPENDIX C: PROOF OF THE MAIN RESULTS

Proof of Theorem 2. For any v0 ∈ V,

−∂`n(θ0(v0); v0)
∂θ

|θ=θ0(v0) =
∂2`n(θ∗(v0); v0)

∂θ∂θT
|θ=θ∗(v0)(θ̂(v0)− θ0(v0)),

where θ∗(v0) is between θ̂(v0) and θ0(v0). Hence we have

‖θ̂(v0)− θ0(v0)‖∞ = ‖
[
−∂2`n(θ∗(v0); v0)

∂θ∂θT
|θ=θ∗(v0)

]−1
∂`n(θ∗(v0); v0)

∂θ
|θ=θ0(v0)‖∞. (25)

Next, we focus on ‖∂`n(θ∗(v0);v0)
∂θ |θ=θ0(v0)‖∞. Let ζn(t, θ0(v0)) = (ST

n10(t, θ0(v0)), ST
n11(t, θ0(v0)),

Sn01(t, θ0(v0)))T . Then

∂`n(θ∗(v0); v0)
∂θ

|θ=θ0(v0)

=
1
n

n∑

i=1

∫ τ

0
Kh(Vi − v0){Z∗i −

ζn(t, θ0(v0))
Sn00(t, θ0(v0))

}dNi(t)

=
1
n

n∑

i=1

∫ τ

0
Kh(Vi − v0){Z∗i −

ζn(t, θ0(v0))
Sn00(t, θ0(v0))

}dMi(t)

+
1
n

n∑

i=1

∫ τ

0
Kh(Vi − v0){Z∗i −

ζn(t, θ0(v0))
Sn00(t, θ0(v0))

}Yi(t) exp{βT
0 (Vi)Zi + g0(Vi)}dΛ0(t)

≡ I∗n1 + I∗n2

By Lemma 1 and Lemma 3, we have

‖I∗n1 −
1
n

n∑

i=1

∫ τ

0
Kh(Vi − v0){Z∗i −

(aT
10(t, v0), aT

11(t, v0), a01(t, v0))T

a00(t, v0)
}dMi(t)‖∞

≤ Op

({
log(1/h)

nh

}1/2

h2 +
{

log(1/h)
nh

})
, (26)
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and

‖I∗n2 −
1
2
µ2h

2Ω(v0)(β
′′T
0 (v0), 0T

K , g′′0(v0))T ‖∞ ≤ Op(h3). (27)

Note that (A + hB)−1 = A−1 − hA−1BA−1 + O(h2), thus it follows from Lemma 4 that

‖
[
−∂2`n(θ∗(v0); v0)

∂θ∂θT
|θ=θ∗(v0)

]−1

− Ω−1(v0)|∞

= Op

({
log(1/h)

nh

}1/2

+ h2 + ‖θ̂(v0)− θ0(v0)‖∞
)

. (28)

As a result, by combining (25)-(28), we have

‖
√

nh{θ̂(v0)− θ0(v0)− 1
2
µ2h

2(β
′′T
0 (v0), 0T

K , g′′0(v0))T }

−
√

h

n

n∑

i=1

∫ τ

0
Kh(Vi − v0){Z∗i −

(aT
10(t, v0), aT

11(t, v0), a01(t, v0))T

a00(t, v0)
}dMi(t)‖∞

≤ Op

(
{log(1/h)}1/2 h2 +

{
log(1/h)√

nh

})
+ Op

(√
nh7

)

+Op

(
‖θ̂(v0)− θ0(v0)‖∞ {log(1/h)}1/2

)
.

It follows from (23) and ‖θ̂(v0)−θ0(v0)‖∞ = op(1) that ‖θ̂(v0)−θ0(v0)‖∞ = Op

( {
log(1/h)

nh

}1/2
+h2

)
,

which yields that

‖
√

nh{θ̂(v0)− θ0(v0)− 1
2
µ2h

2(β
′′T
0 (v0), 0T

K , g′′0(v0))T }

−
√

h

n

n∑

i=1

∫ τ

0
Kh(Vi − v0){Z∗i −

(aT
10(t, v0), aT

11(t, v0), a01(t, v0))T

a00(t, v0)
}dMi(t)‖∞

≤ Op

(
log(1/h)

nh
+ h2 {log(1/h)}1/2 +

√
nh7

)
.

Hence, Theorem 2 follows.

Next, we derive the consistent estimators of the asymptotic bias and covariance of β̂(·). Ac-

cording to Fan et al. (2006), we can estimate the asymptotic bias and covariance by

b̂ias(β̂(v)) = A−1
n (v)Bn(v), Σ̂−1(v) = (nh)−1A−1

n (v)Π̂n(v)A−1
n (v),

and

Π̂n(v) =
ν−1
0

nh

n∑

i=1

∫ τ

0
K2

h(Vi − v)

{
Zi − Sn10(t, θ̂(v))

Sn00(t, θ̂(v))

}⊗2

dNi(t),
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respectively, where

An(v) =
1
n

n∑

i=1

∫ τ

0
Kh(Vi − v)


Sn20(t, θ̂(v))

Sn00(t, θ̂(v))
−

{
Sn10(t, θ̂(v))

Sn00(t, θ̂(v))

}⊗2

 dNi(t),

Bn(v) =
1
n

n∑

i=1

∫ τ

0
Kh(Vi − v)

{
Zi − Sn10(t, θ̂(v))

Sn00(t, θ̂(v))

}
dNi(t).

Proof of Theorem 3. Note that ‖θ̂(v)− θ0(v)‖∞ = Op

({
log(1/h)

nh

}1/2
+ h2

)
; hence it follows

from lemma 3 that

‖An(v)− Σ(v)‖∞

≤ ‖An(v)− 1
n

n∑

i=1

∫ τ

0
Kh(Vi − v)

[
Sn20(t, θ0(v))
Sn00(t, θ0(v))

−
{

Sn10(t, θ0(v))
Sn00(t, θ0(v))

}⊗2
]

dNi(t)‖∞

+‖ 1
n

n∑

i=1

∫ τ

0
Kh(Vi − v)

[
Sn20(t, θ0(v))
Sn00(t, θ0(v))

−
{

Sn10(t, θ0(v))
Sn00(t, θ0(v))

}⊗2
]

dNi(t)− Σ(v)‖∞

= Op

({
log(1/h)

nh

}1/2

+ h2

)
.

On the other hand,

‖Bn(v)− 1
2
µ2h

2Σ(v)β′′(v)‖∞

≤ ‖ 1
n

n∑

i=1

∫ τ

0
Kh(Vi − v)

{
Zi − Sn10(t, θ̂(v))

Sn00(t, θ̂(v))

}
dMi(t)‖∞

+‖ 1
n

n∑

i=1

∫ τ

0
Kh(Vi − v)

{
Zi − Sn10(t, θ̂(v))

Sn00(t, θ̂(v))

}
dΛi(t)− 1

2
µ2h

2Σ(v)β′′(v)‖∞.

Similarly to (26) and (27), the first term on the right-hand side of the above equation is bounded

by Op

({
log(1/h)

nh

}1/2
h2 +

{
log(1/h)

nh

})
, and the second term on the right-hand side of the above

equation is bounded by Op

({
log(1/h)

nh

}1/2
h2 + h4

)
. Hence we have

‖Bn(v)− 1
2
µ2h

2Σ(v)β′′(v)‖∞ ≤ p

({
log(1/h)

nh

}1/2

h2 +
{

log(1/h)
nh

}
+ h4

)

Finally, we consider Π̂n(v). According to lemma 3, we have

‖Π̂n(v)− ν0Σ(v)‖∞
≤ ‖Π̂n(v)− 1

nh

n∑

i=1

∫ τ

0
K2

h(Vi − v)
{
Zi − Sn10(t, θ(v))

Sn00(t, θ(v))

}⊗2

dNi(t)‖∞
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+‖ 1
nh

n∑

i=1

∫ τ

0
K2

h(Vi − v)
{
Zi − Sn10(t, θ(v))

Sn00(t, θ(v))

}⊗2

dNi(t)− ν0Σ(v)‖∞

= Op

({
log(1/h)

nh

}1/2

+ h2

)
.

Therefore, since nh5 = O(1), we have

√
nh‖b̂ias(β̂(v))− 1

2
µ2h

2β′′(v)‖∞ = Op

(
{log(1/h)}1/2 h2

)
,

and ‖Σ̂−1(v)− Σ−1(v)‖∞ = Op

({
log(1/h)

nh

}1/2
)

.

Hence, Theorem 3 follows.

Proof of Theorem 4. Note that

ψ̂(p)− ψ0(p)− b̂ias(ψ̂(p))

= β̂(π̂p)− β0(πp)− b̂ias(β̂(πp))

= β̂(π̂p)− β̂(πp) + β̂(πp)− β0(πp)− b̂ias(β̂(πp))

= β̂
′
(πp)(π̂p − πp) + op(|π̂p − πp|) + {β̂(πp)− β0(πp)− b̂ias(β̂(πp))}.

Thus, it’s sufficient to prove

sup
0≤p≤1

|(log(1/h))1/2
√

nh
{

β̂
′
(πp)(π̂p − πp) + op(|π̂p − πp|)

}
| = op(1). (29)

We first prove sup
0≤p≤1

|π̂p − πp| = Op

(
n−1/2

)
. According to the definition of π̂p, we have

F̂v(π̂p−) ≤ p ≤ F̂v(π̂p), and sup
0≤p≤1

|F̂v(π̂p−) ≤ p ≤ F̂v(π̂p)| = op(n−1/2).

Hence, it follows from sup
x
|F̂v(x)− Fv(x)| = op

(
n−1/2

)
that

sup
0≤p≤1

|Fv(π̂p)− Fv(πp)| ≤ sup
0≤p≤1

|Fv(π̂p)− F̂v(π̂p)|+ sup
0≤p≤1

|F̂v(π̂p)− p|

= Op

(
n−1/2

)
+ op(n−1/2) = Op

(
n−1/2

)
.

Note that

Fv(π̂p)− Fv(πp) = fv(πp)(π̂p − πp) + op(|π̂p − πp|).

29

Hosted by The Berkeley Electronic Press



Thus, sup
0≤p≤1

|π̂p − πp| = Op

(
n−1/2

)
, which yields that

sup
0≤p≤1

|(log(1/h))1/2
√

nh
{

β̂
′
(πp)(π̂p − πp) + op(|π̂p − πp|)

}
|

= Op

(
{h log(1/h)}1/2

)
= op(1).

Theorem 4 follows.
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Figure 1: Different BATE curves with different sensitive subsets
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Figure 2: Comparing between a ”strong” predictive marker and a ”weak” predictive marker.

33

Hosted by The Berkeley Electronic Press



0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.0

biomarker

BA
TE

ba

treatment 1

treatment 2

treatment 3

Figure 3: The BATE curves for different treatment arms: The solid, dashed and dotted curves are
the BATE curves for Treatment 1,2 and 3, respectively.
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Figure 4: Estimated results of the case with censoring rate CR = 20%. For each figure, solid and
dashed lines are the true and estimated curves, respectively. Dotted and dash-dotted lines are 95%
confidence limits and 95% confidence bands, respectively.
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Figure 5: Estimated results of the case with censoring rate CR = 40%. For each figure, solid and
dashed lines are the true and estimated curves, respectively. Dotted and dash-dotted lines are 95%
confidence limits and 95% confidence bands, respectively.
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Figure 6: Estimation of the BATE curves: (A) is for the BATE curve versus c − myc , (B) is
for the modified BATE curve versus p. Solid, dashed and dotted lines are estimated curves, 95%
confidence limits and 95% confidence band, respectively.
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Figure 7: Estimation of the BATE curves: (A) is for the BATE curve versus c − myc , (B) is
for the modified BATE curve versus p. Solid, dashed and dotted lines are estimated curves, 95%
confidence limits and 95% confidence band, respectively.
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Table 1: Estimation results of the BATE curves
ψ1(p) ψ2(p)

CR p Bias SD SE CP Bias SD SE CP

20% 0.2 0.0374 0.3116 0.2995 0.94 -0.0165 0.3145 0.2894 0.93
0.4 -0.0103 0.2416 0.2279 0.92 -0.0265 0.2321 0.2190 0.94
0.6 -0.0343 0.2319 0.2228 0.94 0.0418 0.2350 0.2159 0.93
0.8 -0.0339 0.2983 0.2855 0.91 0.1207 0.3264 0.2937 0.93

40% 0.2 0.0354 0.3348 0.3357 0.97 -0.0287 0.3175 0.3232 0.91
0.4 -0.0143 0.2604 0.2545 0.90 -0.0422 0.2589 0.2439 0.94
0.6 -0.0400 0.2572 0.2443 0.92 0.0286 0.2649 0.2384 0.92
0.8 -0.0394 0.3303 0.3083 0.92 0.1268 0.3477 0.3216 0.95
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Table 2: Percentage of rejecting null hypothesis given significant level α∗ = 0.05 and censoring
rate 20% based on 500 simulations

β1(v) ≡ −1, α∗ = 0.01 β1(v) ≡ −1, α∗ = 0.05

β2(v) 2 sin(3v) − exp(v) 0.5 2 sin(3v) − exp(v) 0.5

Type I errors 0.014 0.008 0.010 0.066 0.050 0.056
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