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Abstract

When patients are monitored for potentially recurrent events such as infections
or tumor metastases, it is common for clinicians to ask patients to come back
sooner for follow-up based on the results of the most recent exam. This means
that subjects’ observation times will be irregular and related to subject-specific
factors. Previously proposed methods for handling such panel count data assume
that the dependence between the events process and the observation time process
is time-invariant. This article considers situations where the observation times
are predicted by time-varying factors, such as the outcome observed at the last
visit or cumulative exposure. Using a joint modeling approach, we propose a class
of inverse-intensity-rate-ratio weighted estimators that are root n consistent and
asymptotically normal. The proposed estimators use estimating equations and are
fairly simple and easy to compute. We demonstrate the performance of the method
using simulated data and illustrate the approach using a cancer study dataset.

Keywords: Informative follow-up; Panel count data; Recurrent events; Semi-
parametric regression; Time-varying covariates.
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1 Introduction

Recurrent events data arise when a certain event can occur repeatedly over

time. Some studies are able to monitor study patients continuously, recording

the times of all event occurrences. Such data are called event history data.

However, it may not be feasible to monitor patients continuously for events.

Therefore, a common study design is to observe patients only at discrete time

points. Only the counts of events up to the observation time are known, with

the exact event times unknown. The available data are interval-censored

recurrent events data and are often referred to as “panel count data”. As

an example, consider a study of bladder cancer conducted by the Veterans

Administration Cooperative Urological Research Group (Byar 1980). The

bladder tumor occurrences were observed not continuously over time, but

only at each follow-up visit when they were counted, measured and removed.

With panel count data two processes arise: one process for the recurrent

events, that is not fully observed but of primary interest, and a second pro-

cess for observation times. If observation time points are not fixed across

individuals and they vary from subject to subject in a non-random way, it is

important to characterize correctly the mutual relationship of those processes

to draw correct inference about the association parameters in the model for

the mean cumulative number of events.

Several panel count data methodologies have been suggested under the

assumption that the recurrent events process and the observation times pro-

cess are independent. This scenario is analogous to missingness completely

1

http://biostats.bepress.com/uwbiostat/paper362



at random (Little & Rubin 2002), including situations in which the obser-

vation times are fixed in advance. For example, Sun & Kalbfleisch (1995)

and Wellner & Zhang (2000) proposed non-parametric estimators of the mean

function of a counting process with panel count data independent of covari-

ates. Zhang (2002) and Wellner & Zhang (2007) extended the above methods

for regression settings allowing the mean function of the cumulative number

of events to dependent on covariates. They focused on estimating both the

contrast parameters and the baseline mean function, assuming homogeneous

and non-homogeneous Poisson processes.

A few analyses were suggested for the situation when the recurrent events

process and the observation times process are dependent on covariates of the

recurrent events model. This is analogues to missingness at random. Focus-

ing on estimation of the contrast parameters, Sun & Wei (2000) suggested a

semiparametric approach, which was further generalized by Hu, et al. (2003).

They analyzed the same bladder cancer study and suggested that visit pat-

terns were different from subject to subject. They allowed for dependence

on treatment assignment and initial condition such as number of tumors ob-

served at the beginning of the study and the size of the largest initial tumor,

all covariates of the model for the mean cumulative number of tumors.

Huang, et al. (2006) were the first to propose a methodology for panel

count data with informative observation times, that is a situation where

the recurrent events process and the observation times process are depen-

dent conditional on covariates of the model for the cumulative number of
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events. They studied nonparametric and semiparametric models where the

conditional dependence is accounted for by the existence of a frailty variable

that is multiplicative in the mean model for cumulative number of events.

They use conditional likelihood maximization and estimating equations to

draw inference. Sun, et al. (2007) used a joint modeling approach for the

mean cumulative number of recurrent events and the observation times pro-

cess, also with a multiplicative latent variable that should accommodate the

correlation between observation times and recurrent events. Using an EM

algorithm, He, et al. (2009) proposed a similar approach of joint modeling

with latent variables.

All three methodologies address the dependence between the events pro-

cess and the observation time process by including a time-fixed latent variable

into the models. This addresses dependence induced by unmeasured baseline

variables. However, none of these methods accommodate situations where

the dependence between the two processes is induced by time-varying factors.

For example, a clinician may request that a patient returns for a follow-up

visit sooner or later based on the most recent exam. In the bladder cancer

study we argue that the observation times depend on the number of new

tumors at the last visit. If the number of new tumors was large, a clinician

asks the patient to come back earlier than he would otherwise. Generally,

the observation times can be predicted by past observed number of recurrent

events, cumulative exposure, or other factors related to the past observed

outcome.
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In Section 2 we introduce our notation and our proposed models for the

mean cumulative number of events and for the observation times. Both

models are semiparametric models that are often used for modeling recurrent

events data. We propose an inference approach in Section 3. To adjust for the

dependence between the events process and the observation time process we

utilize an inverse-intensity rate ratio (IIRR) weighted approach, introduced

in Bůžková & Lumley (2007) for generalized linear models and extended to

semiparametric linear and log-linear models in Bůžková & Lumley (2009)

and Bůžková & Lumley (2008), respectively. The proposed methodology, of-

fering a flexible modeling approach, also offers an estimation approach that

is fairly simple in formulas and enumeration. In Section 4 we report results

from a simulation study of panel count data observed at independent, de-

pendent and informative observation times to demonstrate the performance

of the estimator under finite sample size. We illustrate our method by ap-

plying it to the bladder tumor study in Section 5. The treatment effect was

increased when accounting for dependence of visit times on the number of

tumors observed at the last follow-up visit. We conclude this article with

a discussion section. The simulations and data analysis were carried out in

R (R Development Core Team 2007).

4
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2 Preliminaries and notation

2.1 Models and assumptions

Consider a study with n subjects who may experience recurrent events of

interest. For each subject i let Ni(t) denote the cumulative number of events

before time t. Suppose that Ni = {Ni(t) : t ≥ 0} is a counting process with

conditional mean function given by

E[Ni(t)|Xi] = exp{βT
0 Xi}Λ0(t), (1)

where Xi is a time-independent covariate with p components and Λ0(·) is an

unspecified baseline mean function of the cumulative number of events and

is considered a nuisance parameter. The goal is to make inference about the

association parameter β0.

For subject i, suppose that the counting process Ni is observed only at Ki

discrete time points Ti1, Ti2, . . . , TiKi
with 0 ≡ Ti0 < Ti1 < Ti2 < . . . < TiKi

≤

τ where Ki is an integer-valued random variable and τ ∈ (0,∞) is the end

of study time. Let Ci, Ci ≤ τ, denote the censoring time after which further

follow-up of individual i is impossible, and let Ñi(t) =
∑Ki

k=1 I(Tik ≤ t) be the

observed counting process of the number of observations of individual i by

time t. The underlying uncensored counting process is Ñ∗
i = {Ñ⋆

i (t) : t ≥ 0}

with Ñi(t) = Ñ∗
i (t ∧ Ci), where a ∧ b stands for min(a, b). We consider a

conditional rate model for the uncensored observation times

E[dÑ∗
i (t)|Zi(t)] = exp{γT

0 Zi(t)}dΛ̃0(t). (2)
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Zi(·) has g components that can be time-dependent and Λ̃0(·) is the cumula-

tive baseline intensity. Model (2) can accommodate a mixture of predefined

observation times and random observation times that depend on covariates

Zi(·). We write ξi(t) = I(Ci > t) for the at-risk process.

Both models (1) and (2) are very common for regression analysis of

recurrent events data and have been used previously by many authors. For

example, Zhang (2002) and Wellner & Zhang (2007) considered model (1) for

panel count data assuming independent observation times, Sun & Wei (2000)

and Hu et al. (2003) in their methods used model (1) as well as model (2)

with time-invariant predictors Zi = Xi. The methodology of Huang et al.

(2006) multiplicatively added a latent variable into model (1) and Sun et al.

(2007) and He et al. (2009) multiplicatively added latent variables into both

of the models.

We require two assumptions. First, we assume non-informative censoring

for the mean of the outcome,

E[Ni(t)|Xi, Ci ≥ t] = E[Ni(t)|Xi]. (3)

This assumption says that the mean cumulative number of events Ni(t) de-

pends on covariates Xi and censoring Ci through covariates Xi only. Second,

we assume that observation times depend on covariates Xi, on outcome Ni(t)

and censoring Ci only through covariates Zi(t), i.e.

E[dÑ∗
i (t)|Zi(t), Xi, Ni(t), Ci ≥ t] = E[dÑ∗

i (t)|Zi(t)]. (4)

Because Zi(t) has the appealing ability to include the past observed outcome,

6
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variables in the causal pathway between the covariates Xi and the outcome,

or auxiliary factors related with outcome we consider this assumption weak

and natural. Zi(t) can not however encompass the current outcome Ni(t).

For the analysis of recurrent events, it is more convenient to work directly

with the mean function defined in (1) rather than the rate function due

to the incomplete nature of the observed information. On the other hand,

the model for observation times can be the more flexible proportional rate

model (2) naturally incorporating time-varying predictors as that process is

fully observed up to a censoring time.

2.2 Weights and estimation in the observation time

model

To adjust for the informative observation times we use inverse intensity rate

ratio weighting (Bůžková & Lumley 2007). For the i−th individual at time

t define inverse weights

ρi(t; γ0, δ) =
exp{γT

0 Zi(t)}
exp{δT Xi}

, (5)

where γ0 is the true parameter vector in the model for observation times (2)

and δ is any fixed vector of length p. The true γ0 and thus the true weights

are unknown but can be estimated from the data. The best choice of δ we

base on an estimator of δ0, the contrast parameter vector in a proportional

rate model analogous to (2) but conditioning on covariates Xi alone. We use

this from now on. The numerator of the stabilized inverse weights accounts

for the prediction of observation times by Zi(t) and the denominator accounts
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for the prediction of observation times by Xi alone. Another natural choice

for δ is to set it to zero, simplifying the definition of the inverse weight but

losing some convenience further in the estimation method.

The estimation of the parameter vector γ0 in the model for observation

times (2) is described in detail in Lin, et al. (2000). We briefly introduce it

here because we use it to estimate the inverse weights. The estimation in the

model for observation times is based on a random process

M̃i(t; γ, Λ̃) = Ñi(t) −
∫ t

0

ξi(s) exp{γT Zi(s)} dΛ̃(s), (6)

that has mean zero at γ0, Λ̃0(·). Define the mean Av1 at time t of any variable

Z(·) given parameter γ as

Av1(Z)(t; γ) =
n∑

i=1

Zi(t)
ξi(t) exp{γTZi(t)}∑n

j=1 ξj(t) exp{γT Zj(t)}
. (7)

The parameter γ0 is consistently estimated by a solution to the estimating

equation Ũ(γ̂) = 0, where

Ũ(γ) =

n∑

i=1

∫ τ

0

{Zi(t) − Av1(Z)(t; γ)} dÑi(t). (8)

The estimating function (8) is the same as for Cox proportinal hazards mod-

els, however not the variance of γ̂. Denote V ⊗2 = V V T and define the Aalen–

Breslow estimator of Λ̃0(t) as ̂̃Λ(t) =
∑n

i=1

∫ t

0

[
dÑi(s)/

∑n
j=1 ξj(s) exp{γ̂T Zj(s)}

]
.

The asymptotic variance of
√

n(γ̂−γ0) is consistently estimated by Â−1Σ̂Â−1,

where

Â =
1

n

n∑

i=1

∫ τ

0

[Zi(t) − Av1(Z)(t; γ̂)]⊗2 ξi(t) exp{γ̂T Zi(t)} d̂̃Λ(t) (9)

Σ̂ =
1

n

n∑

i=1

[∫ τ

0

[Zi(t) − Av1(Z)(t; γ̂)] dM̃i(t; γ̂, ̂̃Λ)

]⊗2

.
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3 Estimation in the recurrent events model

In this section we develop a class of estimators for panel count data when

the recurrent events process and the observation times process are dependent

conditional on covariates of the mean model for cumulative number of events.

We use the observation time model (2), allowing the observation times to

depend on predictors Zi(t). Let us define a process {Mi(t), t ∈ [0, τ ]}

Mi(t; β, γ, δ,A) =

∫ t

0

1

ρi(s; γ, δ)

[
Ni(s) dÑi(s)

− exp{βTXi}ξi(s) exp{γT Zi(s)} dA(s)
]

=

∫ t

0

[
Ni(s) dÑi(s)

ρi(s; γ, δ)
− ξi(s) exp{(β + δ)T Xi} dA(s)

]
,

where the inverse weights ρi(·) were introduced in (5) and A(t) =
∫ t

0
Λ(s)dΛ̃(s).

Define A0(t) =
∫ t

0
Λ0(s)dΛ̃0(s). For any fixed δ E [dMi(t; β0, γ0, δ,A0)|Xi] =

0, as shown in the Appendix. A natural set of equations for estimators of

A0(·) and β0 is

n∑

i=1

Mi(t; β, γ0, δ,A) = 0 ∀t ∈ [0, τ ] (10)

n∑

i=1

∫ τ

0

w(t)Xi dMi(t; β, γ0, δ,A) = 0. (11)

Equation (10) at time t ∈ [0, τ ] and equation (11) yield

Â(t) =
n∑

i=1

∫ t

0

[
Ni(s) dÑi(s)

ρi(s; γ0, δ)
/

n∑

j=1

ξj(s) exp{(β̂ + δ)T Xj}
]

U(β; γ0, δ) =

n∑

i=1

∫ τ

0

w(t)

ρi(t; γ0, δ)
{Xi − Av2(X)(t; β, δ)}Ni(t) dÑi(t),(12)
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where the mean Av2(·) is defined as

Av2(X)(t; β, δ) =

n∑

i=1

Xi
ξi(t) exp{(β + δ)T Xi}∑n

j=1 ξj(t) exp{(β + δ)T Xj}
. (13)

We show in the Appendix that the parameter vector β0 of length p can be

consistently estimated by β̂, the solution to a set of estimating equations

U(β̂; γ̂, δ) = 0. Further,
√

n(β̂(γ̂, δ)−β0) converges in distribution to a zero-

mean Normal random vector with a covariance matrix consistently estimated

by D̂−1V̂ D̂−1, where

D̂ =
1

n

n∑

i=1

∫ τ

0

w(t)

ρi(t; γ̂, δ)

[
Xi − Av2(X)(t; β̂, δ)

]⊗2

ξi(t) exp{(β̂ + δ)T Xi} dÂ(t)

V̂ =
1

n

n∑

i=1

[∫ τ

0

w(t)

ρi(t; γ̂, δ)

[
Xi − Av2(X)(t; β̂, δ)

]
dMi(t; β̂, γ̂, δ, Â)

−ĤÂ−1

∫ τ

0

[Zi(t) − Av1(Z)(t; γ̂)] dM̃i(t, γ̂, ̂̃Λ(·))
]⊗2

,

and Ĥ = 1
n

∑n
i=1

∫ τ

0
w(t)

ρi(t;γ̂,δ)

[
Xi − Av2(X)(t; β̂, δ)

]
Zi(t)

T Ni(t)dÑi(t). The pro-

cess {M̃(t), t ∈ [0, τ ]} defined in equation (6) and the matrix Â defined in (9)

are used in the solution of the observation time model (2). The second term

in the squared brackets of the covariance matrix V accounts for the fact

that γ0 is estimated rather than known. Bootstrapping is a good alternative

for estimating the variance in situations with stable weights. Because the

estimation approach above is valid for any fixed δ, we can substitute it by

the estimator δ̂ based on an observation time model with covariates X. We

note that we do not require a consistent estimator of the nuisance baseline

cumulative intensity Λ0(t) of the recurrent events process nor the baseline

10
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intensity dΛ̃0(t) of the observation times process and thus do not need to use

any smoothing techniques for achieving consistency.

In a situation where observation times are independent of any covariates,

that is γ0 = 0 and δ0 = 0, the estimating function (12) simplifies to

U †(β) =
n∑

i=1

∫ τ

0

w(t){Xi − Av1(X)(t; β)}Ni(t)dÑi(t). (14)

We call a solution to (14) an independent estimator. Similarly, an estimator

for a situation where observation times are dependent only on the covariates

of the recurrent events model with Zi(t) = Xi can be computed using the

estimation function

U ‡(β; δ0) =

n∑

i=1

∫ τ

0

w(t){Xi − Av2(X)(t; β, δ0)}Ni(t) dÑi(t). (15)

Again this is a simplification of the the estimating function (12) that provides

the IIRR weighted estimator. It is equivalent to the estimation function (13)

of Hu et al. (2003).

4 Simulation study

We conducted a simulation study to examine the finite sample behavior of

the proposed estimators under different scenarios. We consider different re-

lationships between the recurrent events process and the observation times

process.

We fitted an outcome model with a single time-independent covariate Xi

E[Ni(t)|Xi] = exp{β01Xi}Λ0(t).
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We are interested in drawing inference about the parameter β01, which sum-

marizes the association between the covariate X and the mean number of

recurrent events. In contrast, the observation times are fitted using two co-

variates Zi(t) = (Xi, Z2i(t)). We take Z2i(t) to be dependent on Xi and also

generate the recurrent events data using both Xi and Z2i(t). At the same

time we make sure that the marginal model for mean outcome is correct.

Thus, the observation times process and the outcome process are dependent,

conditioning on the covariate Xi of the outcome model. The dependence is

induced by Z2i(t), which is associated with the Xi as well as the outcome

Ni(t).

For each individual, we generated data by the following scheme: Let Xi

be Bernoulli(0.5), representing a treatment or control assignment. Covari-

ate Z2i(t)|Xi ∼ XiN(0, 1) + (1−Xi)N(1, 1) are i.i.d. random variables. The

effect of the treatment is to lower Z2i(t). Z2i(·) is a step function that

can change its value at the observation times {Ti1, Ti2, . . . , TiKi
}, so that

Z2i(t) = Z2i(Tij); Tij ≤ t < Tij+1. The outcome was generated using a ran-

dom effect semiparametric Poisson-Gamma model

E [Ni(t)|Xi, Z2i(t), φi] =
exp{β01Xi + β02Z2i(t)}
E [exp{β02Z2i(t)}|Xi]

φiΛ0(t)

with the true parameter values β01 = 1, β02 = −0.4. The independent ran-

dom effect φi are Γ distributed with mean µφ = 1 and variance σ2
φ = 0.01. We

note that E [exp{βV }] has a closed form for a random variable V ∼ N(µ, σ2),

equal to exp{βµ + β2σ2/2}. The observation times follow a random effect

Poisson counting process with intensity λi(t) = ηi exp{γ01X1i(t)+γ02Z2i(t)},

12
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where random variables ηi are Γ distributed with mean µη = 1 and variance

σ2
η = 0.01 independent of any other variable. For each individual the obser-

vation times are positively correlated, unless ση = 0. Observation times are

generated by utilizing the property that time between observations in a Pois-

son counting process has an Exponential distribution with parameter λi(t).

We study the estimators under three options of the parameter γ0 = (γ01, γ02).

The informative observation times scenario is when γ01 = −0.6, γ02 = 0.8, the

dependent observation times scenario is γ01 = −0.6, γ02 = 0 and finally the

independent scenario is γ01 = γ02 = 0. Censoring variables Ci are uniform on

(τ/2, τ), with τ set to 3. Both required assumptions (3) and (4) are met. We

considered sample sizes n = 50, 100, 200 and 500. We ran 1000 simulations

at each combination of parameters.

Tables 1 and 2 provide summaries of the estimates of β01 assuming that

the observation times are covariate independent (independent estimator (14)),

that they are associated with covariate X only (dependent estimator (15))

and both X and Z(t) (IIRR weighted estimator (12)). Using the indepen-

dent estimator we see that it correctly estimates β01 in the situation when

the observation times are truly independent. Using the dependent estimator

we see that it correctly estimates β01 in the situation when the observation

times are either independent or dependent on X. Biases of the estimates

are negligible and sampling standard errors (SSEs) are close to the mean of

bootstrapped standard errors (BSEs) even for the sample size of 50. The

95% coverage probability is ranging from 94-97%. As expected, the inde-
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pendent estimator fails when observation times are dependent on covariate

X and also when they are informative, that is dependent on X and Z2(t).

The dependent estimator fails when observation times are informative, that

is dependent on X as well as Z2(t). Biases of the estimates and mean squared

errors (MSEs) are large and the coverage probability is very small. Finally,

the IIRR weighted estimator works well in all three scenarios of observation

times. The estimates do not seem to lose efficiency compared to the inde-

pendent estimates when observation times are independent on X and Z2(t).

They also do not lose efficiency when observations are dependent on X alone.

We note that the bootstrapped standard error is usually slightly bigger than

the sampling standard error in all studied situations, slightly overestimating

the true standard error of the estimate of β01.

5 Example

We analyze the bladder cancer data extracted from Andrews & Herzberg

(1985, p. 253-260) and conducted by the Veterans Administration Cooper-

ative Urological Research Group. The study, a randomized clinical trial of

three treatments, placebo (n=47), pyridoxine pills (n=31) and thiotepa in-

stillation into the bladder (n=38), was conducted for patients with superficial

bladder tumor when entering the trial. At each follow-up visit tumors were

counted, measured and then removed if observed, and the treatment was

continued. The treatment effects on suppressing the recurrence of bladder

tumor, especially the thiotepa instillation, have been explored by many au-

14
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thors, for example, Wellner & Zhang (2007), Sun & Wei (2000) and Hu et al.

(2003), assuming that observation times are not informative about the mean

cumulative number of tumors. The entire dataset for placebo and thiotepa

groups is shown in Tables 1 and 2 of Hu et al. (2003), demonstrating that

the visiting patterns were different from subject to subject. During the 48

month study time the number of visits among the 85 placebo and thiotepa

patients ranged from 1 to 38 with median of 8. Sun & Wei (2000) and Hu

et al. (2003) suggested that observation times may be dependent on variables

and their method enabled them to include the set of baseline covariates from

the mean model for cumulative number of tumors.

We investigated the effect of thiotepa on mean cumulative number of

tumors under various degrees of complexity of the relationship of the cumu-

lative number of tumors and the observation times process; first assuming

the observation times to be independent of the covariates; second assuming

dependence on the covariates of the recurrent events model; and third allow-

ing for dependence on an additional covariate that is time-varying. As such

we used the number of new tumors at the last visit - a variable that was in-

tentionally not included among covariates in the model for recurrent events.

We emphasize that in a clinical setting it is often the case that a clinician

will ask a patient to come back earlier based on the patients performance so

far. We suggest that the observation times depend on the number of new

tumors at the last visit. If the number of new tumors was large, a clinician

is likely to ask the patient to come back earlier than he would otherwise.

15
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The proposed multiplicative mean model for the number of recurrent

events that was used in previous analyses of this dataset is

E [N(t)] = exp {β01X1 + β02X2 + β03X3}Λ0(t), (16)

where X1 represents the dummy variable for the treatment of thiotepa instil-

lation, and X2 and X3 represent the count of bladder tumors at the beginning

of the study and the size of the largest tumor at the beginning of the study,

respectively.

Table 3 shows the results from the three suggested methods. Using the

independent estimator, assuming no dependence of observation times on co-

variates, we obtained β̂ = (−1.30, 0.24,−0.05). We calculated the sampling

standard errors of the estimates from 500 bootstrap resamples of the dataset.

Next, we computed the association estimates assuming that the observation

times depend on the covariates of the outcome model (16). We obtained

γ̂ = (0.47,−0.01, 0.05) with (0.17, 0.05, 0.06) the estimates of the standard

errors of γ̂. We obtain β̂ = (−1.49, 0.24,−0.10). We calculated the sampling

standard errors of the estimates from 500 bootstrap resamples of the dataset,

for each resample recalculating the estimates of γ0. Our findings when as-

suming both independence and dependence on covariates of the recurrent

events model are consistent with the analysis results presented by Hu et al.

(2003).

Last, we computed the association estimates when allowing for informa-

tive observation times. We propose the observation time model E
[
dÑ⋆(t)

]
=

exp {γ01Z1 + γ02Z2 + γ03Z3 + γ04Z4(t)} dΛ̃0(t), where the predictors of obser-
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vation times consist of the three covariates from the model for recurrent

events X1, X2, X3 and the number of tumors at the last visit as the last pre-

dictor Z4(t) which is time-varying. We obtained γ̂ = (0.46,−0.01, 0.05, 0.17)

with estimated standrad erros (0.16, 0.04, 0.06, 0.02). Indeed, the hazard of

a next visit is elevated with a higher count of tumors observed at last visit.

The IIRR weights based on δ̂ and γ̂ ranged from 0.88 up to 1.61. Setting the

estimating function (12) to zero, we obtain β̂ = (−1.75, 0.24,−0.10). Again,

we calculated the standard errors of the estimates from 500 bootstrap resam-

ples of the dataset, for each resample recalculating the estimates of γ0 and

δ0.

All three estimates of β01, the coefficient of the indicator for thiotepa

treatment, suggest that thiotepa reduces the mean number of tumors. All

three Wald tests indicate statistical significance. Comparing the three meth-

ods, the negative coefficient increases in magnitude. This suggests that the

effect of thiotepa may be underestimated when ignoring the dependence of

observation times on covariates, both covariates of the recurrent event model

and the additional covariate of number of tumors at the last visit. The ratio

of expected tumor counts increases from 3.66 comparing placebo to thiotepa

groups by the independent method to 4.44 by the dependent method and to

5.75 by the IIRR weighted method. The ratio is 1.6 times higher comparing

the IIRR weighted method and the independent method.

17
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6 Discussion

In this article we considered regression analysis of recurrent events when

observation times are informative, focusing on estimation of the associa-

tion parameter β0 in the semiparametric marginal model E[Ni(t)|Xi] =

exp{βT
0 Xi}Λ0(t) when panel count data are available. The proposed method-

ology allows for the predictors of the observation times to be time-varying.

We proposed a two step procedure, estimating first IIRR weights from a

proportional rate model for observation times and second estimating the as-

sociation parameters of interest based on a proportional mean model above.

The estimating approach is easy to implement.

A key advantage of the proposed methodology over currently available

approaches using latent variables is that the informativeness of observation

times can vary for each individual over time; the predictors in the observation

time model can be time-varying. They can include past observed outcome, or

variables in the causal pathway between exposure and outcome. By modeling

observation times with real variables, unlike with unknown latent variables,

they need to measured. As a consequence, researchers must consider the

observation time process carefully when planning a study in order to identify

and correctly measure the predictors of the observation times. This can be

viewed as both an advantage and a drawback. It is an advantage because

knowledge is gained about the parameters in the observation time model,

describing the observation times mechanism better. It is a drawback because

the predictors of the observation time need to be measured. The values of

18
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the time-varying predictors at all observation times are needed. When this

is not realistic, using the most recently measured value can be a sensible

approximation.

For drawing inference about β we recommend using the bootstrap proce-

dure as in the example. Our simulations consistely demonstarted very good

properties for the bootstrap. We have computed the model-based formula

for the variance estimator of the IIRR weighted estimator as well. It behaved

well for sample sizes as small as n = 50. Not to detract a reader from the main

line of the paper, we did not present the formulas for the variance estima-

tors for the independent and dependent estimators, which are simplifications

of the formula for the variance estimator of the IIRR weighted estimator.

Therefore, we did not show the results we obtained in our simulation study.

We illustrated our estimation approach on an example of tumor data.

Other scenarios where the IIRR weighted panel count data approach could

be used are epileptic seizures, flare ups, migraines, infections or rescue med-

ications.
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Appendix

We assume that (Ni(·), Xi, Zi(·), Ñ∗
i (·), ξi(·)) are i.i.d. quintuples of random

processes over time t ∈ [0, τ ] for individuals 1 through n. We assume that the

Zi(·) have bounded variations, that is |Zji(0)|+
∫ τ

0
|dZji(t)| ≤ K, j = 1, . . . , g

and that the number of observations per person Ki is bounded. The inverse

weight ρi(t; γ, δ) must be finite and bounded away from zero, that is for

all t ∈ [0, τ ] ρi(t; γ0, δ) > c for some c > 0.

At point {β0, γ0,A0} the process Mi(t) has zero mean for any fixed δ.

To see that, we proceed by showing that

E

{
Ni(s) dÑi(s)

ρi(s; γ0, δ)
|Xi

}
= ξi(s) exp{(β0 + δ)T Xi} dA0(s),

using the iterated expectation formula by further conditioning on {Zi(t), Xi, Ni(t), Ci ≥ t}

and using both assumptions of non-informative censoring for the outcome

model (3) and the assumption on observation times (4). At time s such that
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Ci ≥ s

E

{
E

[
Ni(s) dÑi(s)

exp{δTXi}
exp{γT

0 Zi(s)}
|Zi(s), Xi, Ni(s), Ci ≥ s

]
|Xi

}

= E

{
Ni(s)

exp{δT Xi}
exp{γT

0 Zi(s)}
E
[
dÑ⋆

i (s)|Zi(s), Xi, Ni(s), Ci ≥ s
]
|Xi

}

= E

{
Ni(s)

exp{δT Xi}
exp{γT

0 ZiTable 3(s)} exp{γT
0 Zi(s)} dΛ̃0(s)|Xi

}

= exp{δT Xi} dΛ̃0(s) E {Ni(s)|Xi}

= exp{δT Xi} dΛ̃0(s) exp{βT
0 Xi} Λ0(s) = exp{(β0 + δ)T Xi} dA0(s).

When Ci < s the individual has been censored by time s and thus dNi(s) = 0.

We outline here the large sample theory for the IIRR weighted approach.

The large sample distribution of n1/2(β̂(γ̂, δ) − β0) and the covariance ma-

trix follow from the asymptotic normality of U(β0; γ0, δ) together with a

series of Taylor expansions. The consistency of β̂ follows from the facts that

EU(β0; γ0, δ) = 0 under models (1) and (2) and that the estimator of γ0 is

consistent.

The estimating function (12) at β0 can be written as

U(β0; γ0, δ) =
n∑

i=1

∫ τ

0

w(t) [Xi − Av2(X)(t; β0, δ)] dMi(t; β0, γ0, δ,A0).

Further n−1/2U(β0; γ0, δ) is asymptotically equivalent to

1√
n

∫ t

0

w(s)
n∑

i=1

[Xi(s) − av2(x)(s; γ0, δ)]

[
Ni(s) dÑi(s)

ρi(s; γ0, δ)
− exp{(β0 + δ)T Xi}ξi(s) dA0(s)

]
.

A sequence of Taylor series expansions yield

1√
n

U(β0; γ̂, δ) =
1√
n

U(β0; γ0, δ)

−1

n

∂U(β0; γ, δ)

∂γ
|γ◦

(
1

n

∂Ũ(γ)

∂γ
|γ⋆

)−1
1√
n

Ũ(γ0) (17)
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with γ◦ and γ⋆ being on the line segment between γ0 and γ̂. Further, ex-

pansion of the estimating function (12) for the outcome model at (β̂, γ̂, δ)

around (β0, γ̂, δ) is

U(β̂; γ̂, δ) = U(β0; γ̂, δ) +
∂UT (β; γ̂, δ)

∂β
|β⋆ (β̂ − β0),

with β⋆ being on the line segment between β̂ and β0.

Let D and H be a matrix of derivatives of the estimating function U

with respect to the recurrent events model parameter β, respectively the

observation time model parameter γ, at its true value

D ≡ lim
n→∞

E

[
−1

n

∂UT (β; γ0, δ)

∂β
|β0

]

= E

∫ τ

0

w(t)

ρ1(t; γ0, δ)
[X1 − av2(X)(t; β0, δ)]

⊗2 ξ1(t) exp{(β0 + δ)TX1}} dA0(t)

H ≡ lim
n→∞

E

[
−1

n

∂UT (β0; γ, δ)

∂γ
|γ0

]

= E

∫ τ

0

− w(t)

ρ1(t; γ0, δ)
[X1 − av2(X)(t; β0, δ)]Z1(t)

T N1(t)dÑ1(t).

Define the covariance matrix V as

V ≡ lim
n→∞

Cov

[
1√
n

U(β0; γ̂, δ)

]

= lim
n→∞

Cov



 1√
n

U(β0; γ0, δ) −
1

n

∂UT (β0; γ, δ)

∂γ
|γ0

(
1

n

∂ŨT (γ)

∂γ
|γ0

)−1
1√
n

Ũ(γ0)



 ,

where it is accounted for estimation of γ0 by including the second term on
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right-hand side in V . Finally,

√
n(β̂(γ̂, δ) − β0) =

(
−1

n

∂UT (β; γ̂, δ)

∂β
|β⋆

)−1
1√
n

U(β0; γ̂, δ)

=

(
−1

n

∂UT (β; γ̂, δ)

∂β
|β⋆

)−1 [
1√
n

U(β0; γ0, δ)

−1

n

∂UT (β0; γ, δ)

∂γ
|γ◦

(
1

n

∂U †T (γ)

∂γ
|γ⋆

)−1
1√
n

Ũ(γ0)

]

and thus
√

n(β̂(γ̂, δ) − β0) is asymptotically equivalent to

1√
n

n∑

i=1

D−1

{∫ τ

0

w(t) [Xi(t) − av2(x)(t; β0, δ)] dMi(t; β0, γ0, δ,A0)

− HA−1

∫ τ

0

[Zi(t) − av1(z)(t; γ0)]
T dM̃i(t; γ0, Λ0)

}
.

It is a sum of n mean zero i.i.d. random vectors for any δ and thus
√

n(β̂(γ̂, δ)−

β0) is zero mean Normal random vector with covariance matrix D−1V D−1.

The consistency of V follows directly from arguments of Lin & Ying (2001)

and therefore D−1V D−1 is consistently estimated by D̂−1V̂ D̂−1. Using argu-

ments similar to Liang & Zeger (1986), asymptotically equivalent expressions

are obtained when using a random variable δ̂ instead of arbitrary fixed δ.
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Table 1: Summary statistics for the simulation studies.

n Estimator γ1 γ2 Bias SSE BSE CP MSE

50 Independent 0 0 −0.01 0.33 0.32 0.96 0.11
-0.6 0 −0.45 0.33 0.32 0.65 0.30
-0.6 0.8 −1.17 0.32 0.31 0.07 1.46

Dependent 0 0 −0.01 0.29 0.31 0.95 0.08
-0.6 0 0.01 0.29 0.32 0.94 0.08
-0.6 0.8 −0.52 0.27 0.28 0.74 0.47

IIRR weighted 0 0 −0.00 0.29 0.31 0.96 0.08
-0.6 0 0.00 0.29 0.32 0.94 0.08
-0.6 0.8 0.04 0.30 0.32 0.95 0.09

100 Independent 0 0 −0.01 0.20 0.22 0.95 0.04
-0.6 0 −0.45 0.24 0.23 0.49 0.25
-0.6 0.8 −1.12 0.20 0.20 0.10 1.30

Dependent 0 0 −0.01 0.17 0.22 0.95 0.03
-0.6 0 0.00 0.22 0.23 0.96 0.05
-0.6 0.8 −0.41 0.20 0.20 0.62 0.55

IIRR weighted 0 0 −0.01 0.17 0.22 0.96 0.03
-0.6 0 0.00 0.22 0.23 0.96 0.05
-0.6 0.8 0.05 0.22 0.23 0.96 0.05

NOTE: Bias is the sampling mean of β̂ minus β01, SSE is the sampling standard
error of β̂, BSE is the sampling mean of bootstrapped standard errors, CP is the 95%
sampling coverage probability of the true β01 and MSE is the sampling mean squared
error. Simulations are based on 1000 replicates.
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Table 2: Summary statistics for the simulation studies.

n Estimator γ1 γ2 Bias SSE BSE CP MSE

200 Independent 0 0 0.01 0.15 0.15 0.97 0.02
-0.6 0 −0.43 0.15 0.16 0.28 0.21
-0.6 0.8 −1.10 0.13 0.14 0.00 1.34

Dependent 0 0 0.00 0.13 0.15 0.96 0.02
-0.6 0 0.01 0.13 0.16 0.95 0.02
-0.6 0.8 −0.62 0.15 0.14 0.43 0.52

IIRR weighted 0 0 0.00 0.13 0.15 0.95 0.02
-0.6 0 0.01 0.13 0.16 0.96 0.02
-0.6 0.8 0.04 0.15 0.16 0.95 0.02

500 Independent 0 0 −0.01 0.09 0.10 0.96 0.01
-0.6 0 −0.43 0.10 0.10 0.01 0.20
-0.6 0.8 −1.12 0.09 0.09 0.00 1.27

Dependent 0 0 −0.01 0.08 0.10 0.96 0.01
-0.6 0 0.00 0.09 0.10 0.96 0.01
-0.6 0.8 −0.57 0.09 0.09 0.26 0.41

IIRR weighted 0 0 −0.01 0.08 0.10 0.97 0.01
-0.6 0 0.00 0.09 0.10 0.95 0.01
-0.6 0.8 0.04 0.09 0.10 0.95 0.01
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Table 3: Summary statistics for the bladder cancer dataset.

Variable Estimator β̂ SE(β̂) p-val 95%CI

X1 Independent -1.297 0.409 <0.01 (-1.969,-0.625)
Dependent -1.491 0.430 <0.01 (-2.198,-0.784)
IIRR weighted -1.750 0.443 <0.01 (-2.479,-1.020)

X2 Independent 0.236 0.078 <0.01 (0.107,0.364)
Dependent 0.241 0.083 <0.01 (0.104,0.378)
IIRR weighted 0.241 0.083 <0.01 (0.105,0.377)

X3 Independent -0.053 0.134 0.69 (-0.273,0.167)
Dependent -0.101 0.150 0.50 (-0.348,0.145)
IIRR weighted -0.098 0.151 0.52 (-0.346,0.151)
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