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1 Introduction

In trials designed to evaluate the efficacy of an intervention to prevent perinatal mother to

child transmission (PMTCT) of human immunodeficiency virus (HIV), the primary endpoint

is often the cumulative transmission rate at a point in time shortly after birth. To determine

HIV status, the infants are usually tested within 48 hours after birth to assess in utero

transmission. A second visit is often scheduled 4 to 8 weeks after birth to assess intrapartum

transmission. Subsequent visits may be scheduled, but tests at these visits only contribute

information about the primary endpoint if the infant has missed earlier scheduled visits. If

infants are tested at both scheduled visit times, estimation of the endpoint is straightforward,

as are regression models for the endpoint. Unfortunately, missed visits and off-schedule visits

are not uncommon. And, even if there are no missed visits, interim analyses may occur when

only a fraction of the infants are old enough for the second visit.

In this paper, we propose a censored multinomial regression model for analyzing PMTCT

of HIV. The approach is motivated by the HIV Prevention Trials Network (HPTN) 024 study,

a multi-site placebo-controlled trial of antiobiotics to prevent chorioamnionitis and, therefore,

perinatal transmission of HIV. From the first two testing windows, there were three main

outcomes of scientific interest:

A1 The in utero transmission rate, estimated by the fraction of infants testing positive

shortly after birth;

A2 The perinatal transmission rate, estimated by the fraction of infants testing positive

by 6 weeks (which we extended to 8 weeks, for analysis purposes);

A3 The intrapartum transmission rate, estimated by the fraction of infants testing positive

by the end of the perinatal transmission window, given they had a negative test result

at birth.

In primary analyses, we are usually interested in obtaining unadjusted estimates of A1,

A2, and A3. In this manuscript, we focus on secondary analyses, where adjusted estimates

are often desired. Ideally, every subject would be tested in every visit window, and we could

use a binary endpoint approach such as logistic regression to model all three outcomes of

scientific interest. However, we rarely have complete test result data in PMTCT clinical

trials. For example, in HPTN 024, of the 2052 liveborn infants, 1813 (88%) had HIV tests

within 48 hours of delivery, 1696 (83%) had tests 4 to 8 weeks after delivery, and only 1584
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(77%) had tests both within 48 hours of delivery and 4 to 8 weeks after delivery. While

missed visits may be due to the infant’s death (which can be accounted for), in some cases

the mother simply forgets or is unable to bring the infant in for follow-up. Often, mothers

do not deliver at the study hospital and must bring the infant in at a later point in time

for the HIV test. Such missed and off-schedule visits make the usual analytical methods

problematic.

Table 1 lists a selection of primary papers from trials aimed at reducing PMTCT of HIV

and summarizes the methods used for unadjusted and adjusted analyses, as well as how the

data were censored in each case. The methods represented are among the more commonly

used for estimating PMTCT of HIV. In adjusted analyses, the endpoint is generally modeled

as either binary or right-censored continuous, using logistic or Cox proportional hazards

(PH) regression, respectively. For both logistic and Cox PH models, methods currently

used for handling missing data may be inadequate. For example, when the logistic model

is used and a test result is missing for an infant who has not previously tested positive, the

observation is dropped, although if subsequent tests are negative, the missing test result

may be imputed to be negative. When the Cox PH model is used, an infant’s time to HIV

infection is right censored at his or her last negative test; however, approaches for addressing

the timing of infection when a missing visit is followed by a positive test and there have been

no previous positive tests may be inadequate. Some authors use the time of the first positive

test as the time of infection while others use the midpoint between the last negative and the

first positive tests (or birth and the first positive test) as the time of infection. Instead, we

propose a method that reflects the intention of the studies to classify infections according to

their timing (in utero, peripartum and postpartum) using a multinomial model. The model

accommodates incomplete longitudinal observations by allowing general censoring and also

accommodates regression on the three outcomes of interest (A1-A3).

This manuscript proceeds as follows. In Section 2, we describe the censored multinomial

model and estimation of the parameters for a single sample. In Section 3, we lay out several

strategies for adjusting for covariates. In doing so, we consider estimation for all three

scientific endpoints of interest. In Section 4, we describe simulations designed to evaluate

the performance of the proposed regression estimators. In Section 5, we present an example

based on HPTN 024. Discussion follows in Section 6.
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Table 1: Approaches taken in selected papers analyzing PMTCT of HIV
Unadjusted Adjusted Censoring

Wiktor et al. (1999) KMa – at last negative test
Guay et al. (1999) KM PHb at last negative test
Dabis et al. (1999) KM PH not stated
Shaffer et al. (1999) KM logistic regression not stated
Fawzi et al. (2000) Chi-square tests PH not stated

Dorenbaum et al. (2002) Fisher’s exact tests logistic regression –
Moodley et al. (2003) KM PH at last follow-up

and logistic regression

aKaplan-Meier.
bCox proportional hazards.

2 Estimation for a Single Sample

In this section, we present the censored multinomial model and maximum likelihood methods

for parameter estimation with a single sample. In this general presentation, we assume that

there are J visit windows. Usually, when estimating PMTCT, J = 2. However, depending

upon the study design, J may be larger as in Wiktor et al. (1999), where J = 3.

We begin by dividing the follow-up time into windows as follows:

First visit window [t11, t12)

Second visit window [t21, t22)
...

Time following last visit window [tJ+1,1,∞).

Here, J is the number of visit windows of interest, and tj1 and tj2 indicate the times at

which the jth visit window starts and ends, respectively. These intervals do not have to

be and usually are not contiguous. In other words, tj2 is not necessarily equal to tj+1,1.

Unscheduled or off-schedule visits result in tests that occur in the interval [tj2, tj+1,1). An

example of potential visit windows is shown in Figure 1 for four subjects A, B, C, and D.

In this example, J = 4.

We define a complete response vector for the ith subject as Y ∗i = (Y ∗i1, . . . , Y
∗
iJ)′ where

Y ∗ij = 1, j = 1, . . . , J , if the subject tests positive for the first time at the jth visit and 0

otherwise. The vector Y ∗i represents a multinomial response as the ith subject can only test

positive for HIV for the first time once. When a subject misses a scheduled visit (including
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Figure 1: Example of possible scheduling of testing visits.

if he or she is late or early for the visit), we observe a censored version of Y ∗i . Let Yi denote

the observed endpoint, which is defined as

Yi1 =


1, tpi ∈ [0, t12)

1, tpi ≥ t12 and tni < t11

0, otherwise

(1)

Yij =


1, tpi ∈ [tj−1,2, tj2)

1, tpi ≥ tj2 and tni < tj1

0, otherwise

, j = 2, . . . , J, (2)

Yi,J+1 =

 1, tpi ≥ tJ2

0, otherwise
. (3)

Here, tpi and tni are the time of the first positive test result for subject i and the time of

the last negative test result for subject i, respectively. For subjects with no positive test

result during follow-up, we take tpi equal to ∞. For subjects with no negative test result

during follow-up, we take tni equal to -∞. We assume that each subject has at least one

(non-missing) test result during the follow-up period.

To illustrate how the observed vector Y relates to the unobserved but true outcome Y ∗,

we look at four possible visit and outcome patterns. Following Figure 1, we assume that the

visit windows are not contiguous. First, we examine the effect of a missed visit. Suppose

subject A is not tested until the second visit at which point he or she tests positive. We do

not know if subject A would have tested positive had he or she come in for the first visit.

We can say, however, that the subject would have tested positive for the first time at the

first visit or at the second visit if tested at both visits. In other words, Y ∗ for this subject
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may be (0, 1)′ or (1, 0)′ but is not (0, 0)′. Therefore, by (1), (2), and (3), Y = (1, 1, 0)′.

Next, we consider subject B who missed the first visit and tested negative at the second

visit. Here we assume that, if a subject tests negative at the end of the study, he or she was

negative throughout the study; therefore, Y ∗ = (0, 0)′ and Y = (0, 0, 1)′ for this subject. In

this case, even though the subject was not tested in every visit window, we have complete

information regarding his or her outcome. This illustrates another difficulty involving missed

visits. If a subject is uninfected and misses all visits except the last (the Jth visit), we still

have complete information about him or her (as in B); however, if the subject is infected at

the last visit (as in A), we have incomplete information about him or her. Returning to the

example, we also have complete information for subjects C and D, for whom Y ∗ = (0, 0)′

and Y ∗ = (0, 1)′, corresponding to Y = (0, 0, 1)′ and Y = (0, 1, 0)′, respectively.

Letting Jj be a vector of length J with jth element equal to 1 and all other elements equal

to zero, we define the probability that a subject’s first positive test occurs in the jth visit

window as pj = P (Y ∗i = Jj), j = 1, . . . , J , and the probability that a subject’s first positive

test occurs after the last visit window as pJ+1 = 1−∑J
j=1 pj. Each subject’s contribution to

the likelihood is given by

f(yi) = Y ′i p,

where p = (p1, . . . , pJ+1)′. The log-likelihood can be written as

l(p1, . . . , pJ) =
N∑
i=1

log
[ J∑
j=1

Yijpj + Yi,J+1(1−
J∑
j=1

pj)
]
, (4)

where the outer summation is over all individuals in the sample. Maximum likehood esti-

mates of p1, . . . , pJ , denoted p̂ = (p̂1, . . . , p̂J)′, are obtained by maximizing (4) using numer-

ical optimization techniques. In this maximization, probabilities p1, . . . , pJ are constrained

to lie between 0 and 1 and
∑J
j=1 pj is constrained to be less than 1.

We focus now on estimating the cumulative probabilities of transmission at the birth and

4 to 8 week visits. These correspond to the in utero and perinatal endpoints (A1 and A2)

described in Section 1. The birth transmission rate, P1, is estimated by P̂1 = p̂1. The 4 to 8

week transmission rate, P2 = p1 +p2, is estimated by P̂2 = p̂1 + p̂2. In general, the cumulative

transmission rate is obtained as Pj =
∑j
k=1 pk, j ≤ J , with maximum likelihood estimate

P̂j =
∑j
k=1 p̂k. By the multivariate delta method (Agresti, 2002, page 579), the asymptotic

variance of P̂j is given by vj =
∑j
k=1

∑j
l=1 Vkl, where Vkl denotes the element in the kth row

and lth column of V , the covariance matrix of p̂1, . . . , p̂J . We estimate V using the negative
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of the inverse of the Hessian matrix.

We turn now to consider endpoint A3, the intrapartum transmission rate. The intra-

partum transmission rate represents the probability that an infant is infected during delivery

and is given by

p2|1− =
p2

1− p1

.

We estimate p2|1− as the fraction of infants who test positive by the end of the second visit

window given that they had a negative test result at birth. That is, we estimate p2|1− as

p̂2|1− =
p̂2

1− p̂1

.

In a breastfeeding population, where HIV transmission may also occur via breastfeeding,

p̂2|1− represents the rate of delivery or early postnatal transmission.

Using the multivariate delta method, we derive the asymptotic variance of p̂2|1− as

w = (
p2

(1− p1)2
)2 × var(p̂1) +

2p2

(1− p1)3
× cov(p̂1, p̂2) +

1

(1− p1)2
× var(p̂2).

We estimate this quantity using

ŵ = (
p̂2

(1− p̂1)2
)2 × v̂ar(p̂1) +

2p̂2

(1− p̂1)3
× ĉov(p̂1, p̂2) +

1

(1− p̂1)2
× v̂ar(p̂2),

where v̂ar(p̂1), ĉov(p̂1, p̂2), and v̂ar(p̂2) are obtained using the negative of the inverse of the

Hessian matrix.

In the case where there are more than two visit windows, we can denote the probability

of testing positive at the jth visit given that the first j − 1 tests are negative as

pj|(j−1)− = Pr {Y ∗i = Jj|Y ∗i 6= J1, . . . ,Jj−1} ,

which can be written as

pj = pj|(j−1)− × (1−
j−1∑
k=1

pk).

The asymptotic variance of ̂pj|(j−1)− is given by
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wj =
j−1∑
l=1

j−1∑
l′=1

[
(

pj

(1−∑j−1
k=1 pk)

2
)
2

× Vll′
]

+2
j−1∑
l′=1

[ pj

(1−∑j−1
k=1 pk)

3
× Vjl′

]
+

1

(1−∑j−1
k=1 pk)

2
× Vjj. (5)

Here, Vll′ denotes the element in the lth row and l′th column of V, the covariance matrix

of p̂1, . . . , p̂J . Vjl′ denotes the element in the jth row and l′th column of V, and Vjj denotes

the element in the jth row and jth column of V. We use the negative of the inverse of the

Hessian matrix to estimate Vll′ , Vjl′ , and Vjj. We substitute these estimates, with p̂1, . . . , p̂j,

into (5) to obtain estimates of wj.

3 Regression Approaches

In the previous section, we presented methods for estimating one sample or unadjusted

probabilities of HIV transmission, corresponding to endpoints A1 through A3. In this section,

we use a regression approach to determine how cumulative and conditional probabilities are

associated with predictors. In the spirit of assessing PMTCT of HIV, models are presented

for the case of two visit windows, birth and 4 to 8 weeks. We also address how these models

can be extended to analyze data from studies with more than two visit windows.

3.1 Cumulative Probabilities

We define the probability that subject i’s first positive test occurs in the jth visit window as

πij and the probability that subject i’s first positive test occurs after the last visit window

as πi,J+1 = 1 − ∑J
j=1 πij. Unlike in the previous section, here we do not assume that the

probability of testing positive for the first time in the jth visit window is the same for all

subjects. To examine the relationship between a set of predictors, (Xi1, . . . , Xim), and the

probability that subject i tests positive at or before the jth visit, we define the following

regression model:

7
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g(πi1) = X ′iβ1 (6)

g(
j∑

k=1

πik) = X ′iβj , j = 2, . . . , J, (7)

where g(·) is a link function that specifies the relationship between the predictors, Xi =

(1, Xi1, . . . , Xim)′, and the response, through the parameter vector βj = (βj0, . . . , βjm)′, of

length m+1. For ease of exposition, we assume that a predictor is relevant for all visit

windows. Therefore, if a predictor is included in the model, it is included for all regressions.

When modeling cumulative probabilities, two appropriate choices for the link function are

the log link, where g(p) = log(p), and the logit link, where g(p) = logit(p) = log{p/(1− p)}.
Here, we focus on the logit link, where βjl, l = 1 . . . ,m, is interpreted as the change in the

log odds of testing positive at or before the jth visit window per one unit increase in Xil,

l = 1, . . . ,m.

We consider the case of two visit windows, corresponding to birth and 4 to 8 weeks. The

regression model is defined as

logit(πi1) = X ′iβ1

logit(πi1 + πi2) = X ′iβ2,

where β1 and β2 are parameter vectors of length m + 1 linking the predictors to the odds

of testing positive at the birth visit and the odds of testing positive at or before the 4 to 8

week visit, respectively.

Returning to the general case, we combine and re-write equations (6) and (7) to obtain

the following expressions for πij:

πi1 = g−1(X ′iβ1) (8)

πij = g−1(X ′iβj)− g−1(X ′iβj−1) , j = 2, . . . , J. (9)

The log-likelihood is given by

l(πi1, . . . , πiJ) =
N∑
i=1

log
[ J∑
j=1

Yijπij + Yi,J+1(1−
J∑
j=1

πij)
]
, (10)

where the outer summation is over all individuals in the sample.
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To obtain maximum likelihood estimates of the regression parameters, we maximize (10)

using numerical optimization techniques (discussed in Section 3.3). During optimization,

we must ensure that πi1, . . . , πiJ lie between 0 and 1 and that
∑J
j=1 πij < 1 for all i. The

logit link imposes the constraints that 0 < πi1 < 1 and
∑J
j=1 πij < 1; however, it does not

guarantee that 0 < πij < 1, j = 2, . . . , J . Instead, we impose this set of constraints through

the optimization procedure in the form of non-linear constraints on the coefficients. Further

implications of the constraints are presented in the discussion.

3.2 Conditional Probabilities

We now consider regressions on conditional probabilities in order to estimate endpoint A3,

the intrapartum transmission rate. We begin by considering the case where there are two

visit windows, corresponding to birth and 4 to 8 weeks. To examine the relationship between

a set of predictors, (Xi1, . . . , Xim), and πi2|1− , the probability that subject i tests positive

at the 4 to 8 week visit given he or she tested negative at birth, we define the following

regression model:

g(πi1) = X ′iβ1

g(πi2|1−) = X ′iβ2|1− ,

where g(·) is a link function that specifies the relationship between the predictors, Xi =

(1, Xi1, . . . , Xim)′, and the response, through the parameters vectors β1 and β2|1− , each of

length m+1. If we choose the logit link, β2|1− represents the change in the log odds of testing

positive at the 4 to 8 week visit, given a negative result at birth, per one unit increase in

Xil, l = 1, . . . ,m.

We calculate πi2 for use in the log-likelihood as

πi2 = πi2|1− × (1− πi1)

= g−1(X ′iβ2|1−)× (1− g−1(X ′iβ1)). (11)

Maximum likelihood estimates of the regression parameters are obtained by maximizing (10),

with πi1 as in (8) and πi2 as in (11). As for the cumulative model, for this maximization,

probabilities πi1, . . . , πiJ must lie between 0 and 1 and
∑J
j=1 πij must be < 1 for all i. The

logit link imposes constraints that 0 < πi1 < 1 and 0 < πi2|1− < 1 which, together, imply

that 0 < πi2 < 1. Thus, for the conditional model with J = 2, the optimization procedure

9
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requires only that πi1 + πi2 < 1.

More generally, we can link covariates to the probability of testing positive in an interval

given all previous tests were negative by setting

πij = πij|(j−1)− × (1−
j−1∑
k=1

πik),

where

πij|(j−1)− = g−1(X ′iβj|(j−1)−). (12)

3.3 Obtaining MLEs

In Sections 3.1 and 3.2, we derived the log-likelihood equations for the cumulative and

conditional regression models. To obtain maximum likelihood estimates of the regression

parameters, we maximize the log-likelihood equations using numerical optimization tech-

niques. For the analyses presented here, numerical optimization was carried out using a

quasi-Newton algorithm with non-linear constraints on the coefficients. The algorithm is an

efficient modification of Powell’s Variable Metric Constrained WatchDog algorithm, which is

available in SAS PROC NLP (SAS Institute Inc., 2004a). Additional details regarding our

implementation are available upon request.

4 Simulations

We performed simulations to assess the properties of the proposed regression estimators,

first by comparing them to the more commonly used logistic regression approaches for per-

forming adjusted analyses described in Section 1 and, second, by assessing how well they

captured the effect of a treatment on in utero and delivery transmission given potential mis-

classification due to early breastfeeding transmission. We considered the case of two visit

windows, corresponding to birth and 4 to 8 weeks. For each simulated dataset, we randomly

generated a set of covariates for each observation that we used to simulate a subject’s time of

detectable infection. Next, we randomly generated a set of visit times for each observation.

We determined each subject’s observed endpoints by comparing his or her simulated time

of detectable infection to his or her simulated visit times. We considered several scenarios,

allowing for different treatment effects and different visit processes. Results for each scenario

10

http://biostats.bepress.com/uwbiostat/paper314



are provided, based on 1000 datasets of 1500 observations each.

4.1 Simulation of Time of Detectable Infection

In this section, we describe how we simulated time of detectable infection, which was used

together with information on visit timing (discussed below) to determine a simulated sub-

ject’s sequence of test results. First, we simulated mode of transmission as either in utero,

during delivery or early breastfeeding. In doing so, we assumed that timing of infection is

subject to the effects of a binary and a continuous predictor. The binary predictor (X1) acts

as a treatment with potentially different effects in utero and in the peripartum period and

was drawn from a Bernoulli distribution with probability 0.5. We simulated the continu-

ous predictor (X2) from a normal distribution with mean 4.3 and standard deviation 0.8 to

mimic the observed distribution of log 10 viral load in the HPTN 024 data.

We simulated mode of transmission under two frameworks, one based on a cumulative

regression model and the other based on a conditional regression model. We calculated

the probabilities of in utero infection, πi1, and perinatal infection, πi1 + πi2, for subject i

according to equations (8) and (9) with β1 = (β10, β11, β12)′, β2 = (β20, β21, β22)′, and g(·)
taken to be the logit link. We calculated the probability of intrapartum infection, πi2|1− , for

subject i according to equation (12) with β2|1− = (β2|1−,0, β2|1−,1, β2|1−,2)′ and g(·) the logit

link. We used a subject’s probability of perinatal infection (along with his or her probability

of in utero infection) to determine πi2 under the cumulative framework. We determined

πi2 under the conditional framework using a subject’s probability of intrapartum infection,

according to equation (11). To simulate whether a subject became infected in utero, at birth,

or neither, we used a multinomial distribution with probabilities πi1, πi2, and 1− (πi1 +πi2).

We allowed for the imperfect sensitivity of the test by generating the time of detectable

infection. This reflects the fact that an intrapartum transmission is unlikely to be detected

at the birth visit. We generated each subject’s time of detectable infection as number

of days since birth. For subjects who became infected in utero, we assigned a time of

detectable infection equal to zero days. For subjects who became infected during delivery,

we generated time of detectable infection according to a uniform (0,14) distribution. An

upper limit of 14 days was chosen to accommodate the lag time inherent in detecting HIV

infection (Balasubramanian and Lagakos, 2001). We also allowed the simulations to reflect

additional positive test results at the 4 to 8 week visit due to breastfeeding. For subjects

infected neither in utero nor at birth, we generated time of detectable infection according

11
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Table 2: Simulation of time of detectable infection for each treatment effect scenario
Cumulative Conditional

Treatment Control Treatment Control
Treatment Effect β11 β21=β2|1−,1 πi1 πi1 + πi2 πi1 πi1 + πi2 πi2|1− πi2|1−

TE 1 -0.55 -0.54 0.03 0.11 0.05 0.18 0.05 0.09
TE 2 -0.55 0.00 0.03 0.18 0.05 0.18 0.09 0.09
TE 3 -0.02 -0.38 0.05 0.13 0.05 0.18 0.06 0.09
TE 4 0.27 -0.27 0.07 0.14 0.05 0.18 0.07 0.09

to an exponential distribution. This added an average of 30 infections to the 0 to 8 week

period for the cumulative model and an average of 32 infections to the 0 to 8 week period

for the conditional model.

We simulated time of detectable infection under four treatment effect scenarios, denoted

TE1 through TE4. Under the cumulative framework, we took (β10, β12, β20, β22) = (-4,

0.25, -2.6, 0.25) for each scenario while under the conditional framework, we took (β10,

β12, β2|1−,0, β2|1−,2) = (-4, 0.25, -3.4, 0.25) for each scenario. The effects of treatment

on in utero, perinatal, and intrapartum transmission, represented by β11, β21, and β2|1−,1

respectively, were allowed to vary across scenarios as described in Table 2. For all scenarios,

we assumed that treatment had the same effect on perinatal transmission (cumulative model)

as on intrapartum transmission (conditional model), that is, we took β21=β2|1−,1. Table

2 also provides the probabilities of in utero, perinatal, and intrapartum transmission for

the treatment and control groups for each treatment effect scenario when the continuous

predictor is taken to be equal to its average value.

4.2 Simulation of Visit Process and Determination of Test Results

In simulating each subject’s visit process, we considered two visit windows, birth and 4 to 8

weeks, and the corresponding periods birth, between birth and 4 to 8 weeks, 4 to 8 weeks,

and after 4 to 8 weeks. We simulated whether or not a subject was tested during each of

these periods using a binomial distribution according to three visit process scenarios, denoted

VP1 through VP3 (Table 3). VP1 corresponds to an analysis that might be done at the end

of a study, when all of the data that are expected have been collected. For VP2, we assumed

that a smaller percentage of subjects are tested at the 4 to 8 week visit and after the 4 to 8

week visit. For VP3, we reduced these percentages even further, as well as the percentage

of subjects tested at birth. VP2 and VP3 were designed to represent interim analyses.

We assigned time of visit as number of days since birth. Time of birth visit was generated
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Table 3: Probability tested during/following each visit window for each visit process
Visit Process Birth Between birth and 4-8 weeks 4-8 weeks After 4-8 weeks
VP 1 0.85 0.05 0.75a 0.80
VP 2 0.85 0.05 0.50 0.25
VP 3 0.50 0.05 0.25 0.10

aProbability 0.85 used if infection detected on day 0.

according to a multinomial distribution with probability 0.4 for days 0 and 1 and probability

0.04 for days 2 through 6. For visits between birth and 4 to 8 weeks, time of visit was

assigned according to a multinomial distribution with probability 0.05 for all days. For visits

during the 4 to 8 week visit window, time of visit was assigned according to a multinomial

distribution with probability 0.04 for all days. For visits after 4 to 8 weeks, time of visit was

assigned according to a multinomial distribution, with days 275 through 325 weighted more

heavily (probability = 0.008) than other days in the period (probability = 0.002). Each

subject was allowed at most one visit in each of the windows described.

Finally, we compared each subject’s simulated time of detectable infection to his or her

simulated visit times to generate the subject’s vector of observed results (Y ). In assessing

infection after 4 to 8 weeks, we considered only simulated times of detectable infection before

day 500.

4.3 Methods Evaluated

We estimated the effect of treatment using logistic regression models and the proposed cu-

mulative (CM-CUM) and conditional (CM-COND) censored multinomial regression models.

We considered two sets of logistic models: the first (L-CUM) modeled infection at birth and

infection at 4 to 8 weeks among subjects for whom HIV status at birth and HIV status

at 4 to 8 weeks could be determined and the second (L-COND) modeled infection at birth

and infection at 4 to 8 weeks among subjects known to the HIV negative at birth. The

logistic models were chosen to represent those used in the analysis of PMTCT of HIV. Cox

PH models, although often used, do not specifically address treatment effects on A1-A3 but

instead estimate the average treatment effect over the observation period; therefore, we did

not assess them in our simulations.

For the cumulative and conditional approaches, we compared the effect of treatment as

obtained from the regression model to the “true” effect of treatment according to which

the data were generated. We determined bias, mean squared error (MSE), 95% coverage
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probability (CP), and power for each estimator, averaging across datasets for a given set of

simulations. Because we allowed for imperfect sensitivity and early breastfeeding transmis-

sion, we would not expect to see zero bias in the estimates from our simulations. Our design,

however, allows us to judge how well a data analysis estimates the associations in terms of

how they are interpreted (as in utero, intrapartum, etc.).

In carrying out numerical optimization, we chose the convergence criteria for the proposed

cumulative and conditional regression models to coincide with the convergence criteria for

the logistic regression models in SAS PROC LOGISTIC (SAS Institute Inc., 2004b).

4.4 Simulation Results

Table 4 provides simulation results for the following combinations of treatment effect and

visit process: TE1/VP1, TE2/VP1, TE3/VP1, TE4/VP1, TE4/VP2, and TE4/VP3. These

combinations allow us to assess the impact of treatment effect on estimator performance

for a given visit process as well as the impact of visit process on estimator performance

for a given treatment effect. Table 4 consists of six subtables each corresponding to one of

the above TE/VP scenarios. Results for the estimators of treatment effect at 4 to 8 weeks

(cumulative models) and the estimators of treatment effect at 4 to 8 weeks among infants

with a negative test result at birth (conditional models) are combined under the heading

“4-8 weeks.” Models are denoted using the abbreviations provided in Section 4.3.

We find that the CM-CUM model performs comparably to, or better than, the L-CUM

model across all performance measures, for all but the TE1/VP1 scenario. Here, the birth

estimate obtained from the L-CUM model is less biased than the birth estimate obtained

from the CM-CUM model, although the bias is small in both cases (0.013 versus 0.027,

respectively). In addition, power at birth is slightly higher for the L-CUM model than for

the CM-CUM model. For TE1/VP1, we assumed that treatment reduces the odds of both

in utero and perinatal transmission, and that the effect of treatment on the two endpoints

is roughly the same.

Across all scenarios, MSE is consistently lower (albeit only slightly in most cases) for the

CM-CUM model than for its logistic counterpart. The CPs for the competing cumulative

models are similar while power at 4 to 8 weeks is higher for the CM-CUM model than for the

L-CUM model for all scenarios where power was assessed. In general, we observe that power

for the cumulative models is higher at 4 to 8 weeks than at birth. This is not surprising

given the smaller probability of infection at birth as well as the fact that the simulations
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Table 4: Simulation results for selected treatment effect/visit process scenarios
Bias MSE CP Power

Scenario Birth 4-8 weeks Birth 4-8 weeks Birth 4-8 weeks Birth 4-8 weeks
TE1/VP1
L-CUM 0.013 0.045 0.069 0.030 0.948 0.943 0.518 0.845
CM-CUM 0.027 0.048 0.068 0.027 0.948 0.939 0.499 0.882
L-COND -0.015 0.107 0.077 0.077 0.959 0.914 0.539 0.439
CM-COND -0.007 0.106 0.072 0.072 0.956 0.901 0.541 0.461
TE2/VP1
L-CUM 0.173 -0.020 0.096 0.022 0.879 0.952 0.309 –
CM-CUM 0.168 -0.009 0.094 0.020 0.873 0.952 0.339 –
L-COND 0.098 0.004 0.083 0.050 0.938 0.956 0.398 –
CM-COND 0.101 0.006 0.079 0.046 0.941 0.952 0.405 –
TE3/VP1
L-CUM -0.078 0.055 0.058 0.029 0.952 0.931 0.057 0.517
CM-CUM -0.064 0.049 0.054 0.025 0.954 0.933 0.056 0.605
L-COND -0.050 0.064 0.062 0.059 0.946 0.941 0.062 0.263
CM-COND -0.042 0.063 0.058 0.055 0.944 0.944 0.057 0.264
TE4/VP1
L-CUM -0.123 0.059 0.065 0.028 0.921 0.936 0.096 0.271
CM-CUM -0.105 0.049 0.057 0.023 0.931 0.942 0.111 0.307
L-COND -0.043 0.034 0.058 0.060 0.953 0.937 0.160 0.173
CM-COND -0.038 0.033 0.055 0.056 0.954 0.936 0.186 0.187
TE4/VP2
L-CUM -0.110 0.116 0.064 0.045 0.927 0.898 0.103 0.138
CM-CUM -0.096 0.043 0.059 0.032 0.927 0.940 0.128 0.261
L-COND -0.073 0.041 0.061 0.084 0.941 0.949 0.138 0.123
CM-COND -0.066 0.042 0.054 0.078 0.946 0.945 0.146 0.134
TE4/VP3
L-CUM -0.124 0.192 0.113 0.105 0.923 0.890 0.068 0.064
CM-CUM -0.088 0.017 0.097 0.058 0.939 0.954 0.096 0.193
L-COND -0.054 -0.009 0.099 0.292 0.944 0.967 0.095 0.077
CM-COND -0.040 0.002 0.087 0.211 0.946 0.964 0.102 0.086
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were designed based on HPTN 024, which was powered to detect a difference in cumulative

transmission rates at 4 to 8 weeks.

The CM-CUM model performs most impressively for the TE4/VP1, TE4/VP2, and

TE4/VP3 scenarios, where it consistently outperforms the L-CUM model in terms of bias,

MSE, CP, and power at birth and at 4 to 8 weeks. In addition, as the amount of missing

test result data increases, the improvement offered by the CM-CUM model increases. We

see this, for example, in the bias estimates at 4 to 8 weeks. Recall that VP2 and VP3 were

designed to represent interim analyses, as described in Section 4.2. For TE4/VP1, the bias

for the L-CUM model is 1.2 times the bias for the CM-CUM model. For TE4/VP2, the bias

for the L-CUM model is 2.7 times the bias for the CM-CUM model. For TE4/VP3, which

assumes the highest percentage of missing data of the visit processes considered, the bias

for the L-CUM model is 11.3 times the bias for the CM-CUM model. We note that, of the

treatment effects considered, TE4 is most similar to that observed in HPTN 024.

On the whole, the CM-COND model performs comparably to the L-COND model. MSE

is consistently lower, although again only slightly, for the CM-COND model than for the

L-COND model. While power tends to be low for the conditional models, power at birth

and at 4 to 8 weeks is slightly higher for the CM-COND model than for the L-COND model

for the TE4/VP1, TE4/VP2, and TE4/VP3 scenarios.

In addition to comparing the proposed regression estimators to the more commonly

used logistic regression approaches, our simulations assessed the bias associated with early

breastfeeding transmission when estimating the treatment effect. Breastfeeding transmission

appears to have had little effect on 4 to 8 week estimates of treatment effect, with the

magnitude of most bias estimates at 4 to 8 weeks (for the CM-CUM and CM-COND models)

less than 0.05. We would expect early breastfeeding contamination to bias the treatment

effect to the null, by adding infections to both the treatment and control arms. This is

consistent with our findings of positive bias at 4 to 8 weeks for TE1, TE3, and TE4, where

we assumed the effect of treatment on birth transmission is negative.

5 Example

In this section, we analyzed data from HPTN 024, a multi-site double-blinded placebo con-

trolled trial of antiobiotics to prevent chorioamnionitis and, therefore, perinatal transmission

of HIV. The trial enrolled pregnant, HIV positive women receiving care in hospitals and clin-

ics in Malawi, Tanzania, and Zambia. Women were randomized to receive either treatment or
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placebo. Treatment consisted of two courses of antibiotics, with the first course administered

at enrollment (20 to 24 weeks gestation) and the second at the onset of contractions and/or

premature rupture of membranes. All women and their liveborn infants were offered single

dose nevirapine per the HIV Network for Prevention Trials (HIVNET) 012 protocol (Guay

et al., 1999). Women were followed during their pregnancies, and their infants were followed

postnatally. Visit windows for determining in utero and delivery/early postnatal transmis-

sion in this breastfeeding population were 0 to 48 hours and 4 to 6 weeks, respectively.

Because over half of the visits scheduled to occur between 4 and 6 weeks actually took place

between 6 and 8 weeks, we extended the second visit window to 4 to 8 weeks for analysis

purposes. We also extended the birth visit window to 0 to 7 days.

Recruitment began in July 2001. The trial was monitored for safety and efficacy by the

NIAID Vaccine and Prevention Data and Safety Monitoring Board (DSMB). In February

2003, the DSMB reviewed trial progress in a scheduled interim analysis and concluded that,

while statistical evidence neither established benefit nor harm, the available evidence ruled

out targetted levels of benefit. The DSMB recommended that HPTN 024 stop recruitment

and continue follow-up of enrolled women and infants. Further randomization and distribu-

tion of study drugs was halted at all clinical sites in early March 2003. Additional details

regarding the 024 study are provided by Taha et al. (2006).

For this example, we defined the treatment and control groups as infants born to mothers

randomized to antibiotics who delivered prior to termination of the study drug and infants

born to mothers randomized to placebo or to mothers randomized to antibiotics who de-

livered after termination of the study drug, respectively. Additional covariates of interest

were log maternal viral load, maternal CD4 count, and infant gender. In the birth model,

we adjusted for mother’s use of nevirapine and, in the 4 to 8 week model, for mother’s and

infant’s use of nevirapine. To account for unmeasured differences between hospitals and

clinics, we included study site in both models.

Of 2052 firstborn infants born alive to HIV positive mothers, 1758 had complete data

with respect to the covariates of interest. Of these, 1696 had a test result at some point

during follow-up and were included in the analysis of HIV infection. 1739 had a test result

or are known to have died during follow-up and were, thus, included in the analysis of HIV

infection or death. Descriptive statistics for the 1739 subjects included in the analysis of HIV

infection or death are provided in Table 5. Figure 2 provides the complete testing profile for

the 1758 subjects with complete covariate data, according to treatment group.

We used the proposed regression methods to analyze the outcomes infection and infection
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Table 5: Descriptive statistics for 1739 subjects included in analysis of HIV infection or
death

Covariate Treatment Control
Mean/N SD/% Mean/N SD/%

Maternal viral load (1 log10 unit) 4.338 0.836 4.242 0.817
CD4 count (100 units) 3.697 2.067 3.796 2.234
Female 296 47% 566 51%
Mother nevirapine 603 95% 1066 96%
Mother and infant nevirapine 558 88% 1001 90%

1758 firstborn, liveborn, with 
HIV infected mother

(all covariates non-missing)

64 no specimen at birth

641 treatment

19 died prior to birth visit

28 no specimen at 4-6 weeks

17 specimen at 4-6 weeks

577 specimen at birth

77 no specimen at 4-6 weeks

500 specimen at 4-6 
weeks

7 died prior to 4-6 week 
visit

94 no specimen at birth

1117control

20 died prior to birth visit

29 no specimen at 4-6 weeks
(includes 3 deaths between 
birth and 4-6 week visit)

45 specimen at 4-6 weeks

1023 specimen at birth

140 no specimen at 4-6 weeks

883 specimen at 4-6 
weeks

16 died prior to 4-6 week 
visit

Figure 2: HPTN 024 testing profile.
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Table 6: Adjusted odds ratios at birth, 4 to 8 weeks
Risk factor Birth 4-8 Weeks 4-8 Weeks |- Birth

OR 95% CI OR 95% CI OR 95% CI
Infection endpointa

Treatment vs. control 0.691 [0.469, 1.017] 0.987 [0.736, 1.323] 1.404 [0.928, 2.123]
Maternal viral load (1 log10 unit) 2.552 [1.895, 3.437] 2.820 [2.221, 3.579] 2.873 [2.023, 4.082]
CD4 count (100 units) 1.037 [0.939, 1.145] 1.099 [1.015, 1.190] 1.172 [1.033, 1.331]
Female 0.938 [0.658, 1.339] 1.011 [0.764, 1.338] 1.101 [0.733, 1.654]
Mother nevirapine 0.549 [0.248, 1.215]
Mother and infant nevirapine 0.628 [0.387, 1.019] 0.562 [0.262, 1.206]
Infection/death endpointb

Treatment vs. control 0.873 [0.632, 1.205] 1.025 [0.789, 1.332] 1.245 [0.850, 1.825]
Maternal viral load (1 log10 unit) 2.299 [1.786, 2.959] 2.568 [2.086, 3.161] 2.597 [1.895, 3.558]
CD4 count (100 units) 1.043 [0.959, 1.135] 1.098 [1.024, 1.178] 1.175 [1.048, 1.318]
Female 0.883 [0.650, 1.201] 1.066 [0.829, 1.370] 1.336 [0.916, 1.949]
Mother nevirapine 0.221 [0.128, 0.381]
Mother and infant nevirapine 0.452 [0.302, 0.678] 0.546 [0.277, 1.075]

aAnalysis based on 612 treatment and 1084 control.
bAnalysis based on 632 treatment and 1107 control.

or death. We estimated the cumulative odds of infection at 4 to 8 weeks using the cumulative

model of Section 3.1 and the odds of infection at 4 to 8 weeks among infants with a negative

test result at birth using the conditional model of Section 3.2. Results are provided in Table

6.

We found that treatment does not significantly reduce HIV infection at birth, HIV infec-

tion at 4 to 8 weeks, or HIV infection at 4 to 8 weeks among subjects who test negative at

birth. These findings are consistent with those presented by Taha et al., where treatment

was defined based on intent-to-treat and the analysis was limited to women who delivered

prior to study termination. The trend of estimates here is also consistent with that in Taha

et al., suggesting that treatment decreases the odds of infection at birth (OR 0.691, 95% CI

[0.469, 1.017]) while increasing the odds of infection at 4 to 8 weeks among those who test

negative at birth (OR 1.404, 95% CI [0.928, 2.123]). When we defined first positive test or

death at or before a given visit as the endpoint, we observed the same trend in the estimates

of treatment effect as for the infection endpoint, although the trend was slightly weaker in

this case.

Birth estimates in Table 6 were obtained from the conditional regression model. Birth

estimates obtained from the cumulative model were comparable for all covariates except
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mother’s use of nevirapine in the infection or death model. Using the cumulative regression

model, we obtained an odds ratio estimate of 0.326 (95% CI [0.203, 0.524]), which is slightly

higher than the odds ratio estimate obtained from the conditional model. The difference is

likely a consequence of the fact that almost all mothers received nevirapine (95% of mothers

in the treatment group and 96% of mothers in the control group).

6 Discussion

Many statistical techniques are available for estimating PMTCT of HIV while adjusting for

covariates. Among the more commonly used are logistic regression models and Cox propor-

tional hazards models. While these methods are relatively straightforward to implement,

they do not easily accommodate missed or unscheduled visits while allowing for a time-

varying treatment effect. Cox models can be modified to allow the effect of treatment to

depend upon time but do not fully solve the problem of how to handle missed or unscheduled

visits. Interval censored models, which use a subject’s time to last negative test and time

to first positive test to form an interval around his or her (unknown) time of infection, may

better accommodate the missing data, but software is not generally available for regression

with interval censored data unless we are willing to make parametric assumptions about the

distribution of the event times.

Recently, Bang and Spiegelman (2004) proposed a likelihood approach for a dichotomous

outcome to estimate mother to child transmission when infection status is missing for some

infants due to fetal loss. However, this approach does not address all three endpoints of

interest or missing data due to incomplete follow-up. Balasubramanian and Lagakos (2001)

provide methods for estimating the distribution of the timing of in utero and peripartum

transmission in a non-breastfeeding population that accounts for the imperfect sensitivity

of the HIV assay. Because we examine a breastfeeding population and are interested in

categorizing infection timing, this approach would not be suitable. Little and Rubin (2002,

pages 169, 170) describe an approach for maximum likelihood estimation in a multinomial

setting based on the Expectation Maximization (EM) algorithm. With this approach, data

are categorized according to infection timing and missing values are imputed through an

iterative procedure. While it solves the problem of incomplete data, the approach addresses

only single sample estimation.

Here, we propose a censored multinomial approach for estimating PMTCT that accommo-

dates missing test result data, regression on the three outcomes of interest, and time-varying
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treatment effects. Through simulation, we investigated the performance of the estimators

obtained from the more commonly used logistic regression approaches and compared them

to the proposed estimators. We also looked at the robustness of the estimators to contam-

ination of the endpoint due to early breastfeeding transmission. We found that both the

proposed cumulative model and conditional models performed well when compared to their

logistic counterparts. Performance of the proposed cumulative model was particularly strong

under scenarios designed to represent interim analyses. Power for the proposed models was

consistently higher at 4 to 8 weeks, which is to be expected given that the logistic models

used only data for subjects whose endpoints were non-missing or could be imputed based on

subsequent negative tests.

The censored multinomial regression approach is not without limitations. Both the pro-

posed cumulative and the proposed conditional models impose non-linear constraints on the

coefficients, which can complicate interpretation of the estimates if maximization of the like-

lihood occurs on the boundary of the parameter space. In the case of the conditional model,

however, only a single constraint is imposed, which is no more than would be imposed for a

general multinomial model (Agresti, 2002, page 21). In numerous simulations (beyond those

presented here), we saw no evidence of bias due to maximization on the boundary.

Our approach relies on the assumption that missingness is non-informative and, thus, may

be more appropriate for some endpoints (infection/death) than for others (infection). While

valid for breastfeeding populations, our approach does not allow us to separate intrapartum

transmission from early transmission due to breastfeeding. In addition, our approach assumes

that infants are at risk for breastfeeding transmission throughout the postnatal period and,

thus, does not allow for the possibility of weaning during this period. Our approach does

not account for misclassification due to the imperfect sensitivity of testing. However, as we

demonstrated in our simulations, the bias in the 4 to 8 week estimates for the proposed

models is quite small, suggesting that the impact of misclassification and contamination due

to breastfeeding on our estimates of treatment effect is minimal. Finally, our approach does

not provide a mechanism for estimating relative risks, which are often of interest in PMTCT

trials. Our model could easily be adapted to this context through use of a log link or a

complementary log-log link. In this case, valid comparison models would include relative

risk regression models and time-dependent Cox models. To our knowledge, these models

have not been used in the PMTCT setting but would be worthy of further exploration.

Here, we have studied the problem of estimating the effect of treatment on perinatal

mother to child transmission of HIV when outcome data are incomplete. We provide methods
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that give consistent and asymptotically normal estimators using maximum likelihood and

are easily programmed using standard statistical software. Through simulation, we have

shown that the proposed methods outperform standard logistic regression methods in terms

of bias, mean squared error, coverage probability, and power under a range of treatment

effect and visit process scenarios. While demonstrated for HIV transmission, the approach

has broader applicability to problems of estimating treatment effects on disease incidence

when data are collected at multiple visits spaced in time and outcome for some subjects, at

some time points, is unknown.
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