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Abstract

A major drawback of epidemiological ecological studies, in which the association between

area-level summaries of risk and exposure are used to make inference about individual risk,

is the difficulty in characterising within-area variability in exposure and confounder vari-

ables. To avoid ecological bias, samples of individual exposure/confounder data within each

area are required. Unfortunately these may be difficult or expensive to obtain, particularly

if large samples are required. In this paper we propose a new approach suitable for use

with small samples. We combine a Bayesian non-parametric Dirichlet process prior with

an estimating functions approach, and show that this model gives a compromise between

two previously-described methods. The method is investigated using simulated data, and

a practical illustration is provided through an analysis of mortality and income data across
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England. We conclude that we require good quality prior information about the expo-

sure/confounder distributions and a large between- to within-area variability ratio for an

ecological study to be feasible using only small samples of individual data.

Keywords: aggregate data; Dirichlet process prior; ecological fallacy; pure specification

bias; within-area variability.

1 Introduction

Many disciplines make use of aggregate data, including epidemiology, social sciences and edu-

cation; Salway and Wakefield (2004) provide a comparison between models and approaches in

epidemiology and the social sciences. In environmental and social epidemiology aggregate data

may consist of area-level disease rates and summary exposure and confounder values within each

area. Usually, the purpose of such ecological, sometimes called geographical correlation, studies

is to make inference at the individual level. The major problem with such a study design is the

potential for ecological bias, which is due to aggregation. Many authors have documented the

sources of ecological bias, see for example Greenland and Robins (1994) and Richardson and

Montfort (2000), but far fewer have proposed solutions.

The term ecological bias is generally used to describe bias that may arise from several different

sources in aggregate data (Greenland and Morgenstern, 1989). We will concentrate on bias that

arises when aggregating a nonlinear individual-level model over the within-area distribution of

covariates. Such bias is caused by within-area variability in both the exposure of interest and

in confounders; this will be referred to as within-area variability bias (Greenland, 1992, uses the

term pure specification bias).

Existing approaches to correct for within-area variability bias require individual data on expo-

sures in each area. Since we do not require the individual link between covariate data and health
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outcome, it is feasible for mortality or morbidity data to be taken from one source, and individ-

ual data from another. For example, disease counts may be obtained from a cancer registry, and

individual data from a survey. One of the advantages of ecological studies is in situations where

collecting individual data is either difficult or expensive. In these situations it may be possible

to obtain only very small samples of individual data. Unfortunately, existing approaches require

larger samples; simulations (Wakefield and Salway, 2001) have suggested samples of at least 100

in each area are required.

The aim of this paper is to describe a new model that reduces within-area variability bias when

only small samples of covariate data are available. The method incorporates prior information

about the data, which will be crucial when only very small samples of individual data are

available.

The paper is organised as follows. In Section 2 we provide a motivating example concerning the

association between mortality and income, and describe the data we will use subsequently. In

Section 3 we look in detail at what causes within-area variability bias in order to understand

how it arises and how it may be removed. In particular we consider how existing approaches

perform when we have only small samples of individual data. In Section 4 we describe our new

method. In Section 5 a series of simulations compares the new model with existing methods

across a range of scenarios. Section 6 presents a practical example using the income data, and

Section 7 provides a concluding discussion.

2 Motivating Example: Income and Health

To motivate the work that follows we take an example from social epidemiology; an analysis

of the relationship between ill-health and income using ecological data. An extensive literature

suggests that mortality rates decrease as average income increases (see for example Judge et al.,
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1998). Current debate has centred around two hypotheses: the absolute income hypothesis,

where individual health is affected by individual income, and the relative income hypothesis,

where health depends also on the degree of income inequality in neighbourhood of residence.

While aggregate data have been used to investigate these hypotheses, their usefulness is debated

(Gravelle et al., 2002); in part, this is due to the problems of interpretation in the presence of

ecological bias.

We will illustrate the methods described in this paper using publicly available data from the UK

Data Archive (www.data-archive.ac.uk). The study population is males aged over 64 years in

England, and the areas consist of 28 Strategic Health Authorities (SHA), with total population

sizes between 60,700 and 198,100. The response is all-cause mortality in each area for 2002 (UK

Data Archive: SN4817, 2002). The risk factor of interest is equivalised household income, based

on the McClements score (McClements, 1977); this score adjusts total income to take account

of the size and composition of the household, so that for example, a family with three children

is considered to be less well off than a single person living alone on the same income. The

Health Survey for England 2002, provides equivalised incomes on individual samples of data,

with sample sizes between 3 and 44 in each SHA. The data are taken from different sources, and

so an individual study is not possible as the link between income and mortality is not available.

The sample sizes in this case are very small; for comparison we also analysed the same data

for all males, giving sample sizes between 60 and 216. This is a fairly crude analysis, and is

for illustrative purposes only; it is not our intention to demonstrate support for either income

hypothesis.

We consider the relationship between mortality and the logarithm of income, taken to base 2

and use a log-linear model. Using logarithms to base 2 within this model means that, causally

interpreted, the effect of a doubling of income is constant; so increasing an annual income from

£5,000 to £10,000 has the same effect on mortality as increasing an income from £20,000 to
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Figure 1: Log mortality rate against mean log income (in thousands of pounds), with smoother

superimposed, for men of all ages (left) and men over 64 (right).

£40,000. This is a more realistic model than using untransformed income, which would assume

the same effect of going from £5,000 to £10,000 as from £95,000 to £100,000.

The majority of the variability in income is between areas. Figure 1 shows plots of the log

mortality rate against mean log income; the ecological data suggest a negative relationship

between mortality and income for both age populations. Figure 2 illustrates the degree of

within-area variability in logged income; there is considerable within-area variability, which

indicates the potential for considerable ecological bias.
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Figure 2: Within-area variability in log income: median estimates with 95% intervals based on

percentiles for men of all ages (left) and men over 64 (right).
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3 Ecological Models and Ecological Bias

3.1 Notation

Consider a study area partitioned into a disjoint set of K areas, each containing nk individuals,

with k = 1, . . . , K. Using terminology from epidemiology, let Yki be a Bernoulli random variable

representing the disease outcome of individual i in area k, over a specific time period, with

Yki = 1 representing a case, and Yki = 0 a non-case, i = 1, . . . , nk. We are interested in how

this outcome is related to an exposure variable of interest, Xki.

We begin by specifying the disease/covariate relationship for an individual (following Richardson

et al., 1987; Prentice and Sheppard, 1995; Wakefield and Salway, 2001), which can be thought

of as the model that we would fit if individual data {Yki, Xki} were available. This approach

emphasises that we are interested in estimates of the individual effect. Since most diseases may

be considered rare in a statistical sense, a common individual-level model in epidemiology is:

Yki|β0, β1, Xki ∼ind Bern {pI(β0, β1, Xki)} ,

pI(β0, β1, Xki) = exp {β0 + β1Xki} (3.1)

where the subscript I emphasises that pI(·) characterises the individual relationship. In (3.1),

exp(β0) is the baseline risk and exp(β1) is the relative risk corresponding to an increase of one

unit in the variable of interest.

Model (3.1) is simple and does not take into account other possible causes of ecological bias,

such as confounding or contextual effects, and in addition we have considered only a single

continuous variable. However, it is straightforward to extend the individual formulation to

multivariate exposures and confounders.

In an ecological study, we typically only have total disease counts, Yk =
∑nk

i=1 Yki, and some
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summary of the exposure distribution, Xk. In this paper, we assume also that we have a sample

of individual covariate data of size mk with 2 ≤ mk ≤ nk, in each area k and we denote these

data by Xmk

k = {Xkj : j = 1, . . .mk}. We will assume that Xk is the mean of the sample, that

is Xk =
∑mk

j=1 Xmk

k /mk.

3.2 Ecological Bias

An obvious choice of ecological model is the individual model (3.1) with individual data replaced

by ecological data, to give the simple ecological model

Yk|β∗0 , β∗1 , Xk ∼ind Po {nkpI(β∗0 , β∗1 , Xk)} ,

pI(β∗0 , β∗1 , Xk) = exp {β∗0 + β∗1Xk} . (3.1)

where β∗1 is the ecological effect parameter. Ecological bias arises when the simple ecological

model (3.1) does not estimate the same parameters as the individual model (3.1); that is β∗1 6= β1.

Model pI(·) is a convex function, and so bias will occur since, by Jensen’s inequality, we have

E [pI(β0, β1, Xki)] ≤ pI (β0, β1, µk) , (3.2)

where the expectation is over the within-area exposure distribution, and the right hand side is

the simple ecological model (3.1) evaluated at the true area mean µk. Equality will occur if and

only if Xki = Xk for all i, that is, if there is no within-area variation in individual exposures.

There is also no bias if pI(·) is linear in X, and so within-area variability bias arises only for a

nonlinear model.

In specific circumstances we may still have no bias. We write

E[Yk|φk] = nkeβ0

∫

x

fk(x|φk)eβ1xdx, (3.3)

where fk(x|φk) is the within-area distribution of X in area k, with parameters φk. Expanding
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the eβ1x term in a Taylor series about µk gives

E[Yk|φk] = nk exp(β0 + β1µk)
∞∑

r=0

βr
1

r!
µ

(r)
k (3.4)

where µ
(r)
k = E {(Xki − µk)r} is the rth central moment of the within-area exposure distribution

fk(·). The summation term above is exactly the bias component given by Richardson et al. (1987)

and consists of terms involving higher moments of the within-area exposure distribution. There

will be no bias whenever the summation term is independent of the mean, irrespective of the

distribution of X; this occurs when the second and higher moments do not depend on µk. In

general, of course, this will not be the case; this result is of more mathematical than practical

interest. However, it does suggest that the mean-variance relationship, and in particular the

strength of that relationship, is an important factor in the size of ecological bias since this is the

dominant term in (3.4) for β1 < 1. (this corresponds to a relative risk of less than 2.7, which

is typical in studies of environmental pollutants; see the examples in Wakefield, 2003). Higher

moments become increasingly small and so contribute little to the bias.

3.3 Ecological Models

One obvious solution to ecological bias is to consider explicitly the model obtained by aggre-

gating over the within-area exposure distribution. If all exposures within an area are assumed

independent, then

Yk|φk ∼ind Po{nkpE(β0, β1, φk)}

pE(β0, β1,φk) = nk exp {β0 + K(β1)} (3.1)

where K(β1) is the cumulant generating function of the within-area distribution (Richardson

et al., 1987), and the parameters β0, β1 are the same as in the individual model (3.1). Expression

(3.1) may be interpreted as the average individual risk within area k, and will generally depend

on the mean of X, and on higher moments of the distribution, as seen in (3.4). If the exposures
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are dependent, then Yk|φk will have the same expectation, but the distribution will no longer

be Poisson.

We refer to model (3.1) as the parametric ecological model. A convenient assumption, and one

that may often be suitable in practice, is to take the within-area distributions as approximately

normal (the parametric normal ecological model), with Xki ∼ N(µk, σ2
k), in which case (3.1)

becomes

E[Yk|β0, β1,φk] = nk exp(β0 + β1µk + β2
1σ2

k/2) (3.2)

In practice, we will need to use estimates of the unknown parameters µk and σ2
k. While accurate

estimation of the mean may often be possible, information about the within-area exposure

variances σ2
k is unlikely to be routinely available. So in practice, a sample of exposure data Xmk

k

in each area is required to estimate σ2
k, and, in particular when the size of the subsample is

small, estimation of this variance may result in bias due to errors-in-variables.

When the within-area exposure distribution is not normal, expression (3.2) can be seen as a

second-order approximation to the true model (3.1). Thus in practice (3.2) may be an adequate

approximation provided that within-area exposure distributions are not heavily skewed. For

very heavily skewed distributions, or larger exposure effects, expression (3.1) may sometimes

be available in closed form (for example, the gamma distribution given in Wakefield and Sal-

way, 2001). The log-normal distribution is often used to model environmental exposures (for

a theoretical justification of its use, see Ott, 1994), but cannot be used here since the moment

generating function does not exist. In this case the Taylor expansion (3.4) may provide a suitable

approximation by including higher terms, although in general the use of higher-order moments

will introduce further inaccuracies due to the increased instability in estimating higher moments

such as the skewness.

Prentice and Sheppard (1995) proposed a model that makes no assumption about the within-area
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distribution, but instead explicitly uses the sample of individual-level data Xmk

k to empirically

estimate (3.3). For a sample of size mk, we have

E[Yk|β0, β1,X
mk

k ] = nkθ̂Ak, (3.3)

where

θ̂Ak =
1

mk

mk∑

j=1

exp(β0 + β1Xkj) (3.4)

is an estimate of the individual average risk, based on the sample data. Following the terminology

of Prentice and Sheppard (1995) we will refer to model (3.3) as the aggregate model. It may

be fitted using an estimating equations approach; see Prentice and Sheppard (1995) for details.

When using any sample of the exposure data, Xmk

k , rather than all the data within the area,

Xnk

k , the estimating equation in the aggregate approach is biased in expectation over all possible

choices of sample; this introduces bias in the estimate of β1. For large samples this is negligible,

but problems arise with small samples, since the finite sampling bias in the estimating equations

increases as sample sizes decrease.

Prentice and Sheppard (1995) propose an adjusted estimating equation to correct the finite sam-

pling bias (the corrected aggregate model). However, this requires estimation of an additional

term and they suggest that in practice the increase in variability will outweigh the benefits. Sim-

ulations have shown (Wakefield and Salway, 2001; Sheppard et al., 1996, see also the simulations

in Section 3.4) that while this corrected version can perform very well for smaller samples (for

example, less than 100), for very small samples, say mk < 20, the estimator becomes unstable,

which results in convergence problems for the estimation algorithm (we have observed prob-

lems of both non-convergence and convergence to the wrong value). As sample sizes decrease

non-convergence rates can be above 50%.
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3.4 Using small samples of individual data

We simulated 10 datasets with normally distributed within-area distributions for 50 areas con-

taining 2000 individuals each. The means and variances are linearly related, with a between to

within area variance ratio of around 1, and a negative effect parameter β1 = − log(2) (motivated

by the income example). Figure 3 illustrates the bias in the estimate of β1 as a function of sam-

ple size. The size of bias is shown for the simple ecological model, which is always biased, the

parametric normal model, and the uncorrected and corrected aggregate models. In this scenario,

the ecological bias is towards the null, and bias from using small samples is also towards the

null, resulting in negative bias for all models. Estimation becomes poorer for both parametric

and aggregate approaches as the sample size decreases. In particular, the bias in the uncorrected

aggregate and the parametric methods is extremely large for small samples of mk < 20. Note

also the variability in the corrected aggregate method, reflecting its increased variance, and the

instability for very small sample sizes.

4 Hybrid Ecological Model

4.1 The Hybrid Ecological Model

As in (3.1), we assume the individual disease model is given by

Yki|β0, β1, Xki ∼ind Bern {pI(β0, β1, Xki)} ,

pI(β0, β1, Xki) = exp {β0 + β1Xki} .

We write Xki|Fk ∼ Fk where Fk is the unknown distribution function of X in area k, and assume

that

Fk|αk, F0k ∼ DP(αk, F0k), (4.1)
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where DP is a Dirichlet Process, F0k is a known baseline distribution function and αk is the

strength of belief in F0k. Both the unknown distribution Fk and the baseline distribution F0k

may include dependence between exposures.

We now wish to derive the implied aggregate disease model when we have a sample Xmk

k of

exposures from area k; that is, the model Yk|Xmk

k , αk, F0k. Following results given in Ferguson

(1973), it can be shown that the mean of the disease counts is given by

E[Yk|Xmk

k , αk, F0k] = nkθk = nk

{
wkθ0k + (1− wk)θ̂Ak

}
, (4.2)

a weighted combination of the expectation of Yki under the prior distribution F0k:

θ0k = E[exp(β0 + β1Xki)|F0k], (4.3)

and under the aggregate model, based on the sample data:

θ̂Ak =
1

mk

mk∑

j=1

exp(β0 + β1Xkj), (4.4)

with weights given by

wk =
αk

αk + mk
. (4.5)

This model can be fitted via an estimating equations approach in the same way as the aggregate

model (Prentice and Sheppard, 1995). While it is possible to derive an expression for the variance

if we assume prior independence for the exposures, this is complex and it is more practical to use

a working variance matrix (for example, assuming a constant variance) and sandwich estimation

for inference (as in Prentice and Sheppard, 1995).

Model (4.2) is appealing as it represents a compromise between the parametric and aggregate

models. When sample sizes are small the sample data are combined with a distributional

assumption, borrowing strength from the prior and stabilising the estimator. When samples

are larger they give more accurate information on the within-area distribution and will adjust

inadequacies in the prior information, such as incorrectly-specified moments.
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4.2 Adjustment for Small Samples

The above model will work well when we have moderate sample sizes and fairly accurate prior

information. However, when the samples are small it combines the prior data, which may not

be directly applicable to the current data, with the covariate data, which we have seen produces

biased estimates when samples are small. Unless the prior information is very accurate and the

αk are chosen to be correspondingly large (in which case there is little need for the sample of

individual data), estimates will be biased due to finite sampling bias in the estimating equations.

Following the corrected aggregate method, we may use a corrected version of the hybrid model

to adjust for the finite sampling bias. We use an adjusted estimating equation similar to the

corrected aggregate model which requires estimation of extra terms; we estimate these terms

with a combination of both the data and the prior distribution. Further details are given

in the Appendix. The corrected aggregate model provides a consistent estimator of β1 with

asymptotic normality as mk → nk. Since the hybrid model tends to the aggregate model as

mk → nk; nk → ∞ we also have a consistent, asymptotically normal estimator for the hybrid

model (provided the prior has the correct support).

This corrected version has three benefits. Firstly, the hybrid model is generally less biased

for smaller samples than the uncorrected aggregate approach. Secondly, when the samples are

small, we combine the prior data with the less biased estimation of the corrected aggregate

method. Finally, estimation of the adjustment term which is responsible for the instability in

the corrected aggregate approach is made less variable by smoothing it with the prior data.

4.3 Choice of Prior Distribution

The prior distribution function F0k may be considered analogous to specifying a parametric

within-area exposure distribution, and the weights (4.5) shows that the precision parameter

15
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αk may be viewed as the sample size associated with the specification F0k. The distribution

F0k may be obtained from historical data, for example previous census data for demographic

exposures, or previous years’ pollution measurements for environmental exposures.

Obtaining suitable prior information may not be straightforward. In many cases, if we have

reasonably-sized samples which will dominate, the prior distributions could be chosen to be

independent normal distributions as a reasonable approximation. Previous simulations with the

parametric approach (Wakefield and Salway, 2001) suggest that for mildly skewed distributions

assuming a normal distribution will often give reasonable results, particularly when the exposure

effect is small. This suggests that when we have a reasonable amount of individual data, speci-

fication of a suitable prior distribution for the hybrid approach should concentrate on obtaining

good quality prior information about the first two moments of the within-area distributions.

In situations where sample data are sparse, estimation based on the hybrid approach will be

sensitive to the choice of prior distribution and the prior moments. While prior information on

exposure means may often be readily available, it may be difficult to obtain good prior values

for within-area variances. In Section 3.2, we saw the importance of the within-area variances

and in particular we require a characterisation of the within-area mean-variance relationship.

This suggests that in specifying F0k it is the relationship between the means and variances that

is important, rather than the variances themselves. Where prior data are available, it may be

beneficial to use smoothed versions of the variances, based on the mean-variance relationship.

If variances are not available, it may sometimes be possible to specify prior data in terms of

within-area means and a functional form for the relationship between the means and variances.

At the very least this provides scope for a sensitivity analysis.
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5 Simulations

5.1 Simulation Framework

In this section we describe the results of a simulation study, looking at a range of scenarios.

The base scenario assumes a total population of nk = 2000 in each area, for K = 50 areas.

Individual data Xki, exposure, and Yki, mortality, were generated within each area according to

the model

µk ∼ U(10, 15)

σ2
k = a + bµk

Xki ∼ind N(µk, σ2
k)

Yki ∼ind Bern(pki)

log(pki) = β0 + β1Xki

with a = −3 and b = 0.4, so within-area variances increase with the means, and 1 < σ2
k < 3.

This gives a between to within-area variability ratio in exposure of 1.1. The risk parameters were

chosen as β0 = 5, β1 = − log(2) giving a negative relationship between exposure and mortality

(β0 was chosen so that most individuals would have pki < 0.1, that is, a rare disease).

The generated individual data were then aggregated to the area level to give disease counts Yk

in each area. Samples of Xki of size mk = 20 and mk = 5 were taken in each area. For the

parametric ecological model, the sample means and variances Xk and s2
k were calculated from

these samples.

In addition to this base scenario, we considered three other scenarios as listed in Table 1 which

have different choices for the between to within-area variability ratio, ranging from as large as

2, to the smallest of 0.06 (which is similar to the ratio observed in the income data). Previous

17
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Table 1: The four different scenarios used to generate simulation data, using β1 = log(2).

No. Distribution Distribution Mean-Variance Range Between:Within

of Xki of µk Relationship of σ2
k Ratio

1 Normal U(10,15) σ2
k = −3 + 0.4µk (1,3) 1.1

2 Normal U(10,15) σ2
k = −3.7 + 0.38µk (0.1,2) 2.1

3 Normal U(11,15) σ2
k = −10 + µk (1,5) 0.47

4 Normal U(13.5,14.5) σ2
k = −12.5 + µk (1,2) 0.06

authors (for example Richardson et al., 1987; Prentice and Sheppard, 1995) have suggested that

ecological analyses work best when this ratio is large in order to exploit between-area mean

contrasts.

To each dataset we fitted a range of different models; a full list appears in Table 2. Firstly we fit

the simple ecological, the parametric normal, the aggregate and the corrected aggregate models.

The simple and parametric models allow for overdispersion, via a quasi-likelihood method.

For the hybrid models, we used a normal prior distribution for F0k and considered four different

possibilities for prior moments. First, we used the true within-area moments as the prior values.

Although unrealistic in practice, this choice represents the best case scenario for the hybrid

model. Second, we used the true moments with random normal variation added. This represents

the situation where we have good, unbiased information about both parameters from another

source. Third, we repeated this with larger variation; this represents the situation where we

have poor unbiased information of both parameters. Lastly, we used the good priors from the

second situation and smoothed the variance, as a function of the mean, using a loess smoother.

In all cases, we used the corrected hybrid model.

18
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Table 2: Models fitted to each of the simulated datasets. For each hybrid model the prior

distribution is F0,k ∼ N(µ0k, σ2
0k) with µ0k and σ2

0k as given in the table.

Model Description

Simple Basic model (3.1), using sample means.

Parametric Parametric model (3.2), with normal exposures, and sample means and

variances

Aggregate Aggregate model using samples of data

Aggregate (C) Aggregate models using samples of data, corrected for small samples

Hybridtrue True moments as prior information: µ0k = µxk and σ2
0k = σ2

xk

Hybridgood Good estimates of the true moments as prior information:

µ0k = µxk + εk, σ2
0k = σ2

xk + δk, εk, δk ∼ N(0, 0.252)

Hybridpoor Poor estimates of the true moments as prior information:

µ0k = µxk + εk, σ2
0k = σ2

xk + δk, εk, δk ∼ N(0, 0.52)

Hybrid(s)
good As for Hybridgood, smoothing σ2

0k using a loess smoother
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5.2 Baseline Scenario

Table 3 reports results for 100 simulations for the baseline scenario. We see that as expected the

simple, parametric and uncorrected aggregate models all have substantial bias, between around

15–20%. A reduced summary for the other scenarios is given in Table 4. Throughout this section

results in the text are given for a sample size of mk = 20, with corresponding results for mk = 5

in brackets.

For these simulations we expect within-area variability bias to be negative and biased towards

the null. When moments are estimated from small samples we see increased bias towards the

null for the simple, parametric and uncorrected aggregate models. Plummer and Clayton (1996)

speculated that the measurement error introduced by estimating moments would be such that a

parametric ecological model would be worse than the simple ecological model, in a mean-squared

error sense, but for the simulations here this is not the case. For the corrected aggregate method

the algorithm either fails to converge or converges to the wrong value in 18% of simulations with

mk = 20 (for mk = 5, 46%). Even excluding these, the mean-squared error is larger than for all

other methods, because of the inflated variance of the estimator.

In general the hybrid model performs well, with similar-sized bias to the corrected aggregate

method, but with smaller standard errors. Both the bias and the mean squared error is reduced

compared to previous models. In addition, the convergence of these models is much improved

over the corrected aggregate model; over 95% convergence for the hybrid compared to 82%

(for mk = 5, 85% compared to 54%). The aggregate model converged to the wrong value in 2

simulations (for mk = 5, 9 simulations); this never occurred with the hybrid model.
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Table 3: Results for simulation scenario 1. The corrected aggregate method results exclude 2

and 9 simulations for mk = 120 and mk = 5 respectively, where the algorithm converged to the

wrong value. Including these gives mean biases of -14% and -32%. The true value of β1 is −0.69

(eβ1 = 0.5) and the nominal confidence interval coverage is 95%.

Model β1 s.e.(β1) exp(β1) CI coverage % % bias MSE ×103 % Convergence

Subsamples size mk = 20

Simple -0.56 0.025 0.57 0 -20 20.3 100

Parametric -0.59 0.034 0.55 19 -14 12.2 100

Aggregate -0.59 0.033 0.56 11 -15 13.4 100

Aggregate (C) -0.69 0.096 0.50 83 0 28.4 82

Hybridtrue -0.68 0.054 0.51 84 -1 8.1 97

Hybridgood -0.69 0.059 0.50 90 0 8.9 97

Hybrid(s)
good -0.70 0.059 0.50 88 1 9.3 99

Hybridpoor -0.63 0.062 0.53 87 -9 10.8 99

Subsamples size mk = 5

Simple -0.50 0.036 0.61 0 -28 39.1 97

Parametric -0.47 0.040 0.63 0 -32 53.7 100

Aggregate -0.49 0.038 0.61 0 -29 44.6 100

Aggregate (C) -0.63 0.141 0.54 87 -9 46.5 54

Hybridtrue -0.68 0.055 0.51 86 -2 7.4 83

Hybridgood -0.61 0.046 0.54 54 -12 11.1 100

Hybrid(s)
good -0.62 0.045 0.54 54 -11 10.2 100

Hybridpoor -0.64 0.081 0.53 94 -8 13.4 85
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Table 4: Summary of results for other scenarios on hybrid models. Results given are average

estimate of β1, (average standard error) and average % bias in bold.

Scenario Variability ratio Hybridtrue Hybridgood Hybridpoor

Subsamples size mk = 20

2 2.1 -0.68 (0.035) -2% -0.67 (0.036) -3% -0.63 (0.047) -9%

3 0.5 -0.58 (0.126) -16% -0.59 (0.133) -14% -0.56 (0.118) -20%

4 0.06 -0.36 (0.243) -48% -0.36 (0.222) -48% -0.26 (0.153) -63%

Subsamples size mk = 5

2 2.1 -0.68 (0.034) -2% -0.67 (0.039) -4% -0.52 (0.058) -24%

3 0.5 -0.56 (0.121) -20% -0.55 (0.110) -21% -0.48 (0.073) -31%

4 0.06 -0.35 (0.170) -49% -0.32 (0.138) -53% -0.16 (0.098) -76%

5.3 Between to Within-Area Variation Ratio

The extent of the bias depends most strongly on the between to within-area variance ratio; as

this decreases the bias increases (noted also by Richardson et al., 1987). Figure 4 illustrates

the extent of the bias as the between to within-area variability increases and Table 4 contains

numerical summaries. This is the case for both the parametric and aggregate methods, and

the new hybrid model. None perform well when this ratio is less than 1, and these simulations

suggest that attempting ecological inference in such cases is not advisable. In the extreme case of

scenario 4, with a between to within-area variability ratio of 0.05, even using the true moments

as the prior information still results in around 50% bias. As the variability ratio decreases these

model exhibit problems in terms of convergence, with convergence rates of around only 50% for

a variability ratio of 0.05.

When the ratio is around 1 (scenario 1) the bias is reduced to within 2% if we have both

moderate-sized samples and good quality prior information. With only one of these, the bias is
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Figure 4: Comparison of % bias for between to within area variance ratios for the following mod-

els: aggregate (light dotted), corrected aggregate (heavy dotted), Hybridtrue (solid), Hybrid(s)
good

(heavy dashed) and Hybridpoor (dashed). The region of ±10% bias is shaded.

higher at around 10%. Ideally the ratio should be 2 or higher; that is, more variability between

areas than within. In this case, even if samples are small we can remove nearly all the bias

provided we have good quality prior information.

5.4 Quality of Prior Information

If the prior information is ‘perfect’ and takes the form of the true moments (that is, the values

µk, σ2
k from which the data were generated) we obtain extremely good estimates of β1, with

bias of 1–2% for both sample sizes. For mk = 20 using good unbiased estimates (Hybridgood)

generally gives very similar results. For smaller samples, the bias is increased and the model is
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only feasible when the between to within-area variability ratio is large.

The hybrid model essentially pulls the sample data towards the prior moments; as the quality

of the prior becomes worse, either in terms of how well they are estimated, or in terms of bias

in the prior moments, estimates of β1 become more biased. To some extent the quality of the

prior data may be reflected in the parameter αk, but a small value of αk will effectively result in

using the corrected aggregate method with its instability problems for small samples. Since the

method depends so strongly on the prior information, when these data are biased (for example

if the prior means are consistently over-estimated) we would expect estimation to be poorer; in

additional simulations, not shown, this was indeed the case.

5.5 Sample Size

Sample size affects the performance of the models. Larger samples will partially compensate

for poor quality prior information; for example Hybridpoor is less biased for mk = 20 than for

mk = 5. As sample sizes become much larger (mk > 100) there is nearly no bias, unless the

within-area distribution is extremely skewed. We conclude that in the situation of interest, when

we only have very small samples, we require good quality prior and a large variability ratio for

an ecological study to be feasible. Figure 5 illustrates how the bias depends on the sample size;

the aggregate models from Figure 3 are shown for comparison.

5.6 Other Factors

Smoothing the prior variances to focus on the underlying mean-variance relationship has only

a very small effect, since it often picks up erroneous patterns. The results are inconclusive, but

slight improvements suggest that in general smoothing is preferable, especially if the relationship

between the means and variances is very strong. We also looked at additional simulations which
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adjusted aggregate (heavy dotted).
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investigated the mean-variance relationship. Factors such as additional variability, or a loglinear

(rather than linear) mean-variance relationship made very little difference to the results. Finally,

these simulations show the effects of bias on a negative effect parameter; if β1 > 0 similar patterns

emerge, although the bias is more complex in this situation as positive and negative biases from

different sources may to some extent cancel each other out.

5.7 Well-estimated mean

One interesting scenario is when well-estimated area means are available from some source (for

example, routinely collected data such as from the census), and the purpose of the additional

samples is to estimate the within-area variability. This is a potentially useful situation where

we might expect to further reduce ecological bias.

One way to incorporate such data into the hybrid model is to use the good estimate of the mean

as the prior mean. Depending on how the well-estimated mean has been derived, there may be

a small possibility that an individual appears both in the prior and in the sample. However,

with very small samples and reasonably large areas the probability of this is extremely small

and may be often be considered negligible.

We investigated the performance of the hybrid model for this situation in scenario 1. We

generated a separate sample of 100 from the within-area distributions and used the mean of

this sample as the prior mean. Good and poor prior information on within-area variances was

simulated as before; the results are shown in Table 5.

Good prior information about the mean only is good enough to reduce bias to under 3%, even

when the samples are small and the prior information about the variance is poor. These results

are consistent across the other scenarios, with increased bias for a smaller variability ratio,

suggesting that the hybrid approach is beneficial in this scenario.
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Table 5: Results for scenario 1, assuming that the within-area mean is well-estimated.

Model β1 s.e.(β1) exp(β1) CI coverage % % bias MSE ×103

TRUTH -0.69 - 0.5 95 0 0

Subsamples size mk = 20

Simple -0.58 0.020 0.56 0 17 14.7

Parametric -0.62 0.029 0.54 35 10 6.4

Hybridgood -0.68 0.054 0.51 88 1 8.0

Hybridpoor -0.68 0.051 0.51 80 3 8.0

Subsamples size mk = 5

Simple -0.58 0.020 0.56 0 17 14.3

Parametric -0.54 0.029 0.58 0 22 24.4

Hybridgood -0.67 0.053 0.51 87 3 7.3

Hybridpoor -0.68 0.061 0.51 93 2 7.3
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Figure 6: Relationship between within-area means and variances, smoother imposed.

6 Income data

In this section we compare the hybrid model to previous models on the data described in Section

2. The relationship between the within-area means and variances is plotted in Figure 6; in both

cases, the variance increases with the mean.

The between to within area variability ratio is very small in this data set (around 0.05), and

the simulations in Section 5 suggest that an ecological analysis of this data is inappropriate.

For illustrative purposes we will fit the models, anticipating that we may experience problems

with some of the methods, and not all the bias will be removed. Of our two datasets, we expect

better estimates of exposure effect for all men than for men over 64, since the sample sizes are

larger.
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Table 6: Comparison of models for income data.

All men Men over 64

Model β1 95% CI exp(β1) β1 95% CI exp(β1)

Simple -0.305 (-0.56 , -0.05 ) 0.74 -0.061 (-0.14, 0.01) 0.94

Parametric -0.266 (-0.53 , 0.00 ) 0.77 -0.058 (-0.14, 0.02) 0.94

Aggregate -0.295 (-0.54 , -0.05 ) 0.75 -0.062 (-0.14, 0.02) 0.94

Aggregate(C) -0.435 (-0.85 , -0.02 ) 0.65 1.321 (-0.20, 2.84) 3.75

Hybrid -0.318 ( -0.70, 0.06 ) 0.73 -0.826 (-1.45, -0.21) 0.44

We fit the simple ecological, the parametric normal, the aggregate and the corrected aggregate

models. For the hybrid model, we specify a normal prior distribution F0k with prior mean and

variance (on the log base 2 scale). Areas were ranked according to socioeconomic status, and

information on mean income from other sources (the Family Resources Survey 2002/3 (Depart-

ment for Work and Pensions, 2002a), and The Pensioners’ Income Series 2002/3 (Department for

Work and Pensions, 2002b)) was combined with prior beliefs about the mean-variance structure

to give prior data at the regional level. We use a prior sample size of αk = 10, with correspond-

ing weights on the prior of wk between 0.04 and 0.14 for all data, and between 0.2 and 0.8 for

the over 64s data.

Table 6 summarises the results of the different models. For the first dataset comprising all

men, we would expect all models to be biased to some extent, because of the small between to

within-area variability ratio. However, since the samples are moderately large (mk=60–216) we

would expect only small differences between the parametric, aggregate and hybrid models. This

is the case, with slightly larger standard errors for the hybrid model. All relative risk estimates

suggest a 65–75% reduction in risk for every doubling of income, although this reduction is not

significant for the hybrid model.
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For the over 64 data the smaller sample sizes (mk=3–44) cause differences between the models.

The parametric and aggregate models suggest that there is no significant effect of income on

health. The corrected aggregate model estimates a positive association between income and

health; this seems implausible, which suggests this is a practical example of convergence to the

wrong value. The hybrid model suggests that the true relative risk is closer to 0.4, representing

a reduction in mortality risk of 44% for every doubling of income; substantially lower than the

other models would suggest. This difference is also found to be significant, despite the much

larger standard error.

7 Discussion

The key to using ecological data for individual inference is the availability of individual data.

In this paper we have presented a new model that combines ecological and individual data, and

reduces within-area variability bias in situations when individual data are difficult to obtain,

and only small samples are available.

The hybrid model can be seen as a compromise between the existing parametric and corrected

aggregate models which perform poorly for small sample sizes; the former produces biased

estimates, and the latter is unreliable and unstable. With suitable prior information the hybrid

model can reduce within-area variability bias to within 5%. A key factor is the between to

within-area variability ratio which ideally should be 2 or higher; when this ratio is small (less

than 1) ecological analysis is inadvisable. If it is known in advance that the ratio is likely to

be small, we can compensate to some extent by increasing the sample sizes and collecting more

data.

The sample size required for accurate estimation with the hybrid model depends not only on the

exposure variability ratio but also on the quality of the prior information and the within-area
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distribution. If resources are limited we should choose larger samples for those areas where

the prior information is known to be poor, those with larger within-area variability and those

where the exposure distribution is likely to be heavily skewed. In contrast, a nearly homogenous

area with good prior information requires little individual data. Figure 5 suggests that a good

strategy is to use the aggregate model for large samples (mk > 100), the corrected aggregate

or uncorrected hybrid models for moderate samples (50 < mk < 100), and the corrected hybrid

model for small samples (50 < mk < 10). Samples of less than 10 will rarely be feasible, unless

within-area variability is small. The hybrid model can be adjusted for these different strategies,

on an area-by-area basis, by altering the prior sample size αk; setting αk = 0 in some areas,

for example, will have the effect of discarding prior information and using the sample data

exclusively for those areas. Whatever strategy is employed, some sensitivity analysis to the

choice of αk is a good idea.

The hybrid model relies on the presence of good quality prior information about the within-area

distributions. The most important aspects of the prior are to have fairly accurate information

on the area means, and to capture accurately the relationship between the mean and the vari-

ance. For very small samples, the model may exhibit problems if the within-area distribution

is mis-specified. Additional simulations not presented here explored the use of a normal prior

assumption when the true distribution was lognormal; the results showed extreme instability in

the algorithm. This is due primarily to the correction for finite sampling bias, where the extra

term required is now estimated from a combination of the highly variable data and the incorrect

prior distribution. This suggests that when little is known about the true form of the prior

distribution, larger samples will be required to be able to use the uncorrected hybrid model.

We have not discussed how this model may be extended to deal with multiple exposures and

confounders. While it is straightforward to write down a suitable model, in practice fitting this

model will be more complex and potentially problematic. The individual data will need to char-
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acterise the within-area joint exposure-confounder distribution, capturing the mean-variance-

covariance structure for all covariates. One consequence is that individual covariate data will be

required on the same set of individuals; for example, combining data from several surveys will

not be possible without assuming independence between covariates. Further research is required

to investigate the use of the hybrid model in these more complex situations. However, the hybrid

model is ideally suited to the semi-ecological study, where individual data are available on the

outcome and confounders, with exposure information coming from ecological data.

Using ecological data for individual inference is problematic. The hybrid model is designed to

reduce ecological bias in a situation where otherwise no reliable analysis is possible; it should

never be used as a substitute for collecting large samples of individual data where this is possible,

or in place of a well-designed individual study.

A Appendix

We give details of the hybrid model corrected for finite sampling bias, assuming constant variance

of Yk. The approach follows closely that of Prentice and Sheppard (1995) for the corrected

aggregate method.

The expectation of the estimating equation for the uncorrected hybrid model is given by

E

[
K∑

k=1

DT
k (yk − nkθ̃k)

]
= −

K∑

k=1

(1− wk)2
(nk −mk)
mk(nk − 1)

(nkST
k −DT

k θk), (A.1)

where θk is the average risk and θ̃k = wkθ0k + (1 − wk)θ̂Ak is the estimate under the hybrid

model given by (4.2), Dk is the p × 1 vector of derivatives, Dk = ∂

∂β
θk, and Sk = DT θk. The

summation term in this expression is the same as in the aggregate estimating equation, but is

given less weight, since there is finite sampling bias only in the data part of the model, and

not from the prior information. So we expect the hybrid approach to generally suffer less finite
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sampling bias than the aggregate for similar sized samples (overall, the bias depends on the

accuracy of the prior).

The correction factor is based on an estimated version of (A.1). However, unlike the corrected

aggregate approach where the estimation of this term is highly variable, we can now estimate

these terms from a combination of both the data and the prior distribution:

D̃k = wkD0k + (1− wk)D̂Ak

S̃k = wkS0k + (1− wk)ŜAk (A.2)

where D0k and S0k are the expected values of Dk and Sk under the prior distribution F0k, and

DAk and SAk are the expected values under the aggregate model using Xmk

k :

D̂Ak =
1

mk

mk∑

i=1




1

Xki


 eβ

T
Xki

ŜAk =
1

mk

mk∑

i=1




1

Xki


 e2βT

Xki (A.3)
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For example, for a normal prior distribution Xki|F0k ∼ N(µ0k, σ2
0k) we have

θ0k = E[exp(β0 + β1Xki)|F0k]

= exp(β0 + β1µ0k + β2
1σ2

0k/2)

D0k = E







1

Xki


 exp(β0 + β1Xki)|F0k




=




1

µ0k + β1σ
2
0k


 exp(β0 + β1µ0k + β2

1σ2
0k/2)

S0k = E







1

Xki


 exp(2β0 + 2β1Xki)|F0k




=




1

µ0k + 2β1σ
2
0k


 exp(2β0 + 2β1µ0k + 2β2

1σ2
0k) (A.4)

So the corrected hybrid model is the solution to the corrected estimating equation,

K∑

k=1

D̃T
Ak(yk − nkθ̃k) + m̃−1

k (nkS̃T
Ak − D̃T

Akθ̃Ak), (A.5)

with

m̃k =
mk(nk − 1)− (1− wk)2(nk −mk)

(1− wk)2(nk −mk)
, (A.6)

which is unbiased in expectation over all possible choices of subsample. This form may be used

with a constant working variance matrix and sandwich estimation for empirical standard errors.
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