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1 Introduction

Empirical process limit theorems for processes indexed by classes of functions or sets are a
powerful tool, particularly for studying estimation and inference in semiparametric models
(eg van der Vaart & Wellner, 1996; Pollard, 1990). Even for models with no explicit infinite-
dimensional component they are useful for reducing the degree of smoothness needed to
establish asymptotic Normality (eg a Lipschitz condition on estimating functions suffices
to establish bracketing entropy bounds).

Initially established for independent data (Pollard, 1982; Koltchinskii, 1981; Ossiander,
1987), they have been extended from independent to dependent sequences (Doukhan et al.,
1995; Yu, 1994; Arcones & Yu, 1994; Andrews & Pollard, 1994; Dehling et al., 2002) and
from simple means to U -statistics (Nolan & Pollard, 1987; Arcones & Giné, 1993; de la
Peña & Giné, 1999).

Here we show how to extend arguments based on bracketing entropy to a case where
the correlation is sparse, meaning that most small sets of observations are independent of
each other, but there need not be a simple pattern to the correlations.

For each observation Xi, i = 1, . . . , n we define a set of indices Si called the neighbour-
hood with center i such that

1. j 6∈ Si and i 6∈ Sj implies Xi and Xj are independent.

2. {i1, i2, . . . , ik}∩
(
∪k′
`=1Sj`

)
= ∅ and {j1, j2, . . . , jk′}∩

(
∪k`=1Si`

)
= ∅ implies {Xi1 , Xi2 , . . . , Xik}

is independent of {Xj1 , Xj2 , . . . , Xjk}.

Write M = maxi |Si| and m for the size of the largest subset T such that Si ∩ Sj = ∅
for all pairs i, j ∈ T and write m(n) and M(n) when it is important to make explicit the
dependence on n. We refer to data as sparsely correlated (Lumley & Mayer-Hamblett,
2003) if we can choose Sj so that Mm = O(n). We call M the neighourhood size and m
the neighbourhood number. We write S(J ) for

⋃
ij∈J Sij .

Special cases of sparsely correlated data include independent data, where we have m = n
and M = 1; panel data, where m as the number of panels and M is the maximum number
of observations per panel; and k-dependent sequences where m = 2k + 1 and M = n/2k.
Another, more interesting, special case of sparsely correlated data comes from U -statistics
of order r, where the data Xi are r-tuples of m independent observations and f is an
antisymmetric function of its r arguments. In this case we have n = mr and M ≤ rmr−1,
giving Mm ≤ rn, so U -statistics of all orders are sparsely correlated.

When specialised to U -statistics, however, our results are substantially inferior to the
best known ones. For the central limit theorem and law of large numbers we require stronger
moment conditions than are needed for independent data or U -statistics. For the empirical
process central limit theorem we also consider only entropy with bracketing, as our approach
does not allow us to extend either decoupling by symmetrisation or Hoeffding’s inequality,
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both of which are used in the standard proofs of stochastic equicontinuity under metric
entropy conditions.

Practical examples of this sort of data that do not reduce to independent multivariate
observations or to U -statistics are discussed by Lumley & Mayer-Hamblett (2003). The
principal examples are incomplete U -statistics formed by summing a function f over only
some r-tuples of observations, and incomplete crossed experiments. They include examples
from the study of HIV genetics and medical diagnostics and the notorious salamander
mating data of McCullagh & Nelder (1989).

In section 2 we extend Bernstein’s inequality (Bennett, 1962) to sparsely correlated
data. We then use this in section 3 to prove a strong law of large numbers, and in section 4
to derive an empirical process central limit theorem under bracketing entropy assumptions
using a proof based on that of Ossiander (1987) as reformulated by van der Vaart (1998,
Chapter 19), but replacing Bernstein’s inequality with our extended version.

2 Bernstein’s inequality for sparse correlation

Bernstein’s inequality (Bennett, 1962) in its original form gives a tail bound for the sum
of uniformly bounded independent random variables. The moment condition we give is
implied by a bound of ±3K.

Lemma 1 Suppose we have Xi, i = 1, 2, . . . , n mean zero and sparsely correlated.
Suppose that for each Xi

EXr
i ≤ Kr−2σ2/2 (2·1)

Then

Pr

(∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ > t

)
≤ 2e

− 1
2

t2

Mnσ2+MKt .

Proof: The proof largely follows Bennett (1962), but differs in how the individual moment
bound is related to the exponential moments of the sum.

The rth moment of the sum is

E(
n∑
i=1

Xi)r =
n∑

i1,i2,...,ir

EXi1Xi2 · · ·Xir

For independent summands a term EXi1Xi2 · · ·Xir is non-zero only if every distinct
index appears an even number of times. For sparsely correlated summands a term may
also be non-zero if a repeated index is replaced by another index in its neighbourhood.
For example, in addition to EX1X1X2X2 there are all terms EX1XiX2Xj where i ∈ S1

and j ∈ calS2. This expands the number of non-zero terms by a factor not exceeding
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M r−2(r − 1)!. Each term is bounded in magnitude by Kr−2σ2/2. In Bennett (1962), the
moments of sums with independent summands are also bounded by Kr−2σ2/2, so we can
simply multiply his bounds by M r−2(r − 1)!.

EecSn = 1 +
n

2
σ2c2

∞∑
r=2

cr−2ESrm
nr!σ2/2

< exp

[
n

2
σ2c2

∞∑
r=2

cr−2ESrm
nr!σ2/2

]

≤ exp

[
n

2
σ2c2

∞∑
r=2

cr−2nM r−1(r − 1)!Kn−2σ2/2
nr!σ2/2

]

< exp

[
n

2
Mσ2c2

∞∑
r=2

(cMK)r−2

]

= exp
[

nMσ2c2

2(1− cMK)

]
Write K̃ for MK and σ̃2 for nMσ2 to get

EecSn < exp
[

σ̃2c2

2(1− cK̃)

]
Now for every positive c

P [Sn ≥ tσ̃] ≤ EecSn

ectσ̃
< exp

[
σ̃2c2

2(1− cK̃)
− ctσ̃

]
,

equation 2a of Bennett (1962), who shows this implies

P [Sn ≥ tσ̃] < exp

− t2

1 + K̃t/σ̃ +
√

1 + 2K̃t/σ


< exp

[
− t2

2 + 2K̃t/σ̃

]
So

P [Sn ≥ t] < exp
[
−1

2
t2

σ̃2 + K̃t

]
is a one-sided bound, and the conclusion of the theorem follows by adding the corresponding
lower bound.

3

Hosted by The Berkeley Electronic Press



3 Strong law of large numbers

This sub-exponential bound on the tails of the mean immediately gives a strong law of large
numbers for bounded sparsely correlated sequences using the Borel–Cantelli lemma.

A stronger theorem can be obtained by truncating Xi at m(i), provided that
∑

i Pr(|Xi| >
m(i)) can be controlled, where m(i) is the size of the largest subset Ti of 1, 2, . . . , i with
Sj ∩ Sk = ∅ for i, j ∈ Ti.

Theorem 2 Let Xi be a mean zero sparsely correlated sequence with M = O(md) and with
P (|Xi| > t) < Ct−α for some α > 0 and C not depending on i. If α > d + 1 then X̄i

a.s.→ 0.

Proof: We truncate Xi at ±m(i) to Yi and use Bernstein’s inequality from Lemma 1 to
obtain

Pr(|Ȳi| < t) ≤ 2 exp
(
−1

2
t2

M(i)L2/i + M(i)m(i)t/i

)
< 2e−Dt (3·1)

for some D > 0. By the Borel–Cantelli lemma Ȳi
a.s.→ 0. We now need to handle the tails

Zi = Xi − Yi. Now

∞∑
i=1

P (Zi 6= 0) <

∞∑
i=1

Cm(i)−α)

=
∞∑
m=1

∑
i:m(i)=m

Cm(i)−α

≤
∞∑
m=1

CMm−α

≤
∞∑
m=1

Cmd−α

This converges if d − α < −1, so by the Borel–Cantelli lemma, P (Zi 6= 0 i.o.) = 0. So
X̄i

a.s.→ 0.
A weak law of large numbers for sparsely correlated data with Mm = O(n) and 2 + δ

finite moments follows the central limit theorem proved by Lumley & Mayer-Hamblett
(2003). In contrast, our proof of the strong law requires M = O(m) for this moment
condition. Presumably this gap could be narrowed by a more sophisticated proof.

These laws of large numbers give Glivenko–Cantelli theorems for classes of functions
with finite bracketing numbers by exactly the same finite approximation arguments as for
independent data (eg van der Vaart & Wellner, 1996, Theorem 2.4.1).
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4 Empirical Process Central Limit Theorem

The moment condition (2·1) is satisfied by a random variable bounded by K with νi being
its variance. This leads to an important maximal inequality for finite classes of functions
via the following lemma, which we quote from van der Vaart & Wellner (1996, Lemma
2.2.10).

Lemma 3 Let X1, X2, . . . , Xk be random variables that satisfy the tail bound

Pr(|Xi| > x) ≤ 2e−
1
2

x2

b+ax

for all x and fixed a, b > 0. Then∥∥∥∥max
1≤i≤k

Xi

∥∥∥∥
ψ1

≤ K
(
a log(1 + k) +

√
b
√

log(1 + k)
)

,

for a universal constant K. Here ‖ · ‖ψ1 is the Orlicz norm corresponding to the function
ex − 1, defined as

‖X‖ψ1 = inf
{

C > 0 : e|X|/C − 1 ≤ 1
}

Under the condition Mm = O(n), Lumley & Mayer-Hamblett (2003) proved a central
limit theorem with normalisation

√
m/n rather than 1/

√
n, suggesting

Gnf ≡
√

m

n

n∑
i=1

f(Xi)− Ef(Xi)

as the appropriate definition for the empirical process.
Combining this definition with Theorem 2 and Lemma 3 we have for a finite set F of

functions with cardinality |F| > 2

E ‖Gn‖F . max
f

‖f‖∞√
m

log |F|+ max
f

‖f‖P,2

√
mM

n

√
log |F|,

where we write a . b if a ≤ Kb for some constant K that depends only on supMm/n.
As Mm = O(n) this simplifies to

E ‖Gn‖F . max
f

‖f‖∞√
m

log |F|+ max
f

‖f‖P,2
√

log |F|, (4·1)

extending van der Vaart (1998, lemma 19.33). Note that in independent data m = n and
M = 1 and this inequality reduces to the usual one. This is the maximal inequality needed
to prove a central limit theorem with L2 bracketing.

This gives the following bound for the empirical process
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Lemma 4 Let Xi be sparsely correlated with identical marginal distribution P and mM =
O(n), and let F be a class of measurable functions with Pf2 < δ2. Then with

a(δ) =
δ√

log 1 + N[ ](δ,F , L2(P ))

we have

E∗ ‖Gn‖F .
∫ δ

0

√
log 1 + N[ ](ε,F , L2(P )) dε +

√
mE∗F{F >

√
ma(δ)}

where E∗ denotes outer expectation.

Proof: The proof is almost identical to that of Lemma 19.34 of van der Vaart (1998) with
n replaced by m everywhere and his Lemma 19.33 replaced by inequality 4·1 above.

Define Log(x) = log(1 + x) for convenience. Let

a(δ) = δ/
√

(LogN[ ](ε,F , L2(P )))

and truncate f ∈ F at a(δ). The tail from the truncation has

E∗‖Gn‖F ≤ 2m−1/2F{F > a(δ)},

which goes to zero with increasing m for any fixed δ by the square-integrability of F .
Now assume that each F ∈ F is bounded by

√
ma(δ). Fix q0 such that 4δ < 2q0 ≤ 8δ.

Partition F into a nested sequence ∪Nq

i=1Fqi of subsets, such that∑
q≥q0

2−qNq .
∫ δ

0

√
LogN[ ](ε,F , L2(P )) dε,

and supf,g∈Fqi
|f − g| ≤ ∆qi < 2F and E∆2

qi < 2−2q. This is possible by the finiteness of
the bracketing integral.

Choose for each q ≥ q0 a fixed element fqi ∈ Fqi and define πqf = fqi and ∆qf = ∆qi

if f ∈ Fqi. Define for each fixed m and all q ≥ q0

aq = 2−q/
√

LogNq+1

Aq−1f = I{∆q0f ≤
√

maq0 , . . . ,∆q−1f ≤
√

maq−1}
Bqf = Aq−1f{∆qf >

√
maq}.

Now decompose pointwise in x

f − πq0f =
∞∑
q0+1

(f − πqf)Bqf +
∞∑
q0+1

(πqf − πq−1f)Aq−1f
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noting that either all Bqf = 1 and Aqf = 1 or there is a unique q1 > q0 with Bqf = 1, in
which case Aqf = 1 for q < q1 and Aqf = 0 for q > q1.

Now apply the empirical process Gn separately to each series, and use the triangle
inequality and the finite-class maximal inequality(4·1)

E∗

∥∥∥∥∥∥
∞∑
q0+1

Gn(f − πqf)Bqf

∥∥∥∥∥∥
F

≤
∞∑
q0+1

E∗‖Gn∆qfBqf‖F

.
∞∑
q0+1

[
aq−1LogNq + 2−q

√
LogNq +

4
aq

2−2q

]
We can bound the right-hand side by a multiple of

∑∞
q0+1 2−q

√
LogNq.

Next

E∗

∥∥∥∥∥∥
∞∑
q0+1

Gn(πqf − πq−1f)Aq−1f

∥∥∥∥∥∥
F

.
∞∑
q0+1

aq−1LogNq + 2−q
√

LogNq.

Again this is bounded above by a multiple of
∑∞

q0+1 2−q
√

LogNq. Finally, consider πqf .
By assumption |πq0f | < F < a(δ)

√
m and ||πq0f ||P,2 ≤ δ, so

E∗‖Gnπq0f‖F . aq0LogNq0 + δ
√

LogNq0 .

By the choice of q0 this is also bounded above by (the initial terms of)
∑∞

q0+1 2−q
√

LogNq.

Now we can prove the empirical process central limit theorem

Theorem 5 Let Xi be sparsely correlated with common marginal distribution P and mM =
O(n), and let F be a class of measurable functions with finite 2 + δ moments and envelope
function F . If E[F 2] < ∞ and∫ 1

0

√
log 1 + N[ ](ε,F , L2(P )) dε < ∞

then F is Donsker, i.e., Gn converges weakly in the sense of Hoffman-Jørgensen to a con-
tinuous Gaussian process indexed by F

Proof: The convergence of finite-dimensional distributions is proved by Lumley & Mayer-
Hamblett (2003, Theorem 4) using the method of Stein (1972). It is therefore sufficient to
prove stochastic equicontinuity: to show that for every η > 0 there exists a finite partition
of F into sets Fi such that

lim
n→∞

E∗

[
sup
i

sup
f,g∈Fi

|Gn(f − g)|

]
≤ η.
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Let G = {f − g|f, g ∈ F} be the collection of differences of functions in F . The
bracketing entropies of G and F are proportional, so the entropy integral∫ 1

0

√
1 + log N[ ](ε,G, L2(P )) dε

is still finite.
For any small δ we can choose N[ ](δ,G, L2(P )) brackets and use them to partition F

into N[ ](δ,G, L2(P )) disjoint sets Fi with diameters less than δ. The set Gi of differences
of functions in Fi consists of functions with L2(P ) norm less than δ and has 2F as an
envelope, so by lemma 4

E∗

[
sup
i

sup
f,g∈Fi

|Gn(f − g)|

]
.
∫ δ

0

√
1 + log N[ ](ε,F , L2(P )) dε +

√
mEF{F > a(δ)

√
m}.

The first term on the right hand side does not depend on n and goes to zero as δ → 0.
The second term is bounded by a(δ)−1E[F 2{F > a(δ)

√
m}], which goes to zero as n →∞

for any δ since F has a finite second moment.
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