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INTRODUCTION 

Markers are sought to detect conditions or predict future onset of conditions. Examples 

include childhood screening tests, tests for genetic abnormalities, and markers for cardiovascular 

disease such as serum lipids and inflammatory indicators. Biomarkers for cancer detection 

include prostate specific antigen and CA-125.  Some of these same markers are used as markers 

of treatment response and of disease progression. The emergence of new technologies such as 

gene and protein expression arrays promise the development of more sophisticated markers in 

the near future.1,2  

The issue here is how to evaluate the performance of a marker. The importance of 

rigorously evaluating a marker’s performance before it is adopted in routine medical practice is 

of particular concern to regulatory agencies and has recently been highlighted in the popular 

press.3 The ultimate validation of a marker requires large population studies and consideration of 

disease-specific costs and benefits associated with incorrect and correct classification by the 

marker.4 Preliminary to such studies are smaller studies that simply assess the marker’s ability to 

discriminate subjects with the condition from those without. The statistical evaluation of a 

marker’s discriminatory capacity is the specific topic we discuss in this paper. 

How should one measure the discriminatory capacity of a marker? An appropriate 

measure should not depend on the measurement units of the marker. If it does, it cannot be used 

to compare markers measured in different units. For example, the odds ratio (or relative risk) per 

unit increase in the marker, although commonly used, is not a self-contained summary statistic of 

discrimination and cannot be compared across different markers.6  

We propose an approach that first involves standardizing the marker values relative to a 

normative population (those without the condition). This standardization puts different markers 
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on a common scale, thereby facilitating comparisons amongst markers. In addition we show that 

the distribution of the standardized marker among subjects with the condition is closely related to 

the receiver operating characteristic (ROC) curve, a statistical tool that has long been used for 

evaluating diagnostic tests. 7—9 The ROC curve is appropriate for evaluating the discriminatory 

capacity of any marker.10 Its interpretation as relating to the distribution of standardized marker 

values is appealing. In particular it may be of interest to those researchers already comfortable 

with statistical concepts of standardization and frequency distributions, but who are not familiar 

with ROC analysis. 

METHODS 

Datasets 

To illustrate concepts we apply statistical techniques to two simple datasets. The data are 

online at http://www.fhcrc.org/labs/pepe/book/. In the first, two serum biomarkers for pancreatic 

cancer, CA-125 and CA19-9, were measured for 90 patients with pancreatic cancer and 51 

without11 (Figure 1).  Questions of interest are: (i) how to quantify the capacities of the two 

markers to distinguish between the patients with and without cancer; and (ii) to compare the two 

markers.  

The second dataset pertains to a marker of hearing impairment at the 1416 Hz freqeuncy  

for  57 hearing impaired ears  and 147 unimpaired ears. The marker is the signal-to-noise ratio 

(SNR) from the distortion product otoacoustic emissions (DPOAE) test. The test was performed 

using 9 different sound stimulus intensity levels, 3 of which are included in this dataset. Thus for 

each ear we have an SNR value for each of the intensity levels (Figure 2). Details of the original 

study and data selection can be found in Stover et al12 and in Pepe,13 respectively.  
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Both of these studies employed case-control designs. Cross-sectional cohort studies can 

be analysed in the same way. 

Approach 

To explain the general approach we adopt the convention that higher values of the marker 

are more indicative of the presence of the condition. (We can always redefine the marker if 

necessary to ensure this, using negation for example. See the audiology data in Figure 2.) The 

basic idea is to use the distribution of marker values in the unaffected population, without the 

condition, as a reference distribution for standardizing marker values in the affected population, 

i.e., those with the condition. The standardization for an affected subject with marker value Y is 

simply to calculate the frequency of unaffected subjects with marker values greater than Y. Thus 

if marker values for 20% of unaffected subjects exceed Y, the standardized marker value is 0.20. 

We call the standardized value its placement value.14—16 

The concept of calculating a placement value is closely related to that of calculating a 

percentile value relative to a healthy reference population as is the common practice for reporting 

anthropometric measurements in children.17  Here, rather than reporting the percentile, the 

proportion of the reference population less than Y, we report the proportion greater than Y. 

Although the concepts are equivalent, we will see that calculation of placement values rather 

than percentiles facilitates connections with ROC methodology.  

Placement values are proportions taking values between 0 and 1. Since higher marker 

values are more indicative of  the condition,  having the condition is associated with having 

smaller placement values. The smallness of the placement value indicates how extreme a 

subject’s marker value is relative to the reference population. Moreover, a marker for which most 
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affected subjects have very small placement values is a good marker because it identifies most 

affected subjects as being extreme relative to the reference population.  

A key attribute of placement values is that they do not have measurement units associated 

with them. Different markers are converted to a common scale by the placement value 

standardization. This facilitates comparisons amongst them. Thus if a diseased subject has a 

placement value of .50 for marker 1 and placement value .01 for marker 2, then marker 2 is the 

better disease indicator for him. He is identified as extreme in regards to marker 2 while he 

appears to be well within the reference (non-diseased) population in regards to marker 1. To 

determine which of two markers is better at discriminating the population of affected subjects 

from the unaffected population, one must consider the population distributions of placement 

values in affected subjects for each of the markers. The marker with a higher frequency of small 

placement values is preferred. 

ROC Curve 

The ROC curve is a statistical device for illustrating the classification accuracy 

achievable with a diagnostic test, or marker.9,10,16 For each possible threshold value, c, one can 

define a positive classification rule based on the marker, cY ≥  indicating that the condition is 

present. The associated true positive rate (TPR(c)) and false positive rate (FPR(c)) are 

TPR )(c  = proportion of affected subjects with cY ≥  

and 

FPR )(c  = proportion of unaffected subjects with cY ≥ , 

respectively. The ROC curve plots TPR )(c , the test sensitivity, versus FPR )(c , 1-specificity, for 

all values of c. It shows the range of (FPR, TPR) achievable. Since good classification accuracy 

pertains to low FPRs and high TPRs, a good marker has an ROC curve with points in the upper 
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left corner of the )1,0()1,0( ×  square. The area under the ROC curve (AUC) is the most popular 

ROC summary statistic. An AUC of 1.0 corresponds to a perfect marker. 

RESULTS 

Pancreatic Cancer Biomarkers 

Using the 51 subjects without pancreatic cancer as the reference group we standardized 

each of the markers for the 90 subjects with pancreatic cancer by calculating placement values. 

The frequency distributions are displayed in Figure 3a.  The CA-19-9 placement values are 

smaller than the CA-125 values indicating that pancreatic cancer patients  are more extreme 

relative to the non-cancer reference in regards to CA19-9 than in regards to CA-125 

The average (sd) of the placement values is .14 (.26) for CA 19-9 and .29 (.25) for CA-

125. A simple paired t-test could be applied to compare the averages. However it is not quite 

appropriate because a finite sample of only 51 non-cancer patients was used to standardize the 

markers. A different sample of non-cancer patients would have produced a somewhat different 

standardization. The sampling variability in the reference group used to calculate the placement 

values for the 90 diseased subjects must be accounted for in calculating a p-value that compares 

mean CA-19-9 and CA-125 placement values. The bootstrapping technique18 described in the 

electronic appendix does this and yields p < .01.  

The scatterplot (Figure 3(b)) shows that although CA19-9 is the better marker overall, 

there are a substantial number of cancer patients for whom CA-125 is better in the sense that 

they are normal in regards to CA19-9 but abnormal in regards to CA-125. For example, 5 

patients with CA-19-9 placement values exceeding 20% had CA-125 values less than 10%. 

Audiology Testing 
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Distributions of standardized –SNR values (negative SNR) are shown in Figure 4 for 

hearing impaired subjects. It appears that the test is more discriminatory when the sound 

stimulus is at a lower intensity since the placement values are smaller at the 55dB intensity level 

versus at the 60 and 65 dB levels. The average (sd) values are .029 (.057), .053 (.106), and .071 

(.127), respectively.  The p-value for comparing the averages at  55 and 65dB  is < .01 using the 

bootstrap technique.  Interestingly the 55 dB stimulus appears to work better than the 65dB 

stimulus for most individuals as can be seen from the scatterplot in Figure 4 (b). That is, the test 

results for most hearing impaired subjects appeared more abnormal with the lower intensity 

stimulus, as evidenced by smaller placement values. 

Relationship with ROC analysis 

Figures 3(c) and 4(c) show the cumulative distributions (cdf) of standardized markers for 

cancer patients and for hearing impaired subjects respectively. The cdf corresponding to p on the 

x-axis is the proportion of values that are ≤ p. Interestingly these cumulative distribution curves 

are identical to ROC curves for the markers. The general argument is as follows: Let c be the 

threshold value that corresponds to the false-positive rate p, FPR pc =)( . Consider the point 

cdf(p) on the cumulative distribution curve. Observe that a subject’s placement value is ≤p if and 

only if his marker value Y ≥c. Therefore the proportion of affected subjects with placement 

values ≤p, namely cdf(p), is equal to the proportion with marker values ≥c, i.e., TPR )(c . So, 

each point (p, cdf(p)) on the cumulative distribution curve is a point (FPR(c), TPR(c)) on the  

ROC curve and vice versa. A mathematical argument is given in Pepe and Cai.15  

There are two interpretations then for the curves shown in Figures 3(c) and 4(c). 

Interpreted as cumulative distribution functions, we see the proportion of affected subjects with 

standardized marker values as or more extreme than p. Interpreted as ROC curves we see the 
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trade-offs between sensitivity and specificity that are possible when we apply thresholding 

classification rules to the marker in the population. Both interpretations are meaningful and 

useful. The accuracy of CA19-9 for classifying subjects with or without pancreatic cancer is 

clearly superior to CA-125. For example, the thresholding rule with specificity of 80% 

(FPR=.20) yields a sensitivity of 78% for CA19-9 but only 49% for CA-125. Said another way, 

78% of cancer patients have standardized CA-19-9 below 0.2 while only 49% have standardized 

CA-125 below 0.2. Similarly we see from Figure 4 (c) that classification accuracy is better when 

the lower sound intensity  is employed. 

ROC Summary Statistics 

The areas under the ROC curves in Figure 3(c) are .86 for CA 19-9 and .71 for CA-125.  

Those in Figure 4(c) yield AUCs of .97 at 55 dB, .95 at 60 dB, and .93 at 65 dB. Observe that 

these are exactly the same as 1 minus the mean placement values calculated earlier. The result 

holds in general that averaging standardizing markers for affected subjects yields 1–AUC. 

average (placement value)=1–AUC. 

It is intuitive for the perfect marker since all placement values for affected subjects are equal to 0 

and AUC = 1 for the perfect marker. Mathematical arguments for the general result are 

available.14,15 

The implication of this result is that statistical comparisons between markers using areas 

under ROC curves are the same as statistical comparisons between markers using placement 

value averages for diseased subjects. Therefore the p-values cited earlier that pertain to average 

placement values are also valid for comparing the AUCs in Figures 3(c) and 4(c). 
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DISCUSSION 

The main contribution of this paper is to suggest a standardization procedure to facilitate 

the evaluation of markers. Use of a reference distribution is a familiar concept. In laboratory 

medicine for example values outside of a normal healthy reference range often flag patients as 

having a medical condition. Standardization with respect to an age and gender matched reference 

population is used for anthropometric measurements. Standardization not only  provides better 

clinical interpretations but  makes possible valid comparisons of different populations. Our 

standardization can  be used to compare a marker's discriminatory capacity across different 

populations.  One could compare placement values in diseased men and diseased women, for 

example, to determine if the marker performs better in men or women. An additional compelling 

attribute of the standardization we propose is that it makes possible valid comparisons of 

different markers across the same population, as demonstrated with our two datasets.  

We also noted the close connection between analysing standardized markers of affected 

subjects and ROC analysis. With our approach one can analyze standardized markers in familiar 

ways, as we did for pancreatic cancer and hearing impairment markers, without explicitly 

considering operating characteristics of thresholding decision rules. Nevertheless we have shown 

that such considerations are implicitly at play and the approach is fundamentally the same as 

ROC analysis. 

Our approach offers avenues for addressing questions that should be, but are typically not 

asked about marker performance. In particular, regression analysis applied to placement values 

can be used to determine if covariates affect the capacity of a marker to distinguish cases from 

controls.15,19 Covariates may relate to characteristics of subjects tested or to the test itself. 16  To 
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illustrate with the audiology data, the following linear regression model was fit to the placement 

values for hearing impaired subjects:  

Z = Z (placement value) = 10 αα +  Intensity ε+  

with Z, the normal deviate corresponding to the placement value, and covariate, Intensity, being 

the sound stimulus intensity. The estimate =1α  0.023 (95% confidence interval =(-.019, .076); 

se=.024) indicates a trend for higher intensity levels being associated with larger placement 

values among hearing impaired subjects, i.e., reduced marker performance. Figure 4c shows the 

corresponding cumulative distributions of placement values. The more frequent occurrence of 

small placement values at the lower intensity levels is obvious from these curves. The better 

performance at lower intensity is also evident with the ROC curve interpretation. More complex 

models that include multiple independent variables simultaneously can easily be fit too. As noted 

earlier,  bootstrapping is applied to arrive at appropriate standard errors and p-values. 

Alternatively, recent work15,19 provides theory for making statistical inference about regression 

models using placement values. 
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Appendix: Testing for a difference in the mean Placement Value between two disease markers:  

Bootstrap estimation of the achieved significance level. 

 

With paired observations on the two markers, A and B, the test statistic is the average 

placement value difference between markers,  

( )∑ −=
i

A

i

B

i WWn
1θ̂ , 

where n = number of cases, and  W i
 is the placement value of the marker for case i and the 

superscript indicates the marker. The null hypothesis to be tested is 0 : 0H θ = . The sampling 

variability of placement values calculated for disease cases depends not only on marker 

variability among the cases but also among the controls used to estimate the reference 

distribution.   

 

In order to approximate the null distribution of θ̂  and estimate the achieved significance 

level, we sampled from the empirical distribution of θ̂  and centered the distribution at zero, the 

desired null mean.   Specifically, samples of paired marker observations, equal in size to the 

original case and control samples, were drawn separately, with replacement, from the observed 

case and control samples.  The test statistic, kθ̂ , was calculated for each set of case and control 

“bootstrap” samples, k = 1, ... 1000, and translated to conform to the null distribution by 

subtracting the original obsθ̂  from the bootstrap sample, obskk θθθ ˆˆˆ −=∗ . The achieved 

significance level of the test was then calculated as the proportion of the bootstrap ∗
kθ̂ ’s more 

extreme than the observed obsθ̂ , i.e. obsk θθ ˆˆ ≥∗ . 
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FIGURE LEGENDS 

Figure 1. Distributions of pancreatic cancer biomarkers in 51 subjects with pancreatic 

cancer and 90 subjects without cancer. 

Figure 2. Distributions of –SNR values from the DPOAE test in 57 ears with hearing 

impairment and in 147 ears without impairment at the 1416 HZ frequency. The test was 

applied using input stimulus of intensities 55 dB, 60 dB and 65 dB. Shown are –SNR values 

(rather than SNR values) to agree with the convention of higher marker values being more 

indicative of hearing impairment. 

Figure 3. Distributions of standardized biomarkers (placement values) in 90 subjects 

with pancreatic cancer. Shown are (a) frequency distributions (b) scatter plots and (c) 

cumulative distributions . 

Figure 4. Distributions of placement value standardized –SNR in 57 hearing impaired 

ears at 3 stimulus intensity levels (55 dB, 60 dB, and 65 dB). Shown are (a) frequency 

distributions, (b) scatter plots and (c) cumulative distributions . 
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