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Evaluating Markers for Treatment Selection Based on Survival

Time

Xiao Song1,∗,† and Xiao-Hua Zhou2

1 Department of Epidemiology and Biostatistics, College of Public Health, University of
Georgia, U.S.A.

2 Puget Sound Health Care System and University of Washington, Seattle, U.S.A.

SUMMARY

For many medical conditions several treatment options may be available for treating

patients. We consider evaluating markers based on a simple treatment selection pol-

icy that incorporates information on the patient’s marker value exceeding a threshold.

For example, colon cancer patients may be treated by surgery alone or surgery plus

chemotherapy. The c-myc gene expression level may be used as a biomarker for treat-

ment selection. Although traditional regression methods may assess the effect of the

marker and treatment on outcomes, it is appealing to quantify more directly the po-

tential impact on the population of using the marker to select treatment. A useful tool

is the selection impact (SI) curve proposed by Song and Pepe for binary outcomes [1].

However, the current SI method does not deal with continuous outcomes, nor does it

allow to adjust for other covariates that are important for treatment selection. In this
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paper, we extend the SI curve for general outcomes, with a specific focus on survival

time. We further propose the covariate specific SI curve to incorporate covariate

information in treatment selection. Nonparametric and semiparametric estimators

are developed accordingly. We show that the proposed estimators are consistent and

asymptotically normal. The performance is illustrated by simulation studies and

through an application to data from a cancer clinical trial.

KEY WORDS: biomarker; restricted survival time; selection impact curve; statistical

interaction.

1. INTRODUCTION

Selecting an appropriate treatment for patients is important when several treatment

options are available. Treatment selection may be facilitated by evaluating clinical

characteristics or biomarker measurements of patients at diagnosis. The rapidly ex-

panding biotechnologies, including gene expression arrays and imaging modalities,

show promises in providing useful biomarkers that may be used for selection of the

optimal treatment of disease [2]. For example, patients with colon cancer can be

treated by surgery alone or surgery plus chemotherapy. Surgery alone is less expen-

sive and has less side effects than surgery plus chemotherapy, but it may be less

effective as well, at least for some patients. It is desirable to identify the patients who

may benefit more from surgery based on biomarkers. A possible useful biomarker

is the c-myc gene, which is overexpressed in approximately 70% of human colonic

tumors [3]. Based on a study conducted by the Eastern Cooperative Oncoloty Group

(ECOG), Augenlicht et al. suggested that the c-myc gene may be of clinical prognos-

tic importance in patients with colon cancer [4]. Using a subset of the cases from this
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clinical trial, Li and Ryan indicated that there is an interaction between the c-myc

gene expression level and the two treatments on overall survival and disease progres-

sion free survival [5]. Using the same dataset, we estimated the overall survival and

the disease progression free survival by treatment and c-myc gene expression level.

Figure 1 shows the Kaplan-Meier estimates of the disease progression survival for

the four combinations of the two treatments and whether the c-myc gene expression

level exceeding 1.05, the 25% sample percentile. Although surgery plus chemother-

apy seems prolonging disease progression free survival better than surgery alone for

patients with c-myc level > 1.05, it is not that clear which treatment is better for

patients with c-myc level ≤ 1.05. The Kaplan-Meier estimates for the overall survival

show a similar pattern (not shown). This motivated us to assess using the c-myc gene

expression level for treatment selection for colon cancer patients.

In clinical protocols, treatment selection is often based on whether a marker value

exceeds a threshold. Some common examples include serum creatine > 1.3 mg/dL,

cholesterol > 200 mg/dL, and serum PSA > 4.0 ng/mL. As an analogy, we consider

selection of surgery alone versus chemotherapy plus surgery based on c-myc level

exceeding a threshold. To evaluate such policies, Song and Pepe proposed a graphical

tool, the selection impact (SI) curve, for selection between two treatments based on

binary response rate using a biomarker [1]. Let A = 0 denote one treatment and

A = 1 denote the other. The outcome T is dichotomous denoting success (T = 1) or

failure (T = 0) in curing a disease. Let Y be a continuous biomarker and larger values

of Y are potentially associated with better performance of treatment 1 versus 0 (Y

can be recoded if necessary to achieve this ). Consider the following treatment policy

that determines which treatment the patient receives based on a patient’s marker
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measure Y exceeding a threshold:

if Y > c , select treatment A = 1;

if Y ≤ c , select treatment A = 0, (1)

This implies that Y is known before treatment selection and generally a baseline

measurement. The population response (success) rate of the outcome corresponding

to this policy is

θ(v) = Pr{T = 1| treatment policy (1) }

where v = Pr[Y ≤ c] is the proportion of subjects with the marker value below c

and hence assigned to treatment 0. That is, θ is the proportion of subjects in the

population who respond if the treatment policy in effect is to assign a subject to

treatment 1 if his marker value exceeds c but to assign him to treatment 0 otherwise.

Observe that when c = −∞ or equivalently v = 0, the policy is that all patients

receive treatment 1 and none receive 0, while for c = ∞ or equivalently v = 1 all

patients receive treatment 0. As c increases from −∞ to∞, the proportion of subjects

assigned to treatment 0 increases from 0 to 1. There are two reasons for defining θ as

a function of quantile v. First, in evaluating a treatment policy of this sort, it will be

important to know the fractions of patients potentially assigned to treatment A = 0

versus A = 1 by the policy, 1 − v and v, respectively. Second, the display on this

scale allows one to compare policies based on different markers. In particular, even

if the markers are measured in different units, we can still compare the treatment

policies at a common percentile v, the larger θ(v) the better. The same idea has been

adopted for the receiver operative curve (ROC), which is widely used in evaluation of
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diagnostic tests [6, 7]. When the two treatments are comparable in all other aspects

including cost and side effects, then the optimal threshold maximizes the SI curve θ(v)

such that the overall success rate achieves the maximum. As illustrated in Figure 2,

based on the biomarker Y1, the best criteria would be to assign 40% patients to

treatment 0 whose biomarker value is less than the 40% percentile, while Y3 indicates

it would be best to assign all patients to treatment 1. Based on the biomarker Y2,

for any v between 0 and 0.4, the success rate would be the same if we assign patients

to treatment 0 whose biomarker value falls below the vth percentile. However, if

treatment 1 is more invasive, more expensive or has more side effects, we may want

to assign 40% patients to treatment 0 such that the overall success rate achieves the

maximum. Comparing the three biomarkers, it is obviously that policy based on Y1

achieves the best success rate.

The SI curve is essentially a curve of the population response rate versus the

percentile threshold. Compared to traditional regression models, this approach has

the advantage of quantifying more directly the potential impact on the population

of using the biomarker to select treatment. Specifically, we may choose an optimal

threshold based on the the SI curve. However, there is a need for further improvement

for wider applicability. First, the current SI curve methodology considers only binary

outcomes. It cannot be applied to continuous outcomes such as survival time, which

is frequently encountered in practice. For example, in the ECOG study, the outcome

of interest is the overall survival time and the disease progression free survival of the

colon cancer patients [5]. It may sometimes be desirable to select treatment based

on a utility measure that incorporates notions of cost and benefit when those factors

differ for the two treatments. Second, the current SI curve does not allow to adjust for
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other covariates, which may contain additional important information for treatment

selection. For colon cancer patients, the c-myc gene may be indicative for which

patients are likely to benefit more from surgery alone. The effect of c-myc gene may

be further impacted by covariates like gender and stage of cancer. For example, the

optimal threshold for c-myc gene expression level may be different for patients with

different covariate values. For example, Figures 3(a) and (b) show the Kaplan-Meier

estimates of disease progression free survival by treatment and c-myc gene expression

level above or below 1.05 for females and males separately. For either females or

males with c-myc level > 1.05, surgery plus chemotherapy seems better than surgery

alone in terms of prolonging disease progression free survival. However, for patients

with c-myc level ≤ 1.05, females seem benefited more from surgery plus chemothrapy

while it is not clear which treatment is better for males. In addition, the SI curve

methodology was not applied to any real dataset in [1]. It is of great interest to

demonstrate this method in real applications such as the ECOG study.

To overcome the limitations of the current SI curve methodology, we generalize

the current SI curve definition in two steps. First, we propose the SI curve for general

outcomes for evaluating markers on treatment selection; Second, we extend the SI

curve to adjust for covariates. In this paper, we focus specifically on survival time,

which is the outcome of interest in the ECOG data and is more challenging com-

pared to discrete and continuous outcomes without censoring. The same technique

can be easily adapted to the latter with only minor modifications. We propose the SI

curve based on the mean restricted survival time up to a given time L. The reason

of using mean restricted survival time is to avoid the infeasibility of estimating the

mean unrestricted survival time when censoring exists, that is, the mean unrestricted
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survival time may not be estimated if the largest observed survival time is censored

without some tail correction on the estimated survival function [8]. The technique

of restricting survival time has been used previously in estimating the mean lifetime

and quality-adjusted lifetime (see [9, 10] and the references therein). The restricted

survival time has also been widely used in practice, for example, in cancer statis-

tics, five year survival has been commonly used. Due to the existence of censoring,

the inference is more challenging than the binary case. A nonparametric estimator

is proposed to estimate the SI curve with no model assumptions on survival time.

To adjust for covariate effects, we further propose the covariate specific SI curve and

develop semiparametric estimators based on the proportional hazards model. Asymp-

totic properties of the estimators are derived using empirical process and U-process

theories. The approach can be adapted to uncensored continuous outcomes with some

modifications.

This paper is organized as follows. In Section 2, we define the SI curve for survival

time, develop the nonparametric estimator and derive its asymptotic properties. In

Section 3, we define the covariate specific SI curve. We further derive the semipara-

metric estimators and their asymptotic properties. The finite sample performance

of these estimators is assessed via simulation studies in Section 4 and illustrated by

application to the ECOG data in Section 5. The paper concludes with discussions in

Section 6.

7
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2. SELECTION IMPACT CURVE

2.1. Definition

We extend the SI curve to a general outcome W , that is, W can be either discrete

or continuous. We define the SI curve as

θ(v) = E {W |treatment policy (1)} .

Here v = Pr[Y ≤ c] is the proportion of patients assigned to treatment 0 under policy

(1). The SI curve considered in [1] is a special case of (2) when W is dichotomous.

In this paper, we focus on SI curve for survival time hereafter.

Using the notion of potential responses [11–13], for a = 0, 1, we define T a as the

survival time if a patient receives treatment A = a. It is impossible to observe T 0

and T 1 on the same patient; instead, we can only observe T = AT 1 + (1−A)T 0. Let

T ∗a = min(T a, L), be the corresponding restricted survival time by time L. Similarly,

T ∗0 and T ∗1 can not be observed on the same patient and only T ∗ = AT ∗1+(1−A)T ∗0

is observable. Both T and T ∗ are subject to censoring. We define the SI curve as the

mean restricted survival time corresponding to policy (1), that is,

θ(v) = E {T ∗ |treatment policy (1)} .

Noting that c is the v-th percentile yv of the biomarker Y and

E {T ∗ |treatment policy (1)} = P (Y > yv)E {T ∗ |treatment policy (1) andY > yv }

+P (Y ≤ yv)E {T ∗ |treatment policy (1) and Y ≤ yv } ,

under the common assumption that the potential responses (T ∗1, T ∗0) are independent
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from the treatment assignment A, it follows that

θ(v) = (1− v)E
{
T ∗1 |Y > yv

}
+ vE

{
T ∗0 |Y ≤ yv

}
(2)

(3)

When the two treatments are comparable, the optimal percentile vopt maximizes θ(v)

and the optimal threshold copt = F−1(vopt). Otherwise, a utility measure incorporating

the survival time, cost and side effects can be used. We illustrate an application of a

simple utility measure in Section 5.

2.2. Estimation

We now consider estimation of θ(v) using data obtained from a randomized trial

where the failure time is subject to censoring. Let C denote the censoring time. The

observed survival data consist of X = min(T,C) and ∆ = I(T ≤ C). Suppose the

observations (Xi, ∆i, Yi, Ai), i = 1, . . . , n, are an i.i.d. sample from the distribution of

(X, ∆, Y, A). We make the following assumptions: (i) patients enrolled in the trial are

a simple random sample from the population of interest; (ii) the treatment assignment

for patients in the trial does not depend on his marker value, that is, Ai and Yi are

independent.

Noting that E {T ∗a |Y > yv } = E {T |Y > yv, T = a} (a = 0, 1), together with the

fact that for a non-negative random variable W , E(W ) =
∫∞

0
P (W ≥ w)dw [14, Ch

20, Sec 21], (2) can be rewritten as

θ(v) = (1− v)

∫ L

0

S(1)(t, yv)dt + v

∫ L

0

S(0)(t, yv)dt,

where S(1)(t, y) = P (T ≥ t|A = 1, Y > y) and S(0)(t, y) = P (T ≥ t|A = 0, Y ≤

y). Therefore, an estimator of θ(v) can be obtained by substituting estimators for

9
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S(a)(t, y) (a = 0, 1) and yv. Here we use the Kaplan-Meier estimator of S(a)(t, y),

Ŝ(a)(t, y) =
t

0

{
1− N

(a)
i (ds, y)

R
(a)
i (s, y)

}
,

where is the product integral notation, N
(1)
i (t, y) = I(Xi ≤ t, ∆i = 1, Ai = 1, Yi >

y), N
(0)
i (t, y) = I(Xi ≤ t, ∆i = 1, Ai = 0, Yi ≤ y), R

(1)
i (t, y) = I(Xi ≥ t, Ai = 1, Yi >

y), and R
(0)
i (t, y) = I(Xi ≥ t, Ai = 0, Yi ≤ y), N

(a)
i (ds, y) = N

(a)
i (s, y) − N

(a)
i (s−, y).

To estimate yv, we use the nonparametric estimator ŷv = F̂−1
Y (v), where F̂Y (y) =

n−1
∑n

i=1 I(Yi ≤ y) is the empirical distribution of Y . Thus an estimator of θ(v) can

be written as

θ̂(v) = (1− v)

∫ L

0

Ŝ(1)(t, ŷv)dt + v

∫ L

0

Ŝ(0)(t, ŷv)dt.

This is a nonparametric estimator. It does not require any parametric assumptions

on the survival time and the biomarker. Moreover, it is invariant to any monotone

increasing transformation of the biomarker.

Now we derive the asymptotic properties of θ̂(v) using empirical process theory.

The idea is to first show that n1/2
{

Ŝ(a)(t, y)− S(a)(t, y)
}

converges to a Gaussian

process under some regularity conditions. Since θ̂(v) is a composite function of Ŝ(0),

Ŝ(1) and F̂Y , the asymptotic distribution of θ̂(v) is then derived by the functional delta

method [15, Ch 3.9]. Specifically, we can show that n1/2
{

θ̂(v)− θ(v)
}

converges to a

Gaussian process. The details of the asymptotic distribution and the proof are given

in [16].

The covariance formula for θ̂(v) contains the density function of Y and the deriva-

tive of the cumulative hazard functions of T conditional on (A = 1, Y > y) or

(A = 0, Y ≤ y). Usually smoothing techniques are needed to estimate these quan-

tities. In applications, to avoid the complexity of the smoothing approaches, for
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simplicity, we use the bootstrap method to calculate the standard error and confi-

dence band for θ(v). This is justified by the empirical process theory for the bootstrap

given in [15, Ch 3.9]. Let Θ = {(Xi, ∆i, Yi, Ai) : i = 1, . . . , n} be the observed data

set, and ΘB be the Bth resampling bootstrap dataset, where B = 1, . . . ,M . Let

θ̂B(v) be the estimator based on ΘB. Then supv∈[p,q] |θ̂B(v)− θ̂(v)| given Θ is asymp-

totically equivalent to supv∈[p,q] |θ̂(v) − θ(v)|, 0 < p < q < 1. Let cα be the 1 − α

quantile of supv∈[p,q] |θ̂B(v) − θ̂(v)|, then a level 1 − α confidence band for θ(v) is

(θ̂B(v)− cα, θ̂B(v)+ cα). The standard error of θ̂(v) can be estimated by the standard

deviation of {θ̂B(v) : B = 1, . . . , M}.

The optimal percentile vopt can be estimated by v̂opt, which maximizes θ̂(v). When

vopt is an interior point in the interval [0, 1], under some regularity conditions, it can

be shown that v̂opt is asymptically normal. The standard errors of v̂opt can be obtained

via bootstrap. The Optimal threshold coptcan be estimated by ĉopt = F̂−1
Y (v̂opt).

3. COVARIATE SPECIFIC SELECTION IMPACT CURVE

So far, we have considered treatment selection based only on the biomarker. There are

situations that covariates other than the biomarker may impact treatment selection.

Thus it is important to adjust for such covariates. For example, if we use c-myc gene

expression level to select patients for surgery alone or surgery plus chemotherapy, we

may want to adjust for sex. If the covariates are discrete, it is possible to consider a

separate SI curve for each covariate combination. However, this will not work when

there exist continuous covariates. In addition, even if all covariates are discrete, the

sample size for some covariate combination may be too small to obtain a reliable SI

curve estimate. It is noticeable that the SI curve bears some similarities to the ROC
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curve used to evaluate diagnostic tests based on a biomarker [17]. To account for

covariate effects, the ROC curve has been extended to the covariate specific ROC

curve [6, 7]. This motivates us to propose the covariate specific SI curve by analogy

to the covariate specific ROC curve.

3.1. Definition

Let Z denote the vector of K covariates that may impact the treatment selection

other than the biomarker. To incorporate the covariates, we consider the following

treatment policy given Z = z:

if Y > yv,z , select treatment A = 1;

if Y ≤ yv,z , select treatment A = 0. (4)

Here yv,z is the vth quantile of the conditional distribution of Y given Z = z. The

corresponding covariate specific SI curve is defined as

θ(v|z) = E {T ∗ |treatment policy (4)}

Using similar arguments as those for the unadjusted SI curve θ(v), we can show that

θ(v|z) = (1− v)E
{
T ∗1 |Y > yv,z,Z = z

}
+ vE

{
T ∗0 |Y ≤ yv,z,Z = z

}
. (5)

This definition is general to any outcomes, include binary and continuous outcomes.

It reduces to the unadjusted SI curve given in (2) when there is no covariate.

The covariate specific SI curve considers treatment selection conditional on the

covariate Z, which may be different for various values of Z. For a given value of

z, the optimal threshold v̂opt(z) can be obtained by maximizing θ(v|z). It provides

a useful tool for policy makers to choose different biomarker thresholds based on the

values of Z.
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3.2. Estimation

Now we consider estimation of θ(v|z) using data obtained from randomized trials,

which satisfies condition (i) and (ii) described in Section 2.2 and (iii)′ A is independent

of Y given Z. Suppose we have independent and identically distributed observations

(Xi, ∆i, Yi, Ai, Zi), i = 1, . . . , n.

With some simple algebra, it can be shown that (5) can be rewritten as

θ(v|z) =

∫ 1

v

∫ L

0

S(t|u, z, 1)dtdu +

∫ v

0

∫ L

0

S(t|u, z, 0)dtdu, (6)

where S(t|u, z, a) = P{T ≥ t|Y = yu,z, Z = z, A = a}. An estimator of θ(v|z) can

be obtained based on (6).

Assume that the hazard of failure follows the proportional hazards model

λi(t|Vi, Zi, Ai) = λ0(t) exp
[
βT

0 g {Vi,Zi, Ai}
]
, (7)

where Vi = FY |Z(Yi|Zi), FY |Z(·|z) is the conditional distribution function of Y given

Z = z, and g(v, z, a) is a known r-dimensional function. It is useful to write the

model in terms of Vi, since θ(v) is considered a function of v for the reasons mentioned

earlier. For example we might use the model

λi(t|Vi, Zi, Ai) = λ0(t) exp
[
β1D(Vi,Zi) + βT

2 Zi + β3Ai + β4D(Vi, Zi)Ai

+βT
5 D(Vi,Zi)Zi + β6ZiAi + βT

7 D(Vi,Zi)ZiAi

]
,

where D(v, z) is a function of v and z. When D(v, z) = F−1
Y |Z(v|z), D(vi,Zi) is just

the biomarker Yi. Further assuming that FY |Z(·|z) is known, based on (6), we can

estimate θ(v|z) by

θ̃(v|z) =

∫ 1

v

∫ L

0

Ŝ(t|u, z, 1)dtdu +

∫ v

0

∫ L

0

Ŝ(t|u, z, 0)dtdu,

13
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where

Ŝ(t|v, z, a) = exp
{
−Λ̂0(t) exp

(
β̂T g(v, z, a)

)}

is an estimator for the survival function S(t|v, z, a), β̂ is the partial likelihood esti-

mator of β0, and Λ̂0(t) is the Breslow estimator of the baseline cumulative hazard

function Λ0(t).

In practice FY |Z is usually unknown. We assume the conditional distribution of

Y given Z following the semiparametric model [18, 19],

FY |Z(y|z) = h(y − γT
0 z), (8)

where h(·) is an unknown distribution function. The estimator γ̂ of γ0 can be obtained

by solving
n∑

i=1

(Yi − γT Zi)Zi = 0.

The function h(y) can be estimated by

ĥ(y; γ̂) = n−1

n∑
i=1

I(Yi − γ̂T Zi ≤ y).

Let β̃ be the solution to the partial likelihood estimating equation with FY |Z(y|z)

replaced by ĥ(y− γ̂T z; γ̂) and Λ̃0(t) be the corresponding Breslow estimator of Λ0(t).

An estimator of θ(v|z) is

θ̃∗(v|Z) =

∫ L

0

∫ 1

v

S̃(t|v, z, 1)dudt +

∫ L

0

∫ v

0

S̃(t|v, z, 0)dudt,

where

S̃(t|v, z, a) = exp
{
−Λ̃0(t) exp

(
β̃T g(v, z, a)

)}
.

Note that both θ̃ and θ̃∗ can also be used in the case of no covariates. Since these esti-

mators are semiparametric estimators, they are more efficient than the nonparametric
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estimator θ̂ under the correct model assumptions. However, if the model assumptions

are violated, inference based on these estimators can be misleading. We may need

to transform the biomarker appropriately to assure that the proportional hazards

assumption holds. In contrast, the nonparametric approach is invariant to monotone

increasing transformations.

Under some regularity conditions, we can show that both n1/2
{

θ̃(v|z)− θ(v|z)
}

and n1/2
{

θ̃∗(v|z)− θ(v|z)
}

converge to zero-mean Gaussian processes. The deriva-

tion is involved with application of empirical process and U-process theories. The

details of the asymptotic distribution and the proof are given in [16]. A consistent

estimator for the variance of θ̃(v|z) is given in equation (B.4), which involves complex

integrals. The variance formula for θ̃∗(v) is even more complicated and involves the

derivative of the unknown function h(·). In practice, by analogy to the nonparametric

case, we can use the bootstrap method to compute estimates of the standard errors

and confidence bands for θ̃(v|z) and θ̃∗(v|z).

The optimal percentile vopt(z) can be estimated by ṽopt(z) and ṽ∗opt(z), which

maximizes θ̃(v|z) and θ̃∗(v|z) respectively. When vopt(z) is an interior point in the

interval [0, 1], under some regularity conditions, it can be shown that ṽopt(z) and

ṽ∗opt(z) are asymptotically normal. The variance of ṽopt(z) and and ṽ∗opt(z) can be

obtained via bootstrap. The optimal threshold vopt(z) can be estimated by c̃opt(z) =

FY |Z(ṽopt(z)|z) and c̃∗opt(z) = F̂Y |Z(ṽ∗opt(z)|z) correspondingly.

Note: We have derived the asymptotic properties of estimators of the overall SI

curve and the covariate adjusted SI curve in an interval excludes v = 0 and v = 1.

However, the asymptotic normality still holds at v = 0 and v = 1 by noticing that the

nonparametric estimator essentially does not include the term yv at v = 0 and 1 and
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the proof can be easily modified for the asymptotic normality of the semiparametric

estimators.

4. SIMULATION STUDIES

Simulation studies were conducted to assess the finite sample properties of the esti-

mators. We assess the performance of the estimators at boundary points v = 0 and

v = 1 as well as internal v points.

Case I : We first considered the simple case of no covariates when both the non-

parametric and semiparametric estimators can be used. We generated data for 100

and 300 patients in a randomized trial with P[A = 1] = 0.5. The marker Y was

generated from the standard normal distribution. The survival time was gener-

ated according to the proportional hazards model (7) with g(v, z, a) = (v, a, va)T ,

β = (1, 0.5,−2.6)T , and λ0(t) = 0.1. Censoring time was generated from an expo-

nential distribution with mean 30 and truncated at 20, leading to a censoring rate of

about 30%. Consider L = 15, and the SI curve is shown in Fig. 4.

We estimated the SI curve using θ̂, θ̃ and θ̃∗ for 500 simulated data sets. The

estimated standard errors were computed by the bootstrap method using 100 resam-

pled data sets for all the estimators. For each estimator, the 95% Wald confidence

intervals were calculated. Table 1 presents the results for v = 0.0, 0.1, . . . , 1.0. All

the estimators exhibit negligible bias, and the standard errors track the true standard

deviations of the estimators well. The coverage probabilities are close to their nomi-

nal levels. As expected, θ̃∗ is less efficient than θ̃ because the true FY is used for the

former while FY is estimated for the latter, but the efficiency loss is small. Moreover,

θ̃∗ is more efficient than the nonparametric estimator θ̂ as expected.
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Case II : To investigate the robustness of the estimators, we also conducted simu-

lations under similar scenarios as above except that the survival time was generated

from a gamma distribution with the shape parameter equal to 4 and the scale param-

eter equal to {5λi(t, Yi,Zi)}−1, where λi(t, Yi,Zi) has the same form of the hazard

in Case I with β = (−4,−2, 1)T and λ0(t) = 2. In this case, the survival model is

misspecified for the semiparametric estimators. The results are shown in Table 2.

The nonparametric estimator θ̂ still works well while the semiparametric estimators

are obviously biased with poor coverage probabilities for the confidence intervals.

Case III: We then considered the case when a covariate Z was included. The

covariate Z was generated from a standard normal distribution. The biomarker Y

equals Z plus a standard normal error. The survival time followed the proportional

hazards model (7) with g(v, z, a) = (v, a, z, va, vz, az, vaz)T , β = (1,−0.7,−0.1,−0.9,

−0.3, 0.8,−0.9), and λ0(t) = 0.2. Censoring time was generated from an exponential

distribution with mean 20 and truncated at 8, leading to a censoring rate of about

30%. Consider L = 5 and the covariate SI curves for z = −1, 0, 1 are shown in Fig. 5.

We estimated the covariate specific SI curves for 500 simulated datasets with n = 100

and 200 using θ̃ and θ̃∗. The results in Table 3 show similar patterns as above and

both estimators work well.

We all assessed the estimation of the optimal percentile under case I, where the

optimal percentile vopt = 0.196. The results are shown in table IV. The confidence

interval are computed via bootstrap, which works better than the asymptotic confi-

dence interval at these sample sizes in our numerical study. Overall the estimators

work reasonably well. The nonparametric estimator is less efficient than the semi-

parametric estimators.
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In summary, the nonparametric estimator θ̂ is robust while the semiparametric

estimators θ̃∗ and θ̂ depend on the correct specification of the models. Obvious

deviances between these estimators may indicate violation of the model assumptions

for the semiparametric estimators. We recommend using the nonparametric estimator

when there is no covariates. Extension of the semiparametric estimators to more

flexible models is discussed in Section 6.

5. APPLICATION

As an illustration, we applied the proposed approaches to a subset of the ECOG clin-

ical trial, which was analyzed in [5]. In this subset, disease progression free survival

and c-myc expression level was measured on 92 patients randomized to receive surgery

alone or surgery plus chemotherapy, among which 47 were males and 45 were females.

The analysis in [5] focused on assessing whether there was a c-myc effect and/or a

treatment/c-myc interaction. This is different from our goal here, which is to assess

whether the c-myc expression level can be used to select patients for surgery alone

versus surgery plus chemotherapy. We estimated the SI curve using both the nonpara-

metric and semiparametric methods. For the semiparametric approach, we included

log c-myc expression level Y , treatment indicator A = I(surgery plus chemotherapy)

and their interaction in the the proportional hazards model. This model was also

used in [5]. This corresponds to g(v, z, a) = (v, a, va)T in the proportional hazards

model (7). We consider the mean disease progression free survival time restricted

to five years. Since the distribution FY (y) is unknown, we estimated the SI curve

using the estimators θ̂(v) and θ̃∗(v). The estimates and the 95% pointwise confidence

intervals and simultaneous confidence bands are shown in the left panel of Figure 6.
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The semiparametric estimate is essentially a smoothed version of the nonparametric

estimate, which indicates that the corresponding model assumptions are appropriate

for this dataset. The estimated SI curves seem to decrease with v with the estimated

optimal percentile 0.00 (se= 0.153). That is, assigning all patients to surgery plus

chemotherapy may achieve the maximum mean survival time within 5 years. How-

ever, this may not be the optimal treatment policy considering that surgery plus

chemotherapy has more side effects than surgery alone and the estimated SI curve is

almost horizonal for v in (0, 0.3).

To take into account of the side effect of chemotherapy, we may consider a utility

measure U , for example, U = T ∗ − dA, where d is a nonnegative weight denoting

the deteriorating effect of chemotherapy on the survival time; that is, a person may

prefer surgery alone if the additional chemotherapy does not lengthen the survival

time by at least d. The SI curve based on U can be obtained by shifting the SI curve

based on T ∗ by w(1− v) and hence can be easily estimated. The optimal percentile

can be achieved by maximizing the SI curve based on U . The right panel of Figure 6

shows the corresponding nonparametric and semiparametric estimates with d = 0.5.

The estimated optimal percentile is 0.322 (se= 0.245) and corresponding estimated

threshold is 0.118 based on the semiparametric SI curve estimate. This indicates that,

considering the c-myc expression level and the side effect of chemotherapy, the optimal

treatment policy may be the one that assigns patients whose log c-myc expression

level falls below 0.118 (32.2% percentile) to surgery alone. The maximum point of

the nonparametric estimate may be less stable since the non-smoothness of the curve.

We do not see significant difference on either estimate across v which may due to the

small sample size of this dataset. Whether the difference is clinically important may
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be worth future investigation with larger clinical trials.

As we have discussed in Section 1, it is also of interest to assess whether the

gender of the patient may affect the treatment selection. Although we may estimate

a separate SI curve for males and females, the estimate may be unreliable because of

the small sample size in each group. We thus estimated the covariate specific SI curve

based on T adjusting for Z = I(gender=male) using the semiparametric estimator

θ̃∗(v|z) by further including Z and all the two-way and three-way interactions in the

proportional hazards model considered above. The left panel of Figure 7 shows the

results. For male patients, the SI curve seems to be horizontal when v is small and

decline thereafter, while for female patients the SI curve tends to decrease for v from

0 to 1. This indicates the optimal thresholds treatment selection should be different

for males and females. The estimated optimal percentiles are 0.00 (se= 0.265) are

females and 0.130 (se= 0.207) with the corresponding estimated threshold −0.033 for

males. To take into account of the side effect of chemotherapy, the covariate specific

SI curves based on U were also estimated as shown in the right panel of Figure 7. The

estimated optimal percentiles are 0.00 (se= 0.345) for females and 0.239 (se= 0.252)

with the corresponding estimated threshold 0.077 for males. Thus we may want to

assign almost all females to surgery plus chemotherapy while assign male patients

whose log c-myc expression level fall below 0.077 (23.3% percentile) to surgery alone.

To ensure the validity of these estimators, we checked the proportional hazards

assumptions for the models using the method in [20, Ch 6.2]. There were no evidences

against the proportional hazards assumptions.
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6. DISCUSSION

We have proposed the SI curve for the survival time to evaluate the impact of a

treatment selection policy based on Y > yv. Both nonparametric and semiparametric

estimators are derived. We recommend using the nonparametric estimator when it is

not necessary to adjust for covariates because of its robustness. The semiparametric

estimators are less robust, but can be more efficient under the correctly specified

model. In addition, they can easily incorporate covariates in estimation. Whether

to use the unadjusted or adjusted SI curve depends on the specific treatment policy,

that is, whether we would like to select the treatment based on the biomarker alone.

For the semiparametric approach, we have used the standard proportional hazards

model to characterize the relationship between the survival time and the marker and

the covariates. This can be easily adapted to more flexible models. For example, we

can use other survival models, such as the stratified proportional hazards model, the

accelerated failure time model and the transformation model, as long as we can obtain

consistent estimators for the survival distribution. The nonparametric transformation

model [21] may be an attractive extension as it includes most popular survival models

as special cases, such as the proportional hazards model and the accelerated failure

time model. The semiparametric location model (8) is used only for estimating the

conditional distribution function FY |Z . We can remove this assumption and estimate

FY |Z by kernel smoothing method when the number of covariates is small and the

sample size is relatively large, since the kernel smoothing method may not work well

otherwise.

Although the SI curve is proposed based on the restricted mean survival time, it

can be extended to other statistical measures. For example, a utility function that
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incorporates notions of cost and quality of life might be employed. Although we have

focused on survival time as outcomes, the approach can be adapted to discrete and

continuous outcomes with minor modifications.

In this paper, we consider SI curves based on a single biomarker. In practice,

there may exist multiple biomarkers. For example, multiple genes may be related to

a specific disease or affect the survival time. An important issue is how to combine

these biomarkers for treatment selection. On the other hand, it may be needed to

select among more than two treatments. These issues will be investigated in our

future research.
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Table IV. Estimation of the optimal percentile under case I.

n = 100 n = 300
vopt est SD SE CP est SD SE CP

v̂opt 0.192 0.271 0.133 0.133 0.938 0.239 0.095 0.097 0.954
ṽopt 0.192 0.187 0.118 0.105 0.916 0.190 0.077 0.071 0.926
ṽ∗opt 0.192 0.189 0.120 0.108 0.928 0.190 0.079 0.073 0.928
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Figure 1. Kaplan-Meier estimates of disease progression free survival by treatment
and c-myc level
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Figure 3. Kaplan-Meier estimates of disease progression free survival by treatment
and c-myc level for different genders.
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Figure 4. True SI curve in simulation. Solid line, proportional hazards model; dashed
line, Gamma survival distribution.
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Figure 5. True covariate specific SI curve in simulation.
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Figure 6. Estimated SI curve for ECOG data. Left panel is based on 5 year restricted
survival time T ∗, right panel is based on the utility function U = T ∗ − 0.5A. Non-
parametric estimate θ̂, dotted curve; semiparametric estimate θ̃, solid curve. 95%
confidence bands are shown with the outer curves, 95% pointwise confidence intervals
are shown with the intermediate curves, the estimates themselves are shown with the
center curves.
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Figure 7. Estimated SI curves adjusted for gender for ECOG data. Left panel is
based on 5 year restricted survival time T ∗, right panel is based on the utility function
U = T ∗−0.5A. 95% confidence bands are shown with the outer curves, 95% pointwise
confidence intervals are shown with the intermediate curves, the estimates themselves
are shown with the center curves.
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