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1 Introduction

Diagnostic tests are important for early detection and guiding treatment of various diseases.

A gold standard test, if one exists, ideally provides definitive examination of disease status,

but often results in high cost and can be invasive. To counter these drawbacks, less expensive

or invasive diagnostic tests are often used for the primary assessment. The accuracy of a

diagnostic test can be evaluated and assured by comparing it to the definitive gold stan-

dard test. Statistics such as sensitivity and specificity, which respectively account for the

proportion of true positives and true negatives, have been commonly used when both the

scale of a diagnostic test and true disease status are binary. The Receiver Operating Char-

acteristic (ROC) curve plots a test’s sensitivity against its false negative rate (1-specificity)

when the test is in either an ordinal- or continuous-scale, and the area under the ROC curve

has been long served as a composite index to describe the discriminatory property of a such

test. Zhou, Obuchowski, and McClish (2002) provided a comprehensive account of statistical

methods for a two-class disease diagnosis, when the true disease status is either the presence

or absence of the disease.

In medical practice, there are situations in which the presence or absence of the dis-

ease is not sufficient in describing and presenting the severity and progress of the disease.

For instance, in the study of Alzheimer’s disease (AD), patients are diagnosed by autopsy

as in low likelihood of AD, intermediate likelihood of AD, or high likelihood of AD. The

definitive diagnosis for differential likelihood indicates AD neuropathology severity, which

may be reflected in the degree of cognitive or neuropsychological decline, and may have an

impact on the decision of nursing and treatment plans. Diagnostic tests capable of discern-

ing patients among these three classes of severity are then of clinical importance. In the

literature, the ROC methodology has been extended to three-class disease status problems

by several authors (Scurfield, 1996; Mossman, 1999; Dreiseitl, Ohno-Machado, and Binder,

2000, Obuchowski, 2005, Nakas and Yiannoutsos, 2004 and 2006, and Xiong et al., 2006).
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Analogous to the two-way ROC curve, Scurfield (1996) defined the three-way ROC

surface as a graph built on the three true classification rates. If we denote D̂ and D as the

rated and true disease status, the three axes of the surface are the three correct classification

rates P (D̂ = k | D = k), for k = 1, 2, 3. There was no direct account to the six false

classification rates P (D̂ = k1 | D = k2), for k1 �= k2. By varying the decision rules imposing

upon a diagnostic test T to determine D̂, points on the surface are obtained from the

contingency tables between D̂ and D. For either an ordinal- or continuous-scaled T , if a

higher value of T corresponds to a higher value of D, the decision rule is defined by a pair

of ordered decision thresholds (d1, d2), such that D̂ = 1 if T ≤ d1, D̂ = 2 if d1 < T ≤ d2,

and D̂ = 3 if T > d2. The points (1, 0, 0), (0, 1, 0) and (0, 0, 1) are on every ROC surface,

and the lines connecting them result in the surface corresponding to a test without any

discriminatory power among the three classes. The surface corresponding to a perfect test

is the surface of a unit cube. The volume under the ROC surface can be a useful index

for the accuracy of a three-class diagnostic test. It has been shown that the volume under

the ROC surface equals the probability that diagnostic measurements of any three patients,

one from each class, are in an correct order. The volume under the ROC surface of 1/6

corresponds to a test without discriminatory power, and the value of 1 indicates a perfect

test. We note that two tests can have similar volumes under the ROC surfaces, but different

ROC surfaces, for instance, one test may differentiate disease category 1 very well while the

other test may do better in differentiating disease category 3. Caution must be taken when

doing the comparison between two ROC volumes.

In practice, it is plausible that only a subgroup of patients who initially are tested

subsequently receives the definitive assessment for disease status. Subjects may refuse or

simply are not capable of participating in the definitive examination. The mechanism by

which patients are selected for verification may be variable. For example, in the study of

Alzheimer’s disease, the definitive examination is done through a brain autopsy. Patients

might still be alive resulting in not being verified, or they died but no autopsy was performed.

3

http://biostats.bepress.com/uwbiostat/paper315



The selection for an autopsy may depend on the degree of cognitive impairment, which may

also affect the clinical diagnosis of Alzheimer’s disease. In the assessment of diagnostic

accuracy, omission of those nonverified cases can seriously bias the estimate, and the bias is

referred to as verification bias (Begg and Greenes, 1983).

There have been methods proposed in the literature to account for the presence of

verification bias for a two-class disease status. Gray et al. (1984) and Zhou (1996) both

derived the maximum likelihood estimation for the area under the ROC curve when disease

verification is subject to selection bias. Harel and Zhou (2006) adopted a multiple imputation

framework. Alonzo and Pepe (2005) proposed and compared imputation and reweighting

bias-corrected estimators of ROC curves and area under the ROC curve for continuous

tests. Kosinski and Barnhart (2003), and Rotnitzky et al. (2006) suggested a method for

correcting for non-ignorable verification bias. In this paper, we extend the methodology

to the three-class disease status problems. We formulate the presence of verification bias

into the likelihood-based framework. The proposed approach is flexible in allowing for the

selection mechanism to depend on initial test results and/or any relevant discrete baseline

covariates. Methods for comparing diagnostic tests in the presence of verification bias have

also been developed.

The rest of the paper is organized as the following. We introduce the motivating re-

search of Alzheimer’s disease in Section 2. In Section 3, we propose our method when the

selection is related to the test results, and further incorporate discrete baseline covariates

into the proposed method in Section 4. We provide an extension to the comparison between

two volumes under the ROC surfaces in the presence of differential verification in Section 5.

In Section 6, we apply the proposed method to the motivating application on Alzheimer’s

disease described in Section 2. In Section 7, we conduct an extensive simulation to demon-

strate finite-sample performance of the proposed method. The simulation is set up to cover

different true volumes under the ROC surfaces. We discuss some future research directions
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in Section 8.

2 The study of Alzheimer’s Disease

The National Alzheimer’s Coordinating Center (NACC) is funded to facilitate collaborative

research and maintain a database of information collected by the Alzheimer’s Disease Centers

(ADCs) throughout the United States of America. These centers have conducted clinical

and laboratory research on the causes and clinical courses of Alzheimer’s disease (AD). Most

patients at ADCs were referred or self-referred for evaluation of possible dementia, and they

were followed over time with periodic clinical evaluation and cognitive testing. For patients

who die, permission for brain autopsy was sought.

The definitive examination of Alzheimer’s disease was based on the extent of neuritic

plaques and neurofibrillary tangles, the hallmarks of AD, at brain autopsy. The NIA/Reagan

Institute criteria, based on the frequency of both plaques and tangles in the neocortex to link

to the severity of AD pathology, were graded as no or low (D = 3), intermediate (D = 2),

or high likelihood (D = 1) of dementia being due to AD. The NIA criteria were absent for

patients still alive or who died but had no brain autopsy. The search for clinical diagnostic

tools of AD has long been needed and initiated to ensure prompt health care and treatment

to AD patients.

In the study, a patient’s cognitive function was measured by the latest Mini-Mental

State Examination (MMSE) score recorded prior to death. The MMSE (Folstein, Folstein,

and McHugh, 1975), is a screening tool that evaluates orientation to place, orientation to

time, registration, attention and concentration, recall, language, and visual construction. It

is scored as the number of correctly completed items, and could range from 0 (too impaired

even to answer questions) to 30 (perfect score, cognitively intact). For elderly adults (the

group of patients normally at a higher risk for AD), MMSE scores were used by Reisberg et

al. (2003) and Just (2004), to assess patients with either no AD (MMSE>26: dMMSE=4),
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mild AD (15≤MMSE≤26: dMMSE=3), moderate AD (10≤MMSE≤14: dMMSE=2), or

severe AD (MMSE<10: dMMSE=1). This MMSE-based clinical diagnosis, referred to as

dMMSE, provides a gateway for AD assessment. An alternative approach for AD assessment

is through clinical evaluation for dementia (CDD) by clinicians. With access to various

neuropsychological, cognitive and medical image assessments, experienced clinicians were

able to coordinate the information for the evaluation of dementia. Based on the degree

of abnormal cognition, patients were categorized into one of the three groups, namely AD

dementia (CDD=1), mild cognitive impairment (CDD=2), or non-dementia (CDD=3).

Among a total of 18,838 patients in a subset of a NACC dataset, only 2,497 had died

and agreed to brain autopsy. The selection for autopsy verification was clearly dependent of

patients’ performance on dMMSE and CDD. For instance, based on dMMSE scores, 28.9%

of patients with the diagnosis of severe AD were verified with an autopsy, while only 14.3%,

9.5%, and 9.2% of patients respectively diagnosed as moderate, mild, and no AD underwent

an autopsy. The verification rate increased with the severity of the assessment. For CDD, the

proportions of verification are respectively 15.4%, 9.0%, and 11.0% for patients determined

as AD dementia, mild cognitive impairment, and non-dementia. In this obvious presence of

differential verification among patient groups, the accuracy of using dMMSE and CDD as

diagnostic tools for AD severity is of interest, as well as the comparison between the two.

To further explore the data, we note that the study participants came from eight distinct

ADCs across the United States. Depending on the majority of patient characteristics, which

might vary geographically, verification rates may differ across centers. Figure 1 shows the

verification rates across the eight centers for each of the classification determined by dMMSE

and CDD. It is clear to see that the probability of being verified varies not only among the

test categories, but also among the centers. For instance, the rate of verification obviously

decreased with the dMMSE classification for the eighth ADC, whereas the rates of verification

when dMMSE=1 or dMMSE=4 were about twice as much the rates when dMMSE=2 or

6

Hosted by The Berkeley Electronic Press



dMMSE=3, for the third ADC. In the evaluation of the overall accuracy of dMMSE and

CDD, it may be more plausible to account for center differences in verification. On the

other hand, some researchers believe that the correlation between the test measurement

(dMMSE or CDD) and the autopsy result would vary across different centers, partly due

to the differential dependence of the test and autopsy classification on the center. This

predisposition would then lead researchers to focus on the center-specific evaluation instead

of the overall evaluation.

3 Test-dependent verification

For three-class disease status problems, Scurfield (1996) defined the three-way ROC surface

by points whose coordinates are the three correct classification rates, over all possible pairs

of ordered decision thresholds. We let T denote an ordinal test measurement ranging from

1 to M, D denote the true disease status, and a higher value of T corresponds to a higher

value of D. For any pair of ordered decision thresholds (d1, d2), where 0 ≤ d1 < d2 ≤ M ,

the following decision rule may be applied: if T ≤ d1 then D̂ = 1, else if d1 < T ≤ d2 then

D̂ = 2, else D̂ = 3. Here D̂ indicates the random variable of disease diagnosis based on T .

Given (d1, d2) and the independence among study patients, the three correct classification

rates, for k = 1, 2, 3, are defined as

P (D̂ = k | D = k) = P (dk−1 < T ≤ dk | D = k) =

{
0, d̄k−1 > dk∑dk

i=d̄k−1
πik, d̄k−1 ≤ dk

, (3.1)

where πik = P (T = i|D = k), d̄k−1 is the smallest integer greater than dk−1, and dk is the

largest integer less than or equal to dk. We specify the boundary conditions as, d0 = 0 and

d3 = M . If the unknown parameters πik in (3.1) are replaced by their estimates, we can

then obtain the estimates of the three correct classification rates, and further, construct the

empirical ROC surface over all possible pairs of decision thresholds, (d1, d2). In this section,

we derive the maximum likelihood (ML) estimates of πik’s when differential verification is

present.
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Nakas and Yiannoutsos (2004) used the following notation system and demonstrated

the volume under the ROC surface is given by

θ = P (Y1 < Y2 < Y3) +
1

2
[P (Y1 < Y2 = Y3) + P (Y1 = Y2 < Y3)] +

1

6
P (Y1 = Y2 = Y3),

where Yk indicates the test measurement obtained from the kth disease group, for k = 1, 2, 3.

To describe it in words, the volume under the ROC surface equals the probability that

the measurements T of three randomly chosen patients, one from each disease group, are

correctly ordered. Their results assumed that each study subject had disease verification.

With a finite support of T , the volume θ is equivalent to

θ =
M−2∑
i=1

M−1∑
j=i+1

M∑
k=j+1

πi1πj2πk3 +
1

2

{
M−1∑
i=1

M∑
j=i+1

(πi1πj2πj3 + πi1πi2πj3)

}
+

1

6

M∑
i=1

πi1πi2πi3. (3.2)

Both the ROC surface and its volume can be expressed as functions of πik’s. Following

Bayes’ theorem, we know that

πik = P (T = i|D = k) =
τiφki∑M

j=1 τjφkj

, (3.3)

where τi = P (T = i) and φki = P (D = k|T = i), with τM = 1 − ∑M−1
i=1 τi and φ3i =

1 − φ1i − φ2i. To estimate πik’s, one may first need to have proper estimates (with account

for verification bias) for all τi’s and φki’s.

We propose a likelihood-based approach to estimate parameters τ = (τ1, . . . , τM−1) and

φ = (φ1, . . . , φM), where φi = (φ1i, φ2i). The observed data with a differential verification

status among patients can be summarized as in Table 1. We denote V as the disease

verification indicator, which equals one if the patient receives the definitive examination,

and equals zero otherwise. When V = 0, the patient is not selected for disease verification,

and hence, the summarized frequencies are only available for test values collapsed over all

three disease states.

We make the following assumption about the selection mechanism. We assume the

chance of getting verified is conditionally independent of the unknown true disease status,
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given the test measurement. In other words, P (V |D,T ) = P (V |T ), and it follows P (D|T ) =

P (D|V, T ). Specifically, P (D|T ) = P (D|V = 1, T ) and φki = P (D = k|T = i, V = 1). This

assumption is a special case of the missing at random (MAR) assumption on the missing

data mechanism proposed by Rubin (1976). The chance of getting verified, though might

depend on test results, is dealt as the nuisance parameter, and can be excluded from the

likelihood function since it is distinct from the parameters of interest, τ and φ. Conceptually,

the likelihood function is the product of P (T )P (D|T )P (V |D, T ), which is proportional to

P (T )P (D|T, V = 1) under the above assumptions. The log-likelihood function based on the

observed data in Table 1, can then be derived as

l(τ ,φ) =
M∑
i=1

ni log(τi) +
M∑
i=1

3∑
k=1

aki log(φki), (3.4)

for i = 1, . . . , M . Note that τ and φi, for i = 1, . . . , M , are distinct parameters, l1(τ ) =∑M
i=1 ni log(τi) and l2i(φi) =

∑3
k=1 aki log(φki) are the log-likelihood functions for multino-

mial distributions, respectively. Thus, the ML estimates for τ and φi, respectively, are

τ̂i =
ni

n
, i = 1, . . . , M, (3.5)

φ̂ki =
aki

a1i + a2i + a3i

, k = 1, 2; i = 1, . . . , M, (3.6)

where n =
∑M

i=1 ni. The observed Fisher information matrix defined on (τ ,φ) is a block

diagonal matrix given by

I(τ ,φ) = diag(I1(τ ), I21(φ1), . . . , I2M(φM)),

where I1(τ ) and I2i(φi) are respectively the observed Fisher’s information matrix on the

log-likelihood l1(τ ) and l2i(φi). The ML estimates of πik can be obtained by replacing τi and

φki in (3.3) by τ̂i and φ̂ki. Subsequently substituting the unknown parameters πik in (3.2)

by their ML estimates through the Bayes’ theorem, we can then obtain the ML estimator θ̂
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for the volume under the ROC surface as

θ̂ =

∑M−2
i=1

∑M−1
j=i+1

∑M
k=j+1 τ̂iτ̂j τ̂kφ̂1iφ̂2jφ̂3k(∑M

i=1 τ̂iφ̂1i

)(∑M
i=1 τ̂iφ̂2i

)(∑M
i=1 τ̂iφ̂3i

) +

∑M−1
i=1

∑M
j=i+1 τ̂iτ̂

2
j φ̂1iφ̂2jφ̂3j + τ̂ 2

i τ̂jφ̂1iφ̂2iφ̂3j

2
(∑M

i=1 τ̂iφ̂1i

)(∑M
i=1 τ̂iφ̂2i

)(∑M
i=1 τ̂iφ̂3i

)
+

∑M
i=1 τ̂ 3

i φ̂1iφ̂2iφ̂3i

6
(∑M

i=1 τ̂iφ̂1i

)(∑M
i=1 τ̂iφ̂2i

)(∑M
i=1 τ̂iφ̂3i

) . (3.7)

This estimate is equivalent to the one proposed by Nakas and Yiannoutsos (2004) when no

verification bias exists. By the use of the Delta method (Agresti, 1990, p56-58), the variance

of θ̂, can be estimated as

∂θT

∂τ
I−1
1 (τ )

∂θ

∂τ
+

∂θT

∂φ1

I−1
21 (φ1)

∂θ

∂φ1

+ . . . +
∂θT

∂φM

I−1
2M(φM)

∂θ

∂φM

, (3.8)

evaluated at τ = τ̂ and φi = φ̂i, where I−1
1 (τ ), I−1

2i (φi), ∂θ/∂τ and ∂θ/∂φi are given in the

Appendix.

An alternative way to estimate the variance of θ̂ is to use the jackknife method. As

illustrated by Efron and Tibshirani (1993), estimates of θ with the exclusion of a single

patient allows for the estimation of the variance of θ̂ as

n − 1

n

[
M∑
i=1

{
b·i(θ̂(4i) − θ̂(·))2 +

3∑
k=1

aki(θ̂(ki) − θ̂(·))2

}]
, (3.9)

where θ̂(ki) is the estimate of θ after deleting a patient with V = 1, T = i, and D = k,

for k = 1, 2, 3, θ̂(4i) is the estimate of θ after deleting a patient with V = 0, T = i, and

θ̂(·) = (1/n)
(∑M

i=1 b·iθ̂(4i) +
∑3

k=1 akiθ̂(ki)

)
.

4 Incorporating covariates in the selection mechanism

For some studies, such as the one on Alzheimer’s Disease, there often exist baseline covariates

X, which may either inter-correlate with the test value T and true disease status D, or

affect the selection for verification. We focus our discussion on the incorporation of discrete

covariates with a finite total number of covariate patterns. The covariate-specific volume
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under the ROC surface can be estimated by the method derived in the previous section to

each pattern of X. If the goal is to obtain a common index of accuracy across all covariate

patterns, the method derived in the previous section needs to be modified to account for the

possible covariate-dependent differential verification.

Assume that X comprises of P discrete covariates, each with Nj possible categories,

for j = 1, . . . , P , and we let N =
∏P

j=1 Nj indicate the total number of different covari-

ate patterns of X. We further assume that X is a random sample from a discrete space

(X1, . . . , XN) with probabilities δ = (δ1, . . . , δN). The parameter πik in (3.3) is then given

by

πik =
N∑

j=1

P (T = i, X = Xj | D = k) =

∑N
j=1 τijφkijδj∑M

l=1

∑N
j=1 τljφkljδj

, (4.1)

where τij = P (T = i | X = Xj), φkij = P (D = k | T = i,X = Xj), and δj = P (X = Xj),

for i = 1, . . . , M , j = 1, . . . , N , and k = 1, 2, 3. Deviated from the previous derivation,

the distributions of T and [D | T ] are now related to the covariates X. With a similar

ignorable assumption on the selection mechanism, except now in the presence of X, we have

P (V |D, T, X) = P (V |T, X), which can be shown leads to P (D|T, X) = P (D|T, X, V = 1),

equivalently φkij = P (D = k | T = i, X = Xj, V = 1).

In order to estimate θ in (3.2) and the coordinates of the empirical ROC surface in (3.1),

both of which are functions of the πik’s, we need to obtain the ML estimates of τij, φkij, and

δj within each pattern of covariates. We note that for the observed data with X = Xj, the

jth contingency table among random variables, V , D, and T can be formed, and the data

structure is an analog of the observed data displayed in Table 1, except for an additional

subscript j for all elements. The log-likelihood function can be derived as

l(τ ,φ, δ) =
N∑

j=1

{
M∑
i=1

nij log(τij) +
M∑
i=1

3∑
k=1

akij log(φkij) + nj log(δj)

}
, (4.2)

where nij, akij, and nj are respectively the total number of patients with T = i and X = Xj,

the total number of verified patients with D = k, T = i and X = Xj, and the total number
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of patients with X = Xj. The ML estimates for parameters δ, τ , and φ are

δ̂j =
nj

n
, j = 1, . . . , N − 1, (4.3)

τ̂ij =
nij

nj

, i = 1, . . . , M − 1; j = 1, . . . , N, (4.4)

φ̂kij =
akij

a1ij + a2ij + a3ij

, k = 1, 2; i = 1, . . . , M ; j = 1, . . . , N, (4.5)

where n =
∑N

j=1 nj. The ML estimates of πik can be obtained by replacing δj, τij and φkij

in (4.1) respectively by δ̂j, τ̂ij and φ̂kij.

For any given pair of decision thresholds, (d1, d2), the ML estimates of the three correct

classification rates are then given by

P̂ (D̂ = k | D = k) =

{
0, d̄k−1 > dk∑dk

i=d̄k−1
π̂ik, d̄k−1 ≤ dk

, (4.6)

for k = 1, 2, 3. These three correct classification rates can then be used as coordinates in the

construction of the empirical three-way ROC surface. Similarly, substituting the unknown

parameters πik by their ML estimates in (3.2), we can then obtain the ML estimator θ̂ for

the volume under the ROC surface. The corresponding variance estimator can be obtained

by either Jackknife method or the Fisher’s information method as described in the previous

section.

5 Comparison between volumes under ROC surfaces

When comparing two diagnostic tests, one of the efficient designs is a paired design in which

patients receive both tests for the diagnosis of the same disease. Since for a test, the volume

under the ROC surface can be used to measure its accuracy, the difference between the two

volumes naturally provides a means to assess the diagnostic discrepancy in accuracy. In

order to account for possible correlation in addition to adjust for verification bias, we need

to modify our derivations. We first assume test T1 ranges from 1 to M1, and test T2 ranges

12
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from 1 to M2. The intermediate parameter ηijk is given by

ηijk = P (T1 = i, T2 = j|D = k) =
αijψkij∑M1

s=1

∑M2

t=1 αstψkst

, (5.1)

where αij = P (T1 = i, T2 = j), and ψkij = P (D = k|T1 = i, T2 = j). For k = 1, 2, 3, we then

let πik1 = P (T1 = i|D = k) =
∑M2

j=1 ηijk, for i = 1, . . . , M1, and πik2 = P (T2 = i|D = k) =∑M1

j=1 ηjik, for i = 1, . . . , M2. Given πik1’s, the volume under the ROC surface for T1 is

θ1 =

M1−2∑
i=1

M1−1∑
j=i+1

M1∑
k=j+1

πi11πj21πk31+
1

2

{
M1−1∑
i=1

M1∑
j=i+1

(πi11πj21πj31 + πi11πi21πj31)

}
+

1

6

M1∑
i=1

πi11πi21πi31,

(5.2)

and given πik2’s, the volume under the ROC surface for T2 is

θ2 =

M2−2∑
i=1

M2−1∑
j=i+1

M2∑
k=j+1

πi12πj22πk32+
1

2

{
M2−1∑
i=1

M2∑
j=i+1

(πi12πj22πj32 + πi12πi22πj32)

}
+

1

6

M2∑
i=1

πi12πi22πi32,

(5.3)

The observed data with differential selection for definitive examination is shown in

Table 2. The cross classification of T1 and T2 gives a total of M1M2 frequency counts for the

group of verified patients. By assuming P (V |D,T1, T2) = P (V |T1, T2), similar to the one in

Section 3, we can obtain the observed log-likelihood as

l(α,ψ) =

M1∑
i=1

M2∑
j=1

mij log(αij) +

M1∑
i=1

M2∑
j=1

3∑
k=1

ckij log(ψkij), (5.4)

where α = [α11, . . . , α1M2 , α21, . . . , α2M2 , . . . , αM11, . . . , αM1(M2−1)], ψij = (ψ1ij, ψ2ij), and

ψ = (ψ11, . . . , ψM1M2
). The ML estimates for α and ψ, respectively, are

α̂ij =
mij

m
, i = 1, . . . , M1; j = 1, . . . , M2, (5.5)

ψ̂kij =
ckij

c1ij + c2ij + c3ij

, k = 1, 2; i = 1, . . . ,M1; j = 1, . . . , M2, (5.6)

where m =
∑M1

i=1

∑M2

j=1 mij. Subsequently substituting the unknown parameters αij and ψkij

by their ML estimates to obtain estimates η̂ijk, and π̂ik1 and π̂ik2, we can ultimately compute

the ML estimates θ̂1 from (5.2), and θ̂2 from (5.3).
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The observed Fisher information matrix defined on (α,ψ) is a block diagonal matrix

given by

I(α,ψ) = diag(I1(α), I211(ψ11), . . . , I2M1M2(ψM1M2)),

where I1(ψ) and I2ij(ψij) are respectively the observed Fisher information matrix on the

log-likelihood l1(α) =
∑M1

i=1

∑M2

j=1 mij log(αij) and l2ij(ψij) =
∑3

k=1 ckij log(ψkij). By the

Delta method, we can estimate the variance-covariance matrix Σθ̂ of θ̂ = [θ̂1, θ̂2]
T by

∂θT

∂α
I−1
1 (α)

∂θ

∂α
+

∂θT

∂ψ11

I−1
211(ψ11)

∂θ

∂ψ11

+ . . . +
∂θT

∂ψM1M2

I−1
2M1M2

(ψM1M2
)

∂θ

∂ψM1M2

, (5.7)

evaluated at α = α̂ and ψij = ψ̂ij, where I−1
1 (α), I−1

2ij (ψij), ∂θ/∂α and ∂θ/∂ψij are given

in the Appendix. Another alternative way to estimate Σθ̂ is by the Jackknife method. With

the exclusion of a single patient, the variance-covariance matrix can be estimated as

Σ̂θ̂ =
n − 1

n

[
M1∑
i=1

M2∑
j=1

{
d·ij(θ̂(4ij) − θ̂(·))(θ̂(4ij) − θ̂(·))T +

3∑
k=1

ckij(θ̂(kij) − θ̂(·))(θ̂(kij) − θ̂(·))T

}]
,

where θ̂(kij) is the estimate of θ = [θ1, θ2]
T after deleting a patient with V = 1, T1 = i,

T2 = j, and D = k, for k = 1, 2, 3, θ̂(4ij) is the estimate of θ after deleting a patient with

V = 0, T1 = i, T2 = j, and θ̂(·) = (1/n)
(∑M1

i=1

∑M2

j=1 d·ijθ̂(4ij) +
∑3

k=1 ckijθ̂(kij)

)
.

A test of statistical significance of diagnostic accuracy difference can then be calculated

as z = cT θ̂/
√

cT Σ̂θ̂c, where the contrast c = [1,−1]T . Given the asymptotic normality of

the ML estimate θ̂, the test statistic z asymptotically follows a standard normal distribution.

6 The analysis of NACC data

We now analyze the NACC dataset to evaluate the accuracy of using Mini-Mental State

Examination and clinical diagnosis of dementia in assessing AD severity. Figure 2 displays

the empirical ROC surfaces for dMMSE and CDD, after accounting for the verification

bias. The graphs were drawn with respect to the three correct classification rates, across all
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possible decision thresholds. We note that both plots are bounded in a unit cube, and both

surfaces contain the points of (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Based on dMMSE scores, our estimate of the volume under the ROC surface was 0.4027

with standard deviation of 0.0104 by both the information and Jackknife approach. Without

account for differential verification, the estimate, proposed by Nakas and Yiannoutsos (2004),

based only on verified patients was 0.4035 with bootstrap (size=100) standard deviation of

0.0108. Only a slight difference was present between the two estimates, which might be

due to a small discrepancy between center-specific estimates with and without considering

verification bias, as shown in Figure 3. Our estimate was more efficient due to the account

for both verified and unverified cases in the analysis. For CDD, the discrepancy between

the two estimates became noticeable. Our estimate of the ROC surface volume was 0.3707

with standard deviation of 0.0091 by both the information and Jackknife approach, while the

estimate ignoring unverified patients was 0.3503 with standard deviation of 0.0094. For both

the analyses of dMMSE and CDD, our estimates of standard deviation are quite close between

the information and Jackknife approach. By comparing the point estimates, dMMSE seems

to have a better power than CDD in assessing the severity of AD, after accounting for

verification bias.

To properly infer and compare the accuracy between dMMSE and CDD, we then worked

on the joint cross-classification table by the two tests and verification status. This observed

cross table implicitly permits the incorporation of any correlation structure between dMMSE

and CDD (due to a paired design) in the calculation of our statistics. After accounting for

differential verification, the difference between the two volumes under the ROC surfaces was

0.0124 with 95% confidence limits of (-0.0089, 0.0337) by the information method and the

confidence limits of (-0.0091, 0.0339) by the Jackknife approach. There was no significant

discrepancy in the accuracy between dMMSE and CDD, and the same conclusion was drawn

by the two proposed approaches for variance estimation. We note that, despite the unified
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MMSE procedure may have shown a competitive power in assessing the severity of AD, the

clinical implication based on CDD may still be indispensable. The diagnosis based on CDD

not only guides the assessment of AD severity, but is aimed to direct the etiology of dementia

to other variants.

Finally, in order to account for center differences in verification selection and in the cor-

relation between the test and autopsy examination, we include the AD center as a covariate

in the evaluation of dMMSE and CDD. The center-specific estimates of the volumes under

the ROC surfaces were drawn in the first row of Figure 3. There was clear variation across

the eight research centers in the accuracy of using dMMSE scores to assess AD severity, and

the differences among centers became less prominent in the assessment of CDD. An overall

evaluation of CDD, by combining the empirical information from all centers, may reasonably

be used to achieve a higher efficiency in the estimate as compared to the center-specific ones.

After adjusting for the center effect, the volume under the ROC surface was estimated as

0.3961 (with standard deviation of 0.0120) for dMMSE and 0.3932 (with standard deviation

of 0.0117) for CDD. The volume estimate for dMMSE was a bit inflated if center differences

in verification were ignored, while on the other hand, the estimate for CDD was reduced if

the center effect was overlooked. Based on the asymptotic property of ML estimates, the

95% confidence limits for volumes under the ROC surfaces, after adjusting for the center

effect, were (0.3726, 0.4196) and (0.3702, 0.4161), respectively for dMMSE and CDD. The

exclusion of the null value of 1/6 in both confidence limits suggests that both dMMSE and

CDD possess discriminatory power in assessing the severity of AD.

7 Simulation study

We conducted sets of simulation study to examine the performance of the proposed method.

The data were first generated as follows. We simulated a 5-point rating scale test measure-

ment for each of the three disease states. The distributions of test categories can differ across

16

Hosted by The Berkeley Electronic Press



different disease status, and the five different probabilities were chosen and given in Table 3,

aimed to have diverse true volumes under the ROC surfaces. After generating the complete

data, we then randomly chose a subgroup of patients and set their disease status as unknown.

The selection probability was chosen to be an increasing function of a test result. The selec-

tion probabilities for verification are (1) P (V = 1|T = 1) = 0.4, (2) P (V = 1|T = 2) = 0.6,

(3) P (V = 1|T = 3) = 0.7, (4) P (V = 1|T = 4) = 0.8, (5) P (V = 1|T = 5) = 0.9.

For each run, we assumed a sample of 300 patients for each disease status, and the results

were summarized over 1,000 replications. Table 4 displays the true volumes under the ROC

surfaces, and the performance of the proposed estimate. The bootstrap approach proposed

by Nakas and Yiannoutsos (2004), without account for differential verification, was also

implemented with 100 bootstrap samples for the purpose of comparison. It is clear to see in

Table 4, that our estimates were up to 5.4% more accurate than naive estimates ignoring non-

verified cases, and the improvement remained in four of the five different parameter settings.

When distributions of test scores were the same among the three disease groups (no diagnostic

power), the bias of ignoring differential verification was gone, as expected. The 95% coverage

of confidence intervals was almost successfully retained by both the Fisher’s information

and Jackknife approach of standard deviation estimation. A poor coverage appeared when

the selection mechanism was ignored. We further compared the proposed information and

Jackknife approach for the estimation of standard deviation with the empirical estimates.

The Jackknife estimates were consistently closer to the empirical estimates, suggesting that

standard deviation estimated by Jackknife method may be better than the one estimated

by the information method. Consistently larger estimates in standard deviation by the

information approach also resulted in a wider coverage in confidence intervals, as compared

to the one by the Jackknife method.

To further investigate the validity and robustness of the proposed approach against the

violation of the MAR verification, we modified the selection probabilities to have them vary
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with the true disease states. We had P (V = 1|T = i, D = k) = 0.3 + 0.1i + 0.05k, for

i = 1, . . . , 5 and k = 1, 2, 3. The results were summarized in Table 5 over 1,000 replications.

We observed that the absolute biases increased when the MAR assumption was violated;

nevertheless, our estimates remained to be more accurate than the naive estimates. The

coverage of 95% confidence intervals was not affected very much by this non-ignorable ver-

ification. This simulation supports that our estimates remain valid and robust if the MAR

assumption is moderately violated.

For the comparison between volumes under two related ROC surfaces, we extended the

simulation setups to two ordinal-scale tests. We supposed that a disease could be diagnosed

either by a 5-point rating test tool T1, or by another 4-point rating test measurement T2.

We chose five different parameter settings for the joint probability of the two test scores to

achieve a diverse spectrum in the true volumes under the ROC surfaces and their differences.

The joint probabilities were specified for each individual cell in the cross table analog to

Table 2 as V = 1. We assumed that the chance for the definite verification depends on

the joint distribution of the two test scores, namely, P (V = 1|T1 = i, T2 = j) = 0.64, for

i, j ≤ 2, P (V = 1|T1 = i, T2 = j) = 0.81, for i, j > 2, and P (V = 1|T1 = i, T2 = j) = 0.72

otherwise. The results were summarized over 1,000 replications in Table 6, with the size of

1,000 patients for each of the three disease groups. In Table 6, each row corresponds to a

specific distributional setup for T1 and T2, and the true volumes under the ROC surfaces, θ1

and θ2, were designed to differ across rows. It was clear to see that biases in the difference

between volumes were small in all five settings. The coverage of confidence intervals was

satisfactorily around 95% by both the information and Jackknife method for the estimation

of the standard deviation.

Several other selection probability and sample sizes had also been chosen in our sim-

ulation, but were skipped for presentation, due to the similar conclusion. We only note

that biases induced by ignoring non-verified cases in the analysis increased with decreased

18

Hosted by The Berkeley Electronic Press



verification rates.

8 Discussion

In this paper, the ML estimate of the volume under the ROC surface is derived when defini-

tive disease verification is subject to selection. The verification bias induced by differential

selection is numerically demonstrated in the simulation over different diagnostic abilities.

Under the consideration of ignorable verification, this bias can be adjusted in the framework

of likelihood principle, and the standard deviation for the volume estimate can be obtained

from either the Fisher’s information or Jackknife method. There are limitations in the pro-

posed approach. Like chi-square tests for the analysis of contingency tables, our estimate

is not suitable to handle sparse data, particularly when a zero number of verified cases is

present for some test measurements. The standard deviation estimated by the information

method would fail if the observed cross table between D and T , e.g. Table 1, for verified

cases has any zero entry. Similar limitations apply to the extension to the comparison be-

tween two diagnostic tools. It requires a nonzero number of verified cases for each cross

classification of T1 and T2 in Table 2. A more stringent requirement of all positive ckij’s is

needed to carry out the variance estimation by the information method.

We applied the proposed method to the largest national database on Alzheimer’s disease

to compare the relative accuracy between Mini-Mental State Examination and clinical eval-

uation of dementia in grading the severity of Alzheimer’s disease. We found an interesting

result that Mini-Mental State Examination and clinical evaluation of dementia had similar

accuracy in predicting neuropathological severity of Alzheimer’s disease, even though the

clinical evaluation of dementia was much more expensive and required more clinical infor-

mation. The results were drawn from the recruitment of the eight ADCs across the United

States, and may need further investigation by community-based studies. Nevertheless, the

clinical evaluation of dementia still has important implication in guiding the diagnosis of
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dementia to other variants, such as Lewy body disease and vascular dementia.

The proposed methodology may be easily modified to diagnostic problems with more

than three disease classes. There are some issues that remain open for future investigation.

For instance, in the presence of verification bias, how can the accuracy of a continuous test

measurement be evaluated? Rotnitzky et al. (2006) developed a doubly robust estimation for

the area under the ROC curve that adjusts for selection to verification for markers measured

on any scale. The extension of their methodology to the volume under the ROC surface

may be helpful in diagnostic medicine when the severity of the disease is of interest. The

comparison of accuracy between tests measured in different scales would be another direction

to pursue. Furthermore, the relaxation of the assumption about ignorable verification by

presuming the selection to verification directly associated with the true disease status, may

be more plausible as adjusting for verification bias.
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Table 1: Observed data of an ordinal-scaled test data

T = 1 T = 2 · · · T = M
V = 1 D = 1 a11 a12 · · · a1M

D = 2 a21 a22 · · · a2M

D = 3 a31 a32 · · · a3M

V = 0 b·1 b·2 · · · b·M
Total n1 n2 · · · nM

Table 2: Observed data of the two ordinal-scaled test data.

T1 = 1 · · · T1 = M1

T2 = 1 · · · T2 = M2 · · · T2 = 1 · · · T2 = M2

V = 1 D = 1 c111 · · · c11M2 · · · c1M11 · · · c1M1M2

D = 2 c211 · · · c21M2 · · · c2M11 · · · c2M1M2

D = 3 c311 · · · c31M2 · · · c3M11 · · · c3M1M2

V = 0 d·11 · · · d·1M2 · · · d·M11 · · · d·M1M2

Total m11 · · · m1M2 · · · mM11 · · · mM1M2

Table 3: Probabilities for test scores in the three disease groups.

P (T = 1, T = 2, T = 3, T = 4, T = 5)
D = 1 D = 2 D = 3

I (0.20, 0.20, 0.20, 0.20, 0.20) (0.20, 0.20, 0.20, 0.20, 0.20) (0.20, 0.20, 0.20, 0.20, 0.20)
II (0.30, 0.30, 0.20, 0.10, 0.10) (0.10, 0.20, 0.25, 0.25, 0.20) (0.05, 0.05, 0.20, 0.30, 0.40)
III (0.50, 0.20, 0.20, 0.05, 0.05) (0.10, 0.25, 0.30, 0.25, 0.10) (0.05, 0.05, 0.20, 0.20, 0.50)
IV (0.80, 0.05, 0.05, 0.05, 0.05) (0.05, 0.10, 0.70, 0.10, 0.05) (0.05, 0.05, 0.05, 0.05, 0.80)
V (0.95, 0.02, 0.01, 0.01, 0.01) (0.02, 0.03, 0.90, 0.03, 0.02) (0.01, 0.01, 0.01, 0.02, 0.95)
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Table 4: Volume under a single ROC surface with MAR verification, averaged over 1,000
replications.

Our estimates Naive estimates
Absolute Standard deviation % CI coverage Absolute % CI

θ bias Empirical Delta Jackknife Delta Jackknife bias coverage
I 0.1667 0.0010 0.0157 0.0167 0.0166 96.4 96.4 0.0010 95.7
II 0.3903 0.0012 0.0233 0.0248 0.0233 96.4 95.2 0.0217 80.8
III 0.5164 0.0008 0.0249 0.0277 0.0252 97.2 95.4 0.0196 88.0
IV 0.7270 0.0001 0.0276 0.0296 0.0273 96.3 95.0 0.0392 76.7
V 0.9312 0.0004 0.0166 0.0202 0.0160 98.5 93.1 0.0122 90.8

Table 5: Volume under a single ROC surface with non-ignorable verification, averaged over
1,000 replications.

Our estimates Naive estimates
Absolute Standard deviation % CI coverage Absolute % CI

θ bias Empirical Delta Jackknife Delta Jackknife bias coverage
I 0.1667 0.0051 0.0153 0.0156 0.0154 93.3 92.9 0.0047 92.6
II 0.3903 0.0032 0.0228 0.0242 0.0226 96.1 95.1 0.0195 85.3
III 0.5164 0.0058 0.0247 0.0271 0.0245 96.1 93.7 0.0145 89.9
IV 0.7270 0.0059 0.0266 0.0291 0.0268 96.6 95.5 0.0263 85.9
V 0.9312 0.0029 0.0164 0.0202 0.0162 98.5 94.6 0.0090 92.5

Table 6: The numerical comparison between two ROC surfaces, with Δθ = θ1 − θ2.

Absolute bias Delta method Jackknife
θ1 θ2 Δθ for Δθ CI coverage % CI length CI coverage % CI length

0.1667 0.1667 0.0000 0.0003 94.6 0.0441 94.7 0.0442
0.1667 0.4680 -0.3013 0.0005 95.9 0.0573 95.9 0.0575
0.1667 0.7693 -0.6026 0.0004 95.8 0.0578 95.9 0.0580
0.4693 0.4680 0.0013 0.0006 94.1 0.0711 94.2 0.0713
0.4693 0.7693 -0.3000 0.0004 95.8 0.0710 96.0 0.0714
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Figure 1: The selection rates for verification across eight ADCs and categories by dMMSE
(left) and CDD (right).

Figure 2: The empirical ROC surfaces of dMMSE (left) and CDD (right), after accounting
for verification bias. The three axes are the three correct classification rates.
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Figure 3: The means and 95% asymptotic confidence intervals of the center-specific ROC
volume estimates for dMMSE and CDD. The top two graphs were with account for verifica-
tion bias, while the bottom two used only verified cases. The dashed line is the null line of
no discrimination power.
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