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SUMMARY

Two-phase designs are common in epidemiological studies of dementia, and especially in Alzheimer
research. In the first phase, all subjects are screened using a common screening test(s), while in the
second phase, only a subset of these subjects is tested using a more definitive verification assessment,
i.e. golden standard test. When comparing the accuracy of two screening tests in a two-phase study
of dementia, inferences are commonly made using only the verified sample. It is well documented that
in that case, there is a risk for bias, called verification bias. When the two screening tests have only
two values (e.g. positive and negative) and we are trying to estimate the differences in sensitivities
and specificities of the tests, one is actually estimating a confidence interval for differences of binomial
proportions. Estimating this difference is not trivial even with complete data. It is well documented
that it is a tricky task. In this paper, we suggest ways to apply imputation procedures in order to
correct the verification bias. This procedure allows us to use well established complete-data methods
to deal with the difficulty of the estimation of the difference of two binomial proportions in addition
to dealing with incomplete data. We compare different methods of estimation, and evaluate the use
of multiple imputation in this case. Our simulation results show that the use of multiple imputation
is superior to other commonly used methods. We demonstrate our finding using an Alzheimer data.
Copyright c© 2000 John Wiley & Sons, Ltd.

1. Introduction

Two-phase designs are common in epidemiological studies of dementia [1, 2], and especially
useful in Alzheimer research. In the first phase, all subjects are screened using a common
screening test(s). While in the second phase, only a subset of these subjects is tested using a
golden standard which is a clinical assessment. It is well documented that when only verified
subjects are considered, there is a risk for bias, called verification bias [3]. There are several
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2 O. HAREL, X.H. (ANDREW) ZHOU

methods to deal with verification bias. The naive approach will use only verified subjects
in the analysis. As it was stated above [3], this method can be biased. The most widely used
correction method was developed by Begg and Greenes [4] under the ignorable verification bias
assumption, which assumes the reason for selecting a sample for verification depends only on
observed data. Zhou [5] extended that method using a maximum likelihood approach. Kosinski
and Barnhart [6] suggested a method for correcting for non-ignorable verification bias. Zhou
et al. [3] and Pepe [7] provided a good summary about this subject. An important question
is how to compare the accuracies of two competing screening tests in discriminating between
diseased and non-diseased subjects.

The same problem can be viewed as trying to estimate the confidence interval for the
difference of two binomial proportions of paired data. Notice that two sensitivities and two
specificities are both pairs of binomial proportions. The most used interval for the difference of
paired binomial proportions is the Wald interval [8]. This interval has several limitations due to
the nature of the Binomial distribution and the asymptotic theory on which it is based. Several
alternative ”exact” intervals have been proposed [9, p.123], [10], however due to the nature
of the binomial distribution, Newcombe [11] showed that these intervals perform poorly as
well. Newcombe [11] reviewed the literature and made comparisons using a simulation study
of several methods. Based on his simulation study, he recommended a score interval with
continuity correction called Newcombe hybrid (NH). An additional competing interval was
studied by May and Johnson [12] (MJ). This interval was discussed by Lui [13], Newcombe
[11], and Tango [14]. Zhou and Qin [15] proposed another confidence interval, based on the
Edgeworth expansion. All these methods showed to be superior to the common Wald interval
[8].

Estimating the sensitivity and specificity using the above mentioned procedures, requires
complete data (i.e. both test results and true status for all subjects). Since this is rarely the
case, it is useful to consider missing data procedures to deal with the incomplete data set.
Harel and Zhou [16] showed that the use of missing data procedure performs better then the
existing method when interested in the sensitivity and specificity of a test.

For example, our motivating example is an epidemiological study of dementia which
investigate the role of environmental risk factors in the development of Alzheimer disease
(AD). In this two-phase study, all participants are being screened using a two screening test,
but only a portion of the sample undergos the golden standard for determining AD. Our goal
is to compare between the two competing screening tests.

Multiple imputation (MI) [17] is a simulation based technique, replacing the missing values
with m sets of plausible values, resulting in m sets of ”complete” data sets. Computing the
sensitivity and specificity estimates and their standard errors for each data set and combining
them by simple arithmetic rules, gives a valid result taking into consideration the missing
values. Using this method allows us not only to use the most common and simplest procedures
to estimate the sensitivity and specificity, but also gives us grounds to compare different
complete-data estimation procedures.

In the remainder of this article, we will set up the problem in section 2 and review the
existing methods in section 3. In section 4 we will introduce the use of MI [17] to address
the incomplete data sets issue, using methods for complete data mentioned in section 3. We
will give a real data example in section 5 and compare the various techniques using a simple
simulation study in section 6. We will discuss our conclusions in section 7.
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MI FOR COMPARING 2 SCREENING TESTS 3

Table I. Data Summary

T1 = 1 T1 = 0
T2 = 1 T2 = 0 T2 = 1 T2 = 0

(a) Aggregated data
V = 1 D = 1 xA

111 xA
101 xA

011 xA
001

D = 0 xA
110 xA

100 xA
010 xA

000

V = 0 xB
11+ xB

10+ xB
01+ xB

00+

Total n11+ n10+ n01+ n00+

(b) Complete data
D = 1 x111 x101 x011 x001

D = 0 x110 x100 x010 x000

Total n11+ n10+ n01+ n00+

2. Framework and data specification

Let T1 and T2 be two binary random variables, indicating whether or not the screening test
was positive (Tl = 1) or negative (Tl = 0) where l = 1, 2. Since not all subjects’ tests are being
verified using the golden standard procedure, let V be a random variable indicating whether
or not the subject was tested using the golden standard procedure (V = 1 if tested, V = 0 if
not). Let D be the true disease status of a patient, such that, (D = 1) if diseased, and (D = 0)
if non-diseased (we assume there is no measurement error for the golden standards procedure).
Consider Table I(a) as a summary of aggregated representation for the data, where the x′s
are the counts of observations in each status. One can consider V = 0 to be the indication of
missing data, since the test was not verified and we do not know the true status.

We can separate the data into two parts. First, when the screening tests, Tl, and the true
status, D, are all observed (V = 1), we can call it part A. Second, When Tl is observed but
D is missing (V = 0), we will refer to this as part B (Table I(a)). The total count of each cell
xijk is a sum of two parts, xijk = xA

ijk + xB
ijk. Even-though xA

ijk is totally observed, xB
ijk is

not, and instead we only observe the marginal total xB
+jk = xB

1jk + xB
0jk. The observed data

Yobs = {xA
ijk, xB

+jk : i, j, k = 0, 1}, are represented in Table I(a).
Consider the perfect scenario in which all subjects’ test results were verified, and we have

complete data (Table I(b)). Even in that case, estimating the specificity and sensitivity might
not be a straightforward task. This estimation is the same as estimating the difference of two
proportions from a binomial distribution. Newcombe [11] gave a detailed overview of this issue.

3. Existing methods

When true disease status is available for all subjects, the estimation of the sensitivity and
specificity confidence intervals is the same as estimating the confidence interval of the difference
of two binomial proportions. First, we review the methods for estimating these confidence
intervals. Then we review the methods for estimating the confidence intervals in the incomplete
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4 O. HAREL, X.H. (ANDREW) ZHOU

data case (i.e. true disease status is available only for a fraction of the subjects).

3.1. Complete data methods

3.1.1. McNemar’s interval The common procedure to use when the parameter of interest
is the difference of paired proportions is McNemar’s interval (based on the McNemar’s test)
[18, pp.349-350]. Let (X0k, X1k), k = 1, 2, . . . , n, be an independent and identically distributed
sample from the joint distribution of the pair (X0, X1). Also, let X0 and X1 (Xi, i = 1, 2)
be correlated Bernoulli random variables with proportions p1 and p2, respectively. When our
interest is in the difference p = p2−p1, the Wald interval is based on the normal approximation
of the distribution of the studentized difference between the two correlated sample proportions.
The 100(1− α)% Wald interval is given by the following formula,

p̂± z1−α/2n
−1/2

√
p̂2(1− p̂2) + p̂1(1− p̂1) + 2(p̂1p̂2 − p̂11), (1)

where Yi = Σn
k=1Xik, Y11 = Σn

k=1X0kX1k, p̂i = Yi

n , p̂ = p̂2− p̂1, p̂11 = Y11
n , and zα is the α-th

quantile of the standard normal distribution.

3.1.2. McNemar’s interval with continuity correction One of the problems with the binomial
distribution is its lack of continuity. As a result, the normality assumption is violated. The
continuity correction attempts to approximate the normal distribution more accurately. This
correction brings the asymptotic distribution closer to a normal distribution [8, pp. 116-119].
In this case, the 100(1− α)% confidence interval will be

p̂± (z1−α/2SE + 1/n), (2)

where p̂ is the difference of two binomial proportions estimate, SE is its standard error, zα, is
the α-th quantile of the standard normal distribution, and n is the sample size.

3.1.3. Newcombe hybrid (NH) Interval Newcombe [11] reviewed and compared several
existing intervals for the difference between two binomial proportions based on paired
data. Based on a simulation study, Newcombe [11] recommended a score interval with
continuity correction called Newcombe hybrid (NH). In order to introduce this interval,
let Y00 = Σk(1 − X0k)(1 − X1k), Y10 = ΣkX0k(1 − X1k), Y01 = Σk(1 − X0k)X1k, and
D = (Y00 + Y10)(Y01 + Y11)(Y00 + Y01)(Y10 + Y11). Also let l1 and u1 be the lower and
upper roots of the following quadratic equation of x: (x − Y00+Y01

n )2 = (z1−α/2)2
x(1−x)

n ,
and let l2 and u2 be the lower and upper roots of the following quadratic equation of x:
(x− Y00+Y10

n )2 = (z1−α/2)2
x(1−x)

n . Therefore, the NH 100(1−α)% confidence interval is defined
by:

[p̂− (δ2
1 − 2φ̂δ1ε2 + ε22)

1/2, p̂− (ε21 − 2φ̂ε1δ2 + δ2
2)1/2], (3)

where
δ1 = Y00+Y01

n − l1, ε1 = u1 − Y00+Y01
n ,

δ2 = Y00+Y10
n − l2, ε2 = u2 − Y00+Y10

n ,

and

φ̂ =





Y00Y11−Y10Y01
D Y00Y11 − Y10Y01 ≤ 0 & D > 0

Max(Y00Y11−Y10Y01−n/2,0)
D Y00Y11 − Y10Y01 > 0 & D > 0

0 D = 0
.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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MI FOR COMPARING 2 SCREENING TESTS 5

3.1.4. May and Johnson (MJ) interval Another competing interval was studied by May
and Johnson [12] (MJ). This interval was discussed by Lui [13], Newcombe [11], and Tango

[14]. In addition to the previous notation, let A = (1 +
z2

α/2

n ), B = −2Y01−Y10
n , and

C = (Y01
n − Y10

n )2 − z2
α/2

Y01+Y10
n2 . The MJ (100− α)% confidence interval is:

[
Max{0,

−B − (B2 − 4AC)1/2

2A
}, Min{1,

−B + (B2 − 4AC)1/2

2A
}
]

. (4)

3.1.5. Zhou and Qin (ZQ) interval The validity of the Wald interval lies in the assumption
that the data are normal. Since the true distribution of the Wald statistics is skewed, the
normal approximation may produce bad results. Using the Edgeworth expansion, some of the
bias might be corrected. To introduce this interval, we need some additional notation. Let

d = p1(1− p1)(1− 2p1)− p2(1− p2)(1− 2p2) + 6(p1 − p2)(p11 − p1p2),

σ = (p1(1− p1) + p2(1− p2) + 2(p1p2 − p11))1/2, a = d
6σ2 , and b = 1−2p

2 − d
6σ2 ,

where p11 = P (X0 = 1, X1 = 1). Also, let us define a monotone transformation function, as
g(T ) = âσ̂√

n
+T + b̂σ̂T 2√

n
+ (b̂σ̂)2T 3

4n where â, b̂, σ̂, d̂ are the estimates of a, b, σ, d respectively. Using
this transformation, the 100(1− α)% confidence interval for p, is given as follows:

[
Max(−1, p̂− σ̂√

n
g−1(z1 − α/2)),Min(1, p̂− σ̂√

n
g−1(z1 − α/2))

]
, (5)

where

g−1(y) =

{ √
n

b̂σ̂

[
(1 + 3(b̂σ̂)( y√

n
− âσ̂

n ))1/3 − 1
]

b̂σ̂ 6= 0

y − âσ̂
n b̂σ̂ = 0

3.2. Incomplete data methods

Oftentimes, not all subjects have been verified. Therefore, there is a chance for verification
bias. When trying to compare the accuracy of two screening tests, the estimation of the
differences of the sensitivities, and specificities is equivalent to estimating a difference of
binomial proportions, but with incomplete data. Consider a sample of size n when we know
that a sub-sample n1 has a known true status D, while for n2 = n − n1 we do not have this
information. This will require a different kind of methodology in order to estimate the unbiased
population proportion.

3.2.1. Maximum Likelihood The only method available to date to deal with verification bias
in paired comparisons of sensitivity and specificity was introduced by Zhou [19]. Under some
ignorability conditions, the estimators for the sensitivities of two tests are as follows:

π̂1ML =

∑1
j=0(x

A
1j1n1j+)/(xA

1j1 + xA
1j0)∑1

i=0

∑1
j=0(x

A
ij1nij+)(xA

ij1 + xA
ij0)

,

and

π̂2ML =
∑1

i=0(x
A
i11ni1+)/(xA

i11 + xA
i10)∑1

i=0

∑1
j=0(x

A
ij1nij+)(xA

ij1 + xA
ij0)

.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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6 O. HAREL, X.H. (ANDREW) ZHOU

While the estimators for the specificities of two tests are:

τ̂1ML =

∑1
j=0(x

A
0j0n0j+)/(xA

0j0 + xA
0j1)∑1

i=0

∑1
j=0(x

A
ij0nij+)(xA

ij0 + xA
ij1)

,

and

τ̂2ML =
∑1

i=0(x
A
i00ni0+)/(xA

i00 + xA
i01)∑1

i=0

∑1
j=0(x

A
ij0nij+)(xA

ij0 + xA
ij1)

.

In addition to the point estimates, Zhou [19] provided the estimates for the covariance matrices.
The (k, l) element of the asymptotic covariance matrix of π̂1ML and π̂2ML is

νkl =
1∑

i,j=0

θ2
ij(1− θij)2

xA
ij1(1− θij)2 + xA

ij0θ
2
ij

∂πk

∂θij

∂πl

∂θij
+

∑

(i,j)6=(1,1)

η2
ij

nij

∂πk

∂ηij

∂πl

∂ηij

− 1∑1
i,j=0 η2

ij/nij


 ∑

(i,j)6=(1,1)

η2
ij

nij

∂πk

∂ηij





 ∑

(i,j)6=(1,1)

η2
ij

nij

∂πl

∂ηij


 ,

and the (k, l) element of the asymptotic covariance matrix of τ̂1ML and τ̂2ML is

νkl =
1∑

i,j=0

θ2
ij(1− θij)2

xA
ij1(1− θij)2 + xA

ij0θ
2
ij

∂τk

∂θij

∂τl

∂θij
+

∑

(i,j)6=(1,1)

η2
ij

nij

∂τk

∂ηij

∂τl

∂ηij

− 1∑1
i,j=0 η2

ij/nij


 ∑

(i,j)6=(1,1)

η2
ij

nij

∂τk

∂ηij





 ∑

(i,j)6=(1,1)

η2
ij

nij

∂τl

∂ηij


 ,

where θij = P (D = 1|T1 = i, T2 = j) and ηij = P (T1 = i, T2 = j) for i, j = 0, 1, and

θ̂ij = xA
ij1

xA
ij1+xA

ij0
, and η̂ij = nij

n . The 100(1− α)% confidence intervals for the differences of two
sensitivities and specificities are

π̂2 − π̂1 ± z1−α/2

√
{ ˆV ar(π̂1) + ˆV ar(π̂2)− 2 ˆCov(π̂1, π̂2)}

and

τ̂2 − τ̂1 ± z1−α/2

√
{ ˆV ar(τ̂1) + ˆV ar(τ̂2)− 2 ˆCov(τ̂1, τ̂2)}

respectively.

4. MI for comparing two screening tests

Another method to deal with the verification bias when not all subjects have been verified is to
use multiple imputation [16]. Multiple imputation (MI) [17, 20, 21] is a simulation technique
to deal with missing data. We replace each missing value by m > 1 plausible values, yielding
m complete data sets that differ only in the imputed values. Analyzing each data set by a
complete-data method described in Section 3.1 will result in m sets of point estimates and

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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MI FOR COMPARING 2 SCREENING TESTS 7

standard errors. Combining the results by simple arithmetic rules will provide final estimates
and standard errors taking into account the missing data.

In order for the MI to yield a valid inference, the simulated values must possess certain
properties. MI drawn from a distribution with these qualities was called by Rubin [17] ”proper”.
The full mathematical definition of proper MI is given by Rubin [17, pp.118–119]. Let Q
and U be the population quantity of interest and its variance respectively, and let Q̂ be
its estimate. We assume that the data can be separated into X, all observed covariates, and
Y = (Yobs , Ymis), observed and missing values. Since Q̂ and Ū can be created using the imputed
Ymis together with the Yobs and X, one needs the estimates from the imputed data sets to be
unbiased for Q. For j = 1, . . . ,m imputations, the large–m averages will be E(Q̄∞|X,Y ) .= Q̂
and E(Ū∞|X, Y ) .= U as m tends to infinity, while the between imputation variance will
be E(B∞|X, Y ) .= V ar(Q̄∞|X, Y ) for large m. Rubin [17] derives the procedure by Bayesian
arguments. However, despite the Bayesian derivation, it has been shown that the method leads
to inferences that are well calibrated from a frequentists standpoint [22, 23, 20, 21].

In addition, Meng [24] introduced the term congeniality. This term came to relate the
Bayesian world and the frequentists’ world. A model will be called uncongenial if the imputer
model and the analysis model differ. A more mathematically rigorous definition is in Meng
[24].

When the model is congenial and proper, we would get valid inference. If the model is not
proper or uncongenial, we will get valid inference only part of the time, depending on the
specific scenario. In the next section, we propose a proper MI procedure for correcting for
verification bias.

4.1. Imputation stage

The main step of MI is to derive the posterior distribution of the missing disease statuses, given
their test results (either positive or negative). Throughout the imputation procedure, we use
data augmentation [25] for imputing the missing values. Under the ignorability assumption and
the structure of the data in Table I(a), one can look at the data as if it came from a multinomial
distribution. We can use the multinomial property, in which a conditional multinomial is a
multinomial as well (see Appendix 1), to derive the predictive distribution of missing data
given the observed data, which is given as follows:

(xB
1jk, xB

0jk)|Yobs, θ ∼ M(xB
+jk, (θ1jk/θ+jk, θ0jk/θ+jk)), j, k = 0, 1,

where θijk is the probability that a unit falls into cell (i, j, k), θ+jk =
∑

i θijk, and M(., .)
represents a multinomial distribution. By indexing the cells in the contingence table using
only one subscript (d = 1, ..., D), it follows that

x|θ ∼ M(n, θ)

with θ = (θ1, θ2, ..., θD),
When choosing a Dirichlet prior distribution for multinomial parameters, we obtain the

following results which are well known from the conjugate family idea in Bayesian statistics
(see Appendix 2).

x|θ ∼ M(n, θ), (6)
θ ∼ D(α), (7)

θ|Y ∼ D(α′), (8)

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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8 O. HAREL, X.H. (ANDREW) ZHOU

where α′ = α + x, and D(α) is a Dirichlet distribution with parameter α.
The data augmentation procedure is drawing iteratively from two distributions. First, one

should draw the x′s from a multinomial distribution (6). This is done under the assumption
that θ is known. Then given those x′s values, one should draw values for θ from the (Dirichlet,
Beta) posterior distribution (8). The imputation can be carried forward easily using any
MI software which allows categorical or loglinear models. For example, Splus [26]. The
computational details can be found in Schafer [21].

The scheme for the imputation stage follows proper imputation draws. Schafer [21] elaborates
on the properties of this model. The use of Jeffreys prior is a common practice in Bayesian
analysis when one wants to use a non informative prior [27].

4.2. Analysis stage

After imputing the missing-data statuses, we obtain m sets of complete data sets. Using
complete-data methods outlined in Section 3.1 we obtain the estimates (Q̂(1), Q̂(2), . . . , Q̂(m))
and associated variances (U (1), U (2), . . . , U (m)) for the differences of the sensitivities and
specificities. The complete-data methods we are going to use are: McNemar’s interval
(McN)[11], section 3.1.1; McNemar’s interval with continuity correction (McN+CC) [11,
Method #2], [8, pp. 116-119], section 3.1.2; Newcombe-Hybrid (NH) [11], section 3.1.3; May-
Johnson (MJ) [12], section 3.1.4; Zhou-Qin (ZQ) [15], section 3.1.5.

4.3. Combining results

After having m sets of estimates and variances, we use Rubin’s [17] combining rules as follows:
The overall estimate is Q̄ = 1

m

∑
Q(i), i = 1, . . . , m, and its variance is T = Ū + 1

m+1B, where
Ū = 1

m

∑
U (i) is the complete-data variance estimate, and 1

m+1B is the variance addition
due to the imputations of missing values. The inferences are based on the t-distribution
approximation T−1/2(Q−Q̂) ∼ tν where the degrees of freedom are ν = (m−1)[1+ Ū

(1+m−1)B ]2.

Therefore, the 100(1− α)% confidence interval for the estimate will be Q̄± tν,1−α/2

√
T .

5. Data Example

In this section we introduce the motivating example from Alzheimer research.

5.1. Environmental risk factors for the development of Alzheimer’s disease

The first motivating example is an epidemiological study of dementia which investigated the
role of environmental risk factors in the development of Alzheimer’s disease [28]. One of the
aims of the study was to compare the existing (standard) screening test to a new one. The new
test [29] is based on information from a cognitive test given to a person and from a relative
test given to someone who knows the subject. The standard test uses only the information
from the subject’s test [30]. The results for older adults are summarized in Table II.

Following the notation of section 2, our data can be represented as below, which include the
observed data and the aggregated data which contains the missing information due to missing

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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MI FOR COMPARING 2 SCREENING TESTS 9

Table II. Data from an Alzheimer study (Age > 75)

Test 1 positive Test 1 negative
Test 2 positive Test 2 negative Test 2 positive Test 2 negative

Verified
Disease 31 5 3 1
Non-disease 25 10 19 55

Not verified 22 6 65 346
Total 78 21 87 402

values

Yobs = {xA
111 = 31, xA

101 = 5, xA
011 = 3, xA

001 = 1,

xA
110 = 25, xA

100 = 10, xA
010 = 19, xA

000 = 55,

xB
11+ = 22, xB

10+ = 6, xB
01+ = 65, xB

00+ = 346}.
In order to proceed with the data augmentation algorithm, let us choose the parameter for

the prior Dirichlet distribution to be
α = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5), which implies Jeffreys prior. Therefore, our predictive
distributions are as follows:

(xB
110, x

B
111)

t+1|Yobs, θ
t ∼ M(xB

11+, (θ111/θ11+, θ110/θ11+))

(xB
100, x

B
101)

t+1|Yobs, θ
t ∼ M(xB

10+, (θ101/θ10+, θ100/θ10+))

(xB
010, x

B
011)

t+1|Yobs, θ
t ∼ M(xB

01+, (θ011/θ01+, θ010/θ01+))

(xB
000, x

B
001)

t+1|Yobs, θ
t ∼ M(xB

00+, (θ001/θ00+, θ000/θ00+)).

The prior is θ ∼ D(α) and the posterior is

θ|Y ∼ D(x111 +0.5, x110 +0.5, x101 +0.5, x100 +0.5, x011 +0.5, x010 +0.5, x001 +0.5, x000 +0.5),

where xijk = xA
ijk + xB

ijk i, j, k = 0, 1, and t is the number of iterations. Using S-plus 6.2
[26] we use MI (m = 10) to compare the existing methods described in section 3.2, with the
methods described in section 3.1. Table III summarizes the results, where est represent the
appropriate estimate for the differences of sensitivities or specificities, with SE as its standard
error, and up, low are the upper and lower levels of the confidence interval. We try to estimate
the differences of sensitivities and specificities of Test 1 (new) and Test 2 (existing method),
such that est = est1 − est2

It follows that all the MI sensitivity estimates are quite close to each other, differences of
only thousandths have been found. The ML estimate is smaller, but still very close to the other
estimates (less then a half of SE). The confidence intervals are similar with the exception of the
MJCI, which results in different inferential results. (There is significant difference between the
two tests). The specificity estimates are all close to each other, differences of only thousandths
have been found. It seems that all tests find significant differences between the two tests
except the NHCI which claims no difference, and the MJCI which cannot be estimated. We
can conclude that there is no difference between the sensitivities of the two tests, but the new
test improves the specificity.
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10 O. HAREL, X.H. (ANDREW) ZHOU

Table III. Results comparing MI methods, the ML as an existing method of the differences of two
sensitivities and specificities – Alzheimer data

Multiple Imputation
NHCI MJCI ZQCI McN McN+CC ML

Sensitivity est 0.1082 0.1054 0.1082 0.1082 0.1082 0.0703
SE 0.0928 0.0928 0.0929
up 0.9542 0.1870 0.2195 0.2982 0.3121 0.2524
low -0.6600 0.0433 -0.0032 -0.0819 -0.0957 -0.1118

Specificity est -0.1122 -0.1118 -0.1122 -0.1122 -0.1122 -0.1178
SE 0.0201 0.0201 0.0201
up 0.3325 -0.0804 -0.0725 -0.0706 -0.0785
low -0.5993 -0.1440 -0.1519 -0.1538 -0.1572

6. Simulations

In order to compare the different estimation methods and evaluate the use of MI to correct
for verification bias, we run two sets of simulation studies. We compare the estimates for the
differences of sensitivities and specificities in terms of bias, mean square error (MSE), the
corresponding confidence intervals in terms of interval length and true coverage. The first set
of simulations are based on the Alzheimer data set in section 5.1. We chose this example since
it was published already, and there are several cells with very few subjects in them. For the
second set of simulations we used some of the settings from the first simulations but we have
increased the sample size. The settings of the simulation studies are as follows: sample size
of N = (588, 1000), prevalence p = P (D = 1) = 0.35, λ11 = λ10 = 0.7, λ01 = 0.25 and
λ00 = 0.14, where λij = P (V = 1|T1 = i, T2 = j). The sensitivity Sek = P (Tk = 1|D = 1),
and specificity Spl = P (Tl = 0|D = 0) are stated in the tables.

We run this simulation 10,000 times. For our MI procedures we take m = 10, using S-plus
6.2 [26] with a flat (noninformative) prior. The results are summarized in Tables IV–VI.

Let us consider the results summarized in Table IV(a). It follows that all the sensitivity and
specificity estimates are quite close to each other, differences of only thousandths have been
found. The ML estimate is a bit different than the other estimates. But as for the MSE it is
almost the same, and with this size of difference, we can assume they are the same. We can
see quite a variation in the CI length, but together with that there is the issue of coverage.
It follows that the McN, McN+CC and ML are distinctly different than the other methods.
However, less has to be said about the quality of the CI. In this simulation we are showing
that the multiple imputation with McN, McN with continuity correction, and the maximum
likelihood have very similar results, while other methods do not perform that well. We can see
that the coverage which is supposed to be 95% is very close to that in the McN, McN+CC, and
ML, but quite far for the NH, and MJ. ZQ is positioned somewhere between the two groups
with respect to coverage.

The results in Table V(a) are a bit different. Notice that although the estimates for the
sensitivity and specificities are all very close and the biases and MSE are similar as well, the
coverage of the ML method is pretty bad (approx 50%) while the other methods are the same
as the previous tables. Due to this big change, the ZQ coverage is much better than the ML
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MI FOR COMPARING 2 SCREENING TESTS 11

coverage in these settings. The results in Table VI(a), again, are very similar with regard to
all the equality measures, except that in this case the ML and ZQ coverage are very close to
each other, while the other methods are quite constant in their coverage levels.

When considering the simulations for bigger data sets, the results are very similar. In table
IV(b) the estimates, biases, and MSE are very close to one another and to what we would
expect. When considering the coverage, again, Table IV(b) show that the coverage that is
supposed to be 95% is very close to that in the McN, McN+CC, and ML, but quite far for
the NH, and MJ. The ZQ is positioned somewhere between the two groups with respect to
coverage. Under the larger sample size simulations, Table VI(b) has similar results, and only
in Table V(b) does the ML coverage perform badly.

From the simulation study we learn that the use of MI procedure with McNemera’s interval
with continuity correction is the recommended method. There is only a limited difference
between the simple McNemera’s interval to the one with continuity correction, but in most
cases the continuity correction give better results (See Tables IV–VI). Also when using MI it
is very simple to use more than one analysis procedure which will allow us to do sensitivity
analysis. It seems that when the estimates are getting closer to the boundary, the ML method
do not perform as well (Table V). Also when the sample size is small and the difference in
sensitivities and specificities are different, the ML does not perform as well as the MI.

7. Discussion

We have proposed the use of MI for comparing the accuracies of two screening tests in a two-
phase study design. Two-phase study designs are very popular. In particular, our motivation
came from Alzheimer research in which only a portion of a study sample can be verified
(using clinical assessment). From a theoretical point of view, comparing the accuracy of two
screening tests in a two-phase study design is equivalent to estimating the confidence interval
of the difference of two binomial proportions of paired data. Both theoretical and practical
problems are of interest for researchers.

The use of MI allows us to use several complete-data analysis methods in the analysis stage.
This advantage permits us to use sensitivity analysis and compare the different complete-data
methods. In addition, the cost of using several methods is nominal, as the code is exactly the
same except in the analysis stage. Simulation studies have been used in order to compare the
different complete-data procedures between themselves, and also to compare the MI procedure
in general (choosing one complete-data method) to the existing incomplete-data procedure
(maximum likelihood). Comparing the complete-data methods, it is quite apparent that the
use of MI with the McNemar’s (with or without continuity correction), is the best method.
Although there are not many differences in estimation, bias, and mean squared errors, the
coverage and confidence interval length are much better for the McNemar’s test comparing to
NH, MJ, and ZQ. In most cases the continuity correction helps the coverage, and therefore
our method of choice (among the MI methods) will be the McNemar’s interval with continuity
correction. When comparing the MI McNemar’s intervals to the existing method (ML), we
see that in most cases the estimates, bias, and mean squared errors are quite comparable. On
the other hand, the difference in coverage can be quit high. Therefore, we concluded that our
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12 O. HAREL, X.H. (ANDREW) ZHOU

Table IV. Simulation results (estimate, Bias, MSE, lower and upper levels, CI length and Coverage)
for the difference of two screening tests (t2 − t1). True values are Se1 = Se2 = 0.9, Sp1 = Sp2 = 0.9,

and 95% coverage

(a) N=588 Sensitivity
Est Bias MSE lower upper length Coverage

McN 0.0026 0.0026 0.0019 -0.0849 0.0901 0.1749 92.6
McN+CC 0.0026 0.0026 0.0019 -0.0899 0.0951 0.1849 94.5
NH 0.0026 0.0026 0.0019 -0.3601 0.3652 0.7253 100.0
MJ 0.0026 0.0026 0.0019 0.0097 0.5055 0.4958 23.1
ZQ 0.0026 0.0026 0.0019 -0.0544 0.0595 0.1139 80.3
ML 0.0007 0.0007 0.0020 -0.0854 0.0868 0.1722 95.0

Specificity
Est Bias MSE lower upper length Coverage

McN 0.0004 0.0004 0.0008 -0.0536 0.0544 0.1079 92.6
McN+CC 0.0004 0.0004 0.0008 -0.0562 0.0570 0.1131 94.5
NH 0.0004 0.0004 0.0008 -0.3496 0.3511 0.7006 100.0
MJ 0.0004 0.0004 0.0008 0.0060 0.5108 0.5048 28.6
ZQ 0.0004 0.0004 0.0008 -0.0406 0.0414 0.0819 84.9
ML -0.0010 -0.0010 0.0008 -0.0545 0.0524 0.1069 93.8

(b) N=1000 Sensitivity
Est Bias MSE lower upper length Coverage

McN -0.0006 -0.0006 0.0011 -0.0668 0.0656 0.1325 94.0
McN+CC -0.0006 -0.0006 0.0011 -0.0697 0.0685 0.1381 95.7
NH -0.0006 -0.0006 0.0011 -0.3252 0.3225 0.6477 100
MJ -0.0006 -0.0006 0.0011 0.0277 0.0699 0.0422 0
ZQ -0.0006 -0.0006 0.0011 -0.0434 0.0422 0.0855 79.7
ML -0.0017 -0.0017 0.0011 -0.0641 0.0610 0.1250 92.4

Specificity
Est Bias MSE lower upper length Coverage

McN 0.0001 0.0001 0.0005 -0.0424 0.0425 0.0848 94.8
McN+CC 0.0001 0.0001 0.0005 -0.0439 0.0440 0.0879 95.6
NH 0.0001 0.0001 0.0005 -0.2924 0.2928 0.5852 100
MJ 0.0001 0.0001 0.0005 0.0159 0.0404 0.0244 0
ZQ 0.0001 0.0001 0.0005 -0.0320 0.0321 0.0641 88.6
ML -0.0008 -0.0008 0.0005 -0.0420 0.0406 0.0827 93.3
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Table V. Simulation results (estimate, Bias, MSE, lower and upper levels, CI length and Coverage)
for the difference of two screening tests (t2 − t1). True values are Se1 = Se2 = 0.9, Sp1 = Sp2 = 0.95,

and 95% coverage

(a) N=588 Sensitivity
Est Bias MSE lower upper length Coverage

McN -0.0012 -0.0012 0.0016 -0.0792 0.0767 0.1559 93.0
McN+CC -0.0012 -0.0012 0.0016 -0.0840 0.0816 0.1656 95.0
NH -0.0012 -0.0012 0.0016 -0.3342 0.3293 0.6635 100
MJ -0.0012 -0.0012 0.0016 0.0252 0.0841 0.0589 0
ZQ -0.0012 -0.0012 0.0016 -0.0561 0.0536 0.1096 81.3
ML -0.0013 -0.0013 0.0018 -0.0818 0.0769 0.1587 49.7

Specificity
Est Bias MSE lower upper length Coverage

McN 0.0004 0.0004 0.0005 -0.0421 0.0429 0.0850 93.6
McN+CC 0.0004 0.0004 0.0005 -0.0447 0.0456 0.0903 95.0
NH 0.0004 0.0004 0.0005 -0.1584 0.1605 0.3189 100
MJ 0.0004 0.0004 0.0005 0.0130 0.0456 0.0325 0
ZQ 0.0004 0.0004 0.0005 -0.0299 0.0307 0.0606 85.5
ML 0.0000 0.0000 0.0005 -0.0449 0.0408 0.0857 48.3

(b) N=1000 Sensitivity
Est Bias MSE lower upper length Coverage

McN -0.0016 -0.0016 0.0010 -0.0626 0.0594 0.1220 94.1
McN+CC -0.0016 -0.0016 0.0010 -0.0654 0.0623 0.1277 95.1
NH -0.0016 -0.0016 0.0010 -0.3194 0.3145 0.6339 100
MJ -0.0015 -0.0015 0.0010 0.0243 0.0654 0.0412 0
ZQ -0.0016 -0.0016 0.0010 -0.0444 0.0412 0.0856 83.1
ML -0.0014 -0.0014 0.0010 -0.0605 0.0571 0.1176 63.7

Specificity
Est Bias MSE lower upper length Coverage

McN 0.0006 0.0006 0.0003 -0.0324 0.0337 0.0661 94.9
McN+CC 0.0006 0.0006 0.0003 -0.0340 0.0353 0.0692 95.8
NH 0.0006 0.0006 0.0003 -0.1512 0.1535 0.3047 100
MJ 0.0006 0.0006 0.0003 0.0116 0.0333 0.0217 0
ZQ 0.0006 0.0006 0.0003 -0.0227 0.0240 0.0468 84.2
ML 0.0006 0.0006 0.0003 -0.0323 0.0322 0.0645 64.3
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14 O. HAREL, X.H. (ANDREW) ZHOU

Table VI. Simulation results (estimate, Bias, MSE, lower and upper levels, CI length and Coverage) for
the difference of two screening tests (t2 − t1). True values are Se1 = 0.8, Se2 = 0.9, Sp1 = Sp2 = 0.9,

and 95% coverage

(a) N=588 Sensitivity
Est Bias MSE lower upper length Coverage

McN 0.0965 -0.0035 0.0024 -0.0008 0.1938 0.1946 94.0
McN+CC 0.0965 -0.0035 0.0024 -0.0056 0.1986 0.2042 95.2
NH 0.0965 -0.0035 0.0024 -0.3774 0.6240 1.0014 99.9
MJ 0.0956 -0.0044 0.0024 0.0719 0.1566 0.0847 58.3
ZQ 0.0965 -0.0035 0.0024 0.0314 0.1616 0.1302 80.3
ML 0.0991 -0.0009 0.0025 0.0009 0.1959 0.1950 87.8

Specificity
Est Bias MSE lower upper length Coverage

McN -0.0001 -0.0001 0.0009 -0.0595 0.0593 0.1188 93.9
McN+CC -0.0001 -0.0001 0.0009 -0.0621 0.0619 0.1240 94.6
NH -0.0001 -0.0001 0.0009 -0.3017 0.3024 0.6040 100
MJ -0.0001 -0.0001 0.0009 0.0217 0.0603 0.0385 0
ZQ -0.0001 -0.0001 0.0009 -0.0417 0.0415 0.0832 82.6
ML 0.0000 0.0000 0.0010 -0.0579 0.0575 0.1155 86.6

(b) N=1000 Sensitivity
Est Bias MSE lower upper length Coverage

McN 0.0973 -0.0027 0.0014 0.0213 0.1732 0.1519 95.4
McN+CC 0.0973 -0.0027 0.0014 0.0185 0.1761 0.1576 96.5
NH 0.0973 -0.0027 0.0014 -0.3600 0.5975 0.9575 100
MJ 0.0967 -0.0033 0.0014 0.0727 0.1350 0.0624 59.5
ZQ 0.0973 -0.0027 0.0014 0.0467 0.1478 0.1012 81.1
ML 0.0989 -0.0011 0.0014 0.0264 0.1716 0.1452 93.5

Specificity
Est Bias MSE lower upper length Coverage

McN 0.0006 0.0006 0.0006 -0.0456 0.0468 0.0924 95.1
McN+CC 0.0006 0.0006 0.0006 -0.0472 0.0484 0.0955 95.4
NH 0.0006 0.0006 0.0006 -0.2923 0.2942 0.5865 100
MJ 0.0006 0.0006 0.0006 0.0200 0.0465 0.0265 0
ZQ 0.0006 0.0006 0.0006 -0.0315 0.0327 0.0641 83.1
ML 0.0006 0.0006 0.0005 -0.0438 0.0448 0.0886 93.3
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proposed method performs better than the existing method (at least with respect to nominal
coverage).

One of the major assumptions made is the ignorability assumption. One can argue whether
this assumption is reasonable or not, but since both MI and ML assume the same assumption,
we can say that the comparison is just. In the case in which the ignorability assumption is not
reasonable, one can still use the MI method, but the use of ML is questionable. When using
MI under non-ignorable missingness, one would need to change the imputation model. That
implies that the missing values will be generated from a different distribution P (Ymis |Yobs , R)
instead of P (Ymis |Yobs), where R can be considered a random variable that separates the data
into the observed and missing parts. Other than that, all the procedure will be the same.

In our manuscript we compare two screening tests in an Alzheimer two-phase design study.
In some cases the two levels of the study are not an actual two-phase sampling design, as the
second level sampling units are sampling according to a process outside the researchers control.
For example, In AD research many research questions can be answered only by autopsy. The
researchers (in advance) can not specify who is going to undertake autopsy and who is not.
Our method will still be valid for the case of not conventional two-phase designs.

Another complication that can affect the validity of the ignorability assumption, is the fact
that in the background there are two processes that determine who will undertake autopsy,
and who will not. First, a subject has to die in order to be considered for autopsy. In this
case we know, that those who are still alive are missing at random. Second, those who died
would either be autopsied ar not, and this process is different then the first one and can be
considered as ignorable or not. The solution for this complication is the subject of a following
manuscript.

Our example (section 5.1) tried to find if there are environmental risk factors for the
development of Alzheimer’s disease. The standard screening test was based on the subject
test, while the new test was based on the subject’s test in addition to information from a
relative test given to someone who knows the subject. We found (again) that there are no
differences in the sensitivities of the two tests, but that there is an improvement in specificity.
This result support the results of Zhou [19] when only the ML method is used.

Appendix 1 – Multinomial properties

Let x be a multinomial random variable with parameter θ. By indexing the cells in the
contingence table using only one subscript (d = 1, ..., D), it follows that

x|θ ∼ M(n, θ)

with θ = (θ1, θ2, ..., θD), where the probability distribution of x is

P (x|θ) =
n!

x1!x2! · · ·xD!
θx1
1 θx2

2 · · · θxD

D

Suppose that we collapse two cells of the contingency table, adding the frequencies together,
such that we produce a new table x∗ = (z, x3, ..., xD), where z = x1 + x2.

Result 1. The distribution of x∗ is multinomial such that

x∗|θ ∼ M(n, θ∗),
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16 O. HAREL, X.H. (ANDREW) ZHOU

where θ∗ = (ξ, θ3, ..., θD), and ξ = θ1 + θ2.

Proof 1. Let us sum the multinomial probabilities for all the x-vectors consistent with z, such
that

P (x∗|θ) =
z∑

j=0

P (x1 = j, x2 = z − j, x3, ..., xD)

=
z∑

j=0

n!
j!(z − j)!x3! · · ·xD!

θj
1θ

z−j
2 θx3

3 · · · θxD

D

=
n!

z!x3! · · ·xD!
θx3
3 · · · θxD

D

z∑

j=0

z!
j!(z − j)!

θj
1θ

z−j
2

=
n!

z!x3! · · ·xD!
θx3
3 · · · θxD

D (θ1 + θ2)z

since
∑z

j=0
z!

j!(z−j)!θ
j
1θ

z−j
2 = (θ1 + θ2)z.

Result 2. The conditional distribution of (x1, x2) given z (the sum) is multinomial such that

(x1, x2)|z, θ ∼ M(z, (θ1/ξ, θ2/ξ)).

Proof 2. By using result 1 continuously on variables x3 to xD, those cells will collapse to a
single cell such that x3 + · · ·+ xD = n− z. Therefore,

(x1, x2, n− z)|θ ∼ M(n, (θ1, θ2, 1− ξ))
(z, n− z)|θ ∼ M(n, (ξ, 1− ξ)).

By the definition of conditional probability, it follows that

P (x1, x2|z, θ) =
P (x1, x2, z|θ)
P (z, n− z|θ) =

P (x1, x2, n− z|θ)
P (z, n− z|θ) ,

Since both numerator and denominator are multinomial distributions, we can replace the
expressions on the right hand side to get

[
n!

x1!x2!(n− z)!
θx1
1 θx2

2 (1− ξ)n−z

] [
n!

z!(n− z)!
ξz(1− ξ)n−z

]−1

which can be reduced to P (x1, x2|z, θ) = z!
x1!,x2!

(θ1/ξ)x1(θ2/ξ)x2 , the desired result.

Although the results are stated such that the collapsing is of two cells, the results are true for
any arbitrary sets of collapsing.

Appendix 2 – Dirichlet prior

Let θ = (θ1, θ2, ..., θD) be a set of random variables such that θd ≥ 0 for d = 1, 2, ..., D and∑D
d=1 θd = 1. The density function of θ given the parameter α = (α1, α2, ...αD), is

P (θ|α) =
Γ(α0)

Γ(α1)Γ(α2) · · ·Γ(αD)
θα1−1
1 θα2−1

2 · · · θαD−1
D
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where α0 =
∑D

d=1 αd and Γ(.) denotes the gamma function. This Dirichlet distribution is often
written as θ|α ∼ D(α). When used as a prior for a multinomial distribution, it is typical to
omit the normalizing constant such that,

π(θ) ∝ θα1−1
1 θα2−1

2 · · · θαD−1
D

where (α1, ..., αD) are user specific hyperparameters. Since the likelihood function of a
multinomial distribution is

Lx|θ =
n!

x1x2! · · ·xD!
θx1
1 θx2

2 · · · θxD

D ,

the posterior distribution is the product of the prior function (information) and the likelihood
function, leading us to

Lθ|x = π(θ)× Lx|θ ∝ K × (θα1−1
1 θα2−1

2 · · · θαD−1
D )(θx1

1 θx2
2 · · · θxD

D )

= K × θx1+α1−1
1 θx2+α2−1

2 · · · θxD+αD−1
D

∼ D(x + α),

a Dirichlet posterior distribution with parameter (x + α) = (x1 + α1, x2 + α2, ..., xD + αD).
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