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Abstract

We discuss in this article methods for analyzing lognormal data that may include zeros. Specifi-

cally, we are interested in interval estimation for the ratio or difference of the population means. We

propose here two generalized pivotal (GP) approaches: a “true” GP method and an “approximate”

GP method. Additionally, we propose two likelihood-based approaches: a signed log-likelihood

ratio (SLLR) method and a modified SLLR method. Our simulation studies suggest that the ap-

proximate generalized pivotal approach outperforms all other known methods; it results in highly

accurate coverage frequencies and fairly low bias, even in small sample settings.
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1 Introduction

In many naturally occurring situations, the populations of interest may be reasonably described

by lognormal distributions. Examples from the health sciences include measurements of hazardous

materials or substances (Lyles and Kupper, 1996), health costs (Nixon and Thompson, 2004), and

microarray spot intensities (Hoyle et al., 2002). The scientific question in these scenarios may often

involve inference on the population means. Note that while the median is commonly regarded as

a desirable summary for skewed data, it is not always a quantity of scientific interest.

In a recent article (Chen and Zhou, 2006) we discussed methods for estimating the ratio or

difference of two lognormal means. These methods implicitly assume that the data and the pop-

ulations are positive. In many situations however, it may be most sensible to assume that the

populations may in fact include zeros. This assumption should be guided by scientific notions,

not the data themselves. Note that a positive sample does not necessarily suggest that the corre-

sponding population is positive as well: a population with zeros can certainly produce an entirely

positive sample.

In many situations, there may be a good reason to believe not only that the population includes

zeros but also that the positive subset of the population is lognormal. The second assumption should

be supported by the data (model checking techniques are discussed in the next section). We discuss

in this article methods for analyzing data that are believed to have arisen from such distributions.

Specifically, we are interested in methods for estimating the ratio or difference of two population

means. Appropriate interval estimates or hypothesis tests for these quantities are lacking. Zhou

and Tu (2000) have proposed maximum likelihood and bootstrap confidence interval approaches
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for the ratio of the means, but neither method appears to perform very well. The methods perform

particularly poorly in small sample situations: the confidence intervals in these settings often have

poor coverage probabilities (Zhou and Tu, 2000).

We propose in the present article generalized pivotal approaches for the ratio or difference of

the population means. Additionally, we propose two likelihood-based approaches. Our focus is

on confidence intervals. Note however that each of the methods could be modified to obtain a

hypothesis test, if desired.

The structure of the paper is as follows. In Section 2, we present the model and the parameters

of interest. We also discuss some model checking techniques. In Sections 3, 4 and 5, we present the

methods of estimation (longer formulas and arguments are provided in the Appendix). In Section

6, we provide the results of some simulation studies. We close the paper with an example and a

discussion (Sections 7 and 8).

2 The model

As indicated in the introduction, we are interested in analyzing lognormal populations that include

zeros. Zhou and Tu (2000) have shown that these populations can be represented by a mixture

model. Suppose we have two populations of interest. Let W 1 = (W11, . . . , W1n1) denote a random

sample from the first population and let W 2 = (W21, . . . , W2n2) denote a random sample from the

second population. Assume that Wij takes on a value of zero with probability πi. Else, let Wij

take on a positive value with a probability density function (pdf) given by a lognormal function.

The pdf of Wij is:

f(wij) = 1[wij=0]πi + 1[wij>0]
1√

2πwijσi

exp
{
− 1

2σ2
i

(log wij − µi)2
}

, (1)
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where 1[wij∈S] denotes an indicator function, such that 1[wij∈S] = 1 if wij ∈ S and 1[wij∈S] = 0

otherwise.

Assume that the Wij are independent, and index the data such that the first ni1 observations of

Wij are positive and the remaining ni0 = ni − ni1 observations of Wij are equal to 0. Also, let Y i

denote the population-specific random vector of the log-transformed positive variables, such that

Y i = (log Wi1, . . . , log Wini1). The joint pdf of W = (Y 1,Y 2, ni0, n20) can then be given by:

f(y1, y2, n10, n20) =
(

n1

n10

)
πn10

1 (1− π1)n11

(
n2

n20

)
πn20

2 (1− π0)n21

×
(

1√
2π

)n11+n21
(

1
σ1

)n11
(

1
σ2

)n21

× exp



−

1
2σ2

1

n11∑

j=1

(y1j − µ1)2 − 1
2σ2

2

n21∑

j=1

(y2j − µ2)2



 . (2)

Note that the function reduces when n10 = 0 or n20 = 0.

We are interested in the ratio and difference of the population means. The mean, mi, of

population i can be derived from (1) and is given by:

mi = E(Wij) = (1− πi) exp
(

µi +
1
2
σ2

i

)
. (3)

The ratio of the means, m1/m2, is simply:

m1/m2 =
(

1− π1

1− π2

)
exp

(
µ1 +

1
2
σ2

1 − µ2 − 1
2
σ2

2

)
. (4)

We will often refer to the natural logarithm of this ratio, which we will denote ψ:

ψ = log (m1/m2) = log(1− π1) + µ1 +
1
2
σ2

1 − log(1− π2)− µ2 − 1
2
σ2

2. (5)
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The difference of the means m1 −m2, which we will denote δ, is:

δ = m1 −m2 = (1− π1) exp
(

µ1 +
1
2
σ2

1

)
− (1− π2) exp

(
µ2 +

1
2
σ2

2

)
. (6)

The lognormal assumption can and should be checked. Recall that a population is lognormal

(by definition) if and only if the log-transformed values follow a normal distribution. Thus, we

can check to see whether a sample is lognormal by checking whether the natural logarithm of each

sample’s positive subset follows a normal distribution. We recommend that this be done via the

use of normal quantile plots and the Shapiro-Wilk test for normality. These should be applied to

each of the transformed samples.

3 A generalized pivotal approach

We introduce here our generalized pivotal approaches for expψ = m1/m2 and δ = m1 − m2.

Weerahandi (1993) defines a generalized pivotal (GP) as a statistic that has (a) a distribution free

of unknown parameters, and (b) an observed value that does not depend on nuisance parameters.

Note that the generalized pivotal is allowed to be a function of nuisance parameters, whereas

conventional pivotal quantities can only be a function of the sample and the parameter of interest.

Generalized pivotal quantities can be used to obtain interval estimates for the parameter of

interest; Weerahandi calls such intervals generalized confidence intervals. To find a 100γ percent

generalized confidence interval, it is necessary to find a region Cγ of the pivotal space such that

the probability that the pivotal quantity is in Cγ is equal to the confidence coefficient, γ. The

generalized confidence interval is simply the region of the parameter space corresponding to Cγ .

5
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3.1 GP approach for the ratio of means

Krishnamoorthy and Mathew (2003) have shown that Weerahandi’s methods can be used to obtain

generalized confidence intervals for the ratio of two lognormal means. We show here that the

approach can be generalized to lognormal populations that also include zeros.

Let µ̂i denote the maximum likelihood (ML) estimate for µi, and let s2
i be the bias-corrected

ML estimate for σ2
i :

µ̂i =
1

ni1

ni1∑

j=1

yij (7)

s2
i =

1
ni1 − 1

ni1∑

j=1

(yij − µ̂i)2. (8)

Define the statistics T1 and T2 as:

Ti = µ̂i − Zi

Ui/
√

ni1 − 1
si√
ni1

+
1
2

s2
i

U2
i /(ni1 − 1)

, (9)

where Zi ∼ N(0, 1) and U2
i ∼ χ2

ni1−1. Additionally, let π̃i denote the Agresti-Coull estimate for πi

(Agresti and Coull, 1998):

π̃i =
ni0 + 1

2z2
α

ni + z2
α

,

where zα is the quantile of the standard normal curve corresponding to α, and α is one minus the

confidence coefficient of the desired confidence interval.1 Finally, define fi as the function:

fi(ni, ni0) = π̃i − Zi+2

√
π̃i(1− π̃i)/(ni + z2

α),

1Our GP approach utilizes the Agresti-Coull (A-C) normal approximation. Other approximations to the binomial
distribution are possible. These include the traditional Wald approximation and the Wilson approximation. Our studies
suggest however that a GP method with an A-C approximation slightly outperforms GP methods with Wald or Wilson
approximations (it seems to provide more accurate coverage frequencies).
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where Zi+2 ∼ N(0, 1) and define Si as:

Si =





0 if fi(ni, ni0) < 0

Uniform(99/100, 1) if fi(ni, ni0) > 1

fi(ni, ni0) otherwise

(10)

where Uniform(a, b) denotes a uniformly distributed continuous random variable on the interval

[a, b].2 The statisitc TR:

TR = T1 + log(1− S1)− T2 − log(1− S2) (11)

is a generalized pivotal statistic for ψ. A proof is provided in Appendix A.

We show in the Appendix that the observed value of TR – the value of TR given the sample – is

precisely equal to ψ. Thus, a 100(1−α)% two-sided generalized confidence interval for ψ is simply

the 100(α/2) and 100(1 − α/2) percentiles of TR. We can find these percentiles by generating k

values of TR, where k denotes some “large” positive integer. The algorithm is as follows:

(For j = 1 to k)

Generate values for Z1, Z2, Z3, Z4, U
2
1 , and U2

2

Calculate TR

(End loop)

Order the k values of TR; find the 100α and 100(1 − α) percentiles; denote these TR(l)

and TR(u), respectively.

2Note that we have provided a conditional definition of Si because – as should be apparent from our definition of TR

– Si is emblematic of πi. Thus, it is conceptually desirable to restrict the function to ensure that it is not greater than
1 or less than 0. In fact, the presence of the logarithmic functions requires that Si be less than 1, so some correction is
strictly necessary since fi can indeed be greater than 1 (fi is likely to be greater than 1 when πi is large, and is likely to
be less than 0 when πi is small). The definition of Si for fi > 1 is admittedly somewhat arbitrary.

7
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A 100(1− α)% generalized confidence interval for expψ = m2/m2 is:

(exp TR(l), expTR(u)). (12)

3.2 GP for the difference of means

We also propose a generalized confidence interval for the difference of the population means, δ =

m1 −m2. Let T1, T2, S1, and S2 be the statistics given by (9) and (10). The statistic:

TD = exp{T1 + log(1− S1)} − exp{T2 + log(1− S2)} (13)

is a generalized pivotal statistic for δ. This may be shown via arguments similar to those used

in the proof for TR, provided in Appendix A. It should be apparent from that section that the

observed value of TD is equal to δ. Thus, a 100(1 − α) two-sided generalized confidence interval

for δ is given by the 100(α/2) and 100(1 − α/2) percentiles of TD. They may be found via the

following algorithm:

(For j = 1 to k)

Generate values for Z1, Z2, Z3, Z4, U
2
1 , and U2

2

Calculate TD

(End loop)

Order the k values of TD; find the 100α and 100(1 − α) percentiles; denote these TD(l)

and TD(u), respectively.

A 100(1− α)% generalized confidence interval for δ = m2 −m2 is:

(TD(l), TD(u)). (14)
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4 An approximate GP approach

Recall that Ti (9) utilizes the bias-corrected ML estimate for σ2
i . Alternatively, we may have defined

the statistic using the non-corrected ML estimate, σ̂2
i :

σ̂2
i =

1
ni1

ni1∑

j=1

(yij − µ̂i)2 (15)

in place of s2
i . We can use this modified form of Ti, which we will call T ∗i , to define modified forms

of TR (11) and TD (13). That is, we can define T ∗R as TR, with Ti replaced with T ∗i . Likewise, we

can define T ∗D as TD, with Ti replaced with T ∗i .

The statistic T ∗R is not in fact a generalized pivotal statistic for ψ, nor is T ∗D a generalized pivotal

statistic for δ. As should be apparent from the arguments provided in Appendix A, the observed

values of T ∗R and T ∗D will actually depend on nuisance parameters. Nevertheless, T ∗R and T ∗D are

“approximate” GP statistics: their observed values each approach the parameter of interest when

the samples are large. Of course, the idea of using approximate generalized pivotal (AGP) statistics

may seem strange. Our own experience has revealed however that AGP approaches can actually

have desirable properties. In fact, the “generalized pivotal statistics” described in our earlier article

(Chen and Zhou, 2006) were, contrary to our claims, actually AGP statistics. A “true” GP method,

which uses the bias-corrected ML estimate for σ2
i , is presented in Krishnamoorthy and Mathew’s

2003 article. Our analysis has indicated however, that the method discussed in our article (an

AGP approach) outperforms the true GP method in small sample settings; the former approach

typically results in more accurate coverage frequencies.

Given this knowledge, we felt it would be reasonable to propose AGP approaches here. We

define to the AGP methods to be entirely analogous to the GP methods, with T ∗R or T ∗D used in

place of TR or TD. That is, the AGP methods use the non-corrected ML estimate for σ2
i as opposed

9
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to the bias-corrected ML estimate s2
i .

5 Likelihood based approaches

We propose here two likelihood approaches for estimating m1/m2 or m1−m2. These are: a signed

log-likelihood ratio (SLLR) approach and a modified signed log-likelihood approach (MSLLR).

5.1 A signed log-likelihood ratio approach

Wu et al. (2002) have shown that the signed log-likelihood ratio (SLLR) statistic can be used to

obtain confidence intervals for the ratio of two lognormal means. We propose here an approach for

situations in which the populations may also include zeros.

Define λ as the vector of nuisance parameters λ = (µ2, σ1, σ2, π1, π2) and define t as the vec-

tor of statistics t = (t1, t2, t3, t4, t5, t6) = (
∑

y1j ,
∑

y2j ,
∑

y2
1j ,

∑
y2
2j , n11, n21). The log-likelihood

function is simply the natural logarithm of (2), and can be expressed as a function of t:

`(ψ; λ, t) =
{

ψ − log(1− π1)− 1
2
σ2

2 + log(1− π2) + µ2 +
1
2
σ2

2

}
1
σ2

1

t1 +
µ2

σ2
2

t2

− 1
2σ2

1

t3 − 1
2σ2

2

t4 − t5 log σ1 + (n1 − t5) log π1 + t5 log(1− π1)

−
{

ψ − log(1− π1)− 1
2
σ2

2 + log(1− π2) + µ2 +
1
2
σ2

2

}2 1
2σ2

1

t5

− t6 log σ2 + (n2 − t6) log π2 + t6 log(1− π2)− µ2
2

2σ2
2

t6. (16)

Note that the function reduces when one or more of the samples does not contain zeros. This

because t5 = n1 when n10 = 0, and t6 = n2 when n20 = 0.

The signed log-likelihood ratio statistic, which we will denote r, is given by:

r(ψ) = sgn(ψ̂ − ψ){2[`(ψ̂, λ̂)− `(ψ, λ̂ψ)]}1/2, (17)
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where ψ̂ and λ̂ denote the maximum likelihood estimates of ψ and λ. These can be derived from

(16) and are as follows:

µ̂i =
1

ni1

ni1∑

j=1

yij

σ̂2
i =

1
ni1

ni1∑

j=1

(yij − µ̂i)2

π̂i = ni0/ni (18)

ψ̂ = log(1− π̂1) + µ̂1 +
1
2
σ̂2

1 − log(1− π̂2)− µ̂2 − 1
2
σ̂2

2. (19)

The expression λ̂ψ denotes the constrained maximum likelihood estimate of λ at ψ. That is, it is the

maximum likelihood estimate of λ at some fixed value of ψ. This may be obtained computationally

via the use of a maximization algorithm. We used the optim function in R (R Development Core

Team, 2006).

The distribution of r is said to approximate the standard normal to the first order (see for

instance: Barndorff-Nielsen, 1986). Thus, a 100(1− α) percent confidence interval for ψ is simply

given by the region:

{ψ;−zα/2 ≤ r(ψ) ≤ zα/2}. (20)

Finding the lower and upper bounds is a non-trivial task, as the task requires some sort of compu-

tational strategy. We used uniroot, a root-finding function included in R (R Development Core

Team, 2006). This approach worked quite well.

Signed log-likelihood ratio confidence intervals for δ = m1−m2 are also possible. The approach

is entirely analogous to that described above: one simply needs to rewrite ` as a function of δ.
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5.2 A modified signed log-likelihood ratio approach

Barndorff-Nielsen (1986; 1991) has developed a modified form of the signed log-likelihood ratio

(MSLLR) statistic. It is advantageous because the distribution of the statistic is said to approximate

the standard normal to the third order (Barndorff-Nielsen, 1986; 1991). Wu et al. (2002) have

shown that the MSLLR can be used to estimate the ratio of two lognormal means. We propose

here an approach for situations in which the populations may include zeros.

Let λ, t, and ` be as defined in Section 5.1. Also, define θ as the vector of parameters (ψ, λ). The

modified signed log-likelihood ratio statistic (Barndorff-Nielsen, 1986; Barndorff-Nielsen, 1991),

which we will denote r∗, is:

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
u(ψ)
r(ψ)

}
. (21)

The statistic u is:

u(ψ) =
|`t(ψ̂, λ̂)− `t(ψ, λ̂ψ), `λt(ψ, λ̂ψ)|

|`θt(ψ̂, λ̂)| ×
{
|`θθ(ψ̂, λ̂)|
|`λλ(ψ, λ̂ψ)|

}1/2

, (22)

where `t = ∂`/∂t, `λt = ∂2`/∂λ∂t, `θt = ∂2`/∂θ∂t, `θθ = −∂2`/∂θ2, and `λλ = −∂2`/∂λ2.

Precise expressions for these functions are provided in the appendix. Note that the comma in the

numerator of the first fraction is meant to indicate that the matrix is formed by adjoining the

columns of `t(ψ̂, λ̂)− `t(ψ, λ̂ψ) and `λt(ψ, λ̂ψ).

As indicated above, the distribution of r∗ is said to approximate the standard normal to the

third order. Thus, a 100(1− α) percent confidence interval for ψ can be given by the region:

{ψ;−zα/2 ≤ r∗(ψ) ≤ zα/2}. (23)

The upper and lower bounds may be found computationally via, for instance, the uniroot function

12
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in R (R Development Core Team, 2006).

A MSLLR approach for δ is also possible, and is entirely analogous to the approach described

above. Our exploration suggests however, that derivation of the method would require fairly tedious

mathematical computation, involving a large amount of irreducible terms.

6 Simulation studies

We report and discuss here simulations for the methods for estimating expψ = m1/m2. Note that

we have also conducted simulations for the methods for estimating δ = m1−m2, but these studies

revealed patterns fairly consistent with those observed in the simulations for m1/m2 (and are thus

not reported here).

Six methods were considered in our study. These include the four methods we have proposed

above: the GP and the AGP approaches, the SLLR approach, and the MSLLR approach. Addi-

tionally, we conducted simulations for the two existing approaches: the maximum likelihood (ML)

and bootstrap methods proposed by Zhou and Tu (2000).

A complete list of our sample sizes and parameter values is provided in Table 1. Note that

we have chosen to focus on small sample settings because, as discussed in our introduction, the

existing methods (the ML and bootstrap methods) have been reported to perform fairly poorly in

small sample scenarios.

For each of the designs in Table 1, we generated 10,000 sets of samples. Each set of samples was

used to construct a 95 percent confidence interval for the ratio of means, expψ = m1/m2, using

each of the six methods referred to above. We used k = 500 pivotal quantities (per simulation) for

each generalized confidence interval, and k = 500 bootstrap samples for each bootstrap interval.

All simulations were carried out in the R programming environment (R Development Core Team,

2006).

13
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Our complete results are presented in Table 2. Coverage frequencies and bias measurements

are summarized in Figure 1. Coverage is the percent of confidence intervals that included the true

value, and median width is the median width for each set of intervals (10,000 per simulation).

We also provide in this table summaries of the error frequencies. Left error is the percent of the

intervals that were to the left of the true value; right error is the percent that were to the right of

the parameter. Relative bias is a relative comparison of the two frequencies:

relative bias =
(right error)− (left error)
(right error) + (left error)

.

Note that the quantity takes on a positive value when right error exceeds left error.

We are primarily interested in the coverage frequencies and the relative bias measurements. The

AGP method appears to be the clear winner. It resulted in highly accurate coverage frequencies and

did not reveal a strong amount of bias. The GP and MSLLR methods also resulted in fairly good

coverage and low bias, but the coverage frequencies were not as accurate as those provided by the

AGP method. The GP method tended to result in over coverage and the MSLLR method tended

to result in under coverage. All other techniques – the ML, bootstrap, and SLLR approaches –

revealed poor coverage probabilities. The ML and bootstrap approaches appear to be particularly

undesirable as they can result in a large amount of bias.

7 Example

We consider here an example from the health sciences. Callahan et al. (1997) were involved in a

cohort study of older adults at a large primary care group practice. The cohort consisted of 3767

elderly adults who had completed testing on the Centers for Epidemiologic Studies Depression Scale

(CES-D). Clinical information for these individuals was collected over a two year period. These

14
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records were used to classify the patients into various subgroups, defined by the Ambulatory Care

Group system (abbreviated ACG, and now known as the Adjusted Clinical Group system). The

researchers were interested in estimating the mean test cost in each of the patient subgroups.

For our discussion here, we will compare the Group 8 to Group 9. The mean cost in Group 8

is $1788.67 and the mean for Group 9 is $498.32. Data from both groups are highly skewed and

include zeros: 10 of the 40 observations in Group 8 and 22 of 125 observations in Group 9 are equal

to zero. Thus, we propose checking to see whether the data might be reasonably described by our

mixture model. Normal quantile plots for the log-transformed positive data are provided in Figure

2. These provide no evidence against lognormality: the points all fall fairly close to the quantile

lines. Likewise, the Shapiro-Wilk tests do not suggest that the data are not lognormal: the p-value

for each group, 0.202 for Group 8 and 0.316 for Group 9, exceeds α = 0.05 (the null hypothesis is

that the transformed sample is normal). It appears then that the lognormal model is appropriate.

Additionally, it seems fairly reasonable to assume that the data are independent.

Having assessed the model assumptions, we proceed to analyze the data. We assume here that

we are only interested in relative differences between the two means. Thus, we will use the AGP

method to obtain a confidence interval for the ratio of the population means. We are using the AGP

method because, as emphasized in Section 6, the AGP method provides very accurate coverage

frequencies and fairly low bias. A 95% AGP two-sided confidence interval for the ratio of the group

means, comparing Group 8 to Group 8, is (2.24, 11.68). Thus, it appears that the mean cost for

Group 8 does in fact exceed the mean cost of Group 9. Moreover, because the interval does not

include 2, it appears that the mean for Group 8 is more than twice the mean for Group 9.
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8 Discussion

Our simulation studies clearly suggest that the AGP method is the preferred method of estimation,

particularly in small sample settings. Of course, the studies reported here examined only a finite

set of parameter values and sample sizes. Additional studies (not reported in detail here) indicate

that the AGP approach continues to perform extremely well for other values of ni, δi, and σi. It

should be noted that while the AGP method outperforms the GP method in small sample settings,

further exploration (not reported in detail) indicates that the two methods perform equally well

when the ni are relatively large.

Parametric approaches, such as those examined in this article, are often criticized because

they may perform poorly when the distributional assumptions are violated. Our own studies, not

reported here, suggest that the AGP method (as well as the other approaches) are fairly robust to

the lognormal assumption. That is, they can continue to provide fairly good coverage even when

the lognormal assumption is violated. Further comments regarding this matter are provided in our

previous article (Chen and Zhou, 2006).

The fact that the AGP method outperforms the GP method in small sample settings has, in

our eyes, very interesting theoretical implications. It seems possible for instance, that GP methods

for other scenarios may be “improved” via the use of an approximate GP. We feel that it would be

informative to explore the extent to which we can, or should, relax Weerahandi’s requirements.
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A Argument that TR is a GP statistic

To show that TR is a generalized pivotal statistic for ψ = log m1/m2 it is necessary to show (a)

that its distribution does not depend on any unknown parameters, and (b) that the observed value

is free of nuisance parameters. It is apparent from (9) and (10) that the first of the two conditions

is satisfied. Note that the distributions of Ti and Si do not depend on any unknown parameters.

Consequently, the distribution of TR itself does not depend on unknown parameters.

To show that the second condition is satisfied, it is useful to rewrite our statistics as functions

of the parameters. First, we rewrite the Ti. Define the random variables Ȳi and S2
i as:

Ȳi =
1

ni1

ni1∑

j=1

Yij S2
i =

1
ni1 − 1

ni1∑

j=1

(Yij − Ȳi)2.

The Yij are assumed to be normally distributed with mean µi and variance σ2
i , so

√
ni1(Ȳi −

µi)/σi ∼ N(0, 1) and (ni1 − 1)S2
i /σ2

i ∼ χ2
ni1−1. We can say then that Zi =

√
ni1(Ȳi − µi)/σi and

U2
i = (ni1 − 1)S2

i /σ2
i , and rewrite Ti as:

Ti = µ̂i − Zi

Ui/
√

ni1 − 1
si√
ni1

+
1
2

s2
i

U2
i /(ni1 − 1)

= µ̂i − Ȳi − µi

Si/
√

ni1
si/
√

ni1 +
1
2

σ2
i

S2
i

s2
i .
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It is also useful to rewrite the Si. Let Ni0 denote a Binomial(ni, πi) random variable:

Ni0 ∼ Binomial(ni, πi),

and define Pi as:

Pi =
Ni0 + 1

2z2
α

ni + z2
α

.

Agresti-Coull confidence intervals assume that (Pi− πi)/
√

Pi(1− Pi)/(ni + z2
α) ∼ N(0, 1). We can

say then that Zi+2 = (Pi − πi)/
√

Pi(1− Pi)/(ni + z2
α). The function fi can then be rewritten as:

fi(ni, ni0) = π̃i − Zi+2

√
π̃i(1− π̃i)/(ni + z2

α)

= π̃i − Pi − πi√
Pi(1− Pi)/(ni + z2

α)

√
π̃i(1− π̃i)/(ni + z2

α).

The observed value of Ti, the value of the statistic given the sample of interest, is:

observed value of Ti = µ̂i − µ̂i − µi

si/
√

ni1
si/
√

ni1 +
1
2

σ2
i

s2
i

s2
i

= µi +
1
2
σ2

i .

The observed value of Si when 0 ≤ fi ≤ 1 is, by definition of Si, the observed value of fi:

observed value of fi = π̃i − π̃i − πi√
π̃i(1− π̃i)/(ni + z2

α)

√
π̃i(1− π̃i)/(ni + z2

α)

= πi.

From the above, it is apparent that the observed value of TR is simply the parameter of interest,

ψ. We have shown now that TR is indeed a generalized pivotal statistic for ψ: the distribution of

the statistic does not depend on unknown parameters, and the observed value is free of nuisance
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parameters.

Similar arguments to those provided above can be used to show that TD is a GP for δ. Addition-

ally, it should be apparent from the above that T ∗R and T ∗D are not GP statistics. Note specifically

that the observed value of T ∗i is not equal to µi + 1
2σ2

i .

B Components of the u statistic

First, let λ, t, and θ be as defined in Section 3.1. Also, define µ1 as:

µ1(ψ, λ) = ψ − log(1− π1)− 1
2
σ2

1 + log(1− π2) + µ2 +
1
2
σ2

2.

Recall that the log-likelihood function, `, reduces when one or more of the samples does not

contain zeros. Thus, some of the components of u depend on n10 or n20.

The partial derivative of ` with respect to t is:

`t(ψ, λ) =
(µ1

σ2
1

,
µ2

σ2
2

,− 1
2σ2

1

,− 1
2σ2

2

,

− log σ1 − µ2
1

2σ2
1

+ {log(1− π1)− log π1} 1[n10 6=0],

− log σ2 − µ2
2

2σ2
2

+ {log(1− π2)− log π2} 1[n20 6=0]

)
.

The partial derivative of ` with respect to λ and t is `λt(ψ, λ) = [aij ]6×5 , where:

(a11, a12, a13, a14, a15) =
( 1

σ2
1

,− 1
σ1
− 2µ1

σ3
1

,
σ2

σ2
1

,
1

σ2
1(1− π1)

,− 1
σ2

1(1− π2)

)

(a21, a22, a23, a24, a25) =
( 1

σ2
2

, 0,−2µ2

σ3
2

, 0, 0
)

(a31, a32, a33, a34, a35) =
(
0,

1
σ3

1

, 0, 0, 0
)

(a41, a42, a43, a44, a45) =
(
0, 0,

1
σ3

2

, 0, 0
)
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(a51, a52, a53, a54, a55) =
(
− µ1

σ2
1

,− 1
σ1

+
µ1

σ1
+

µ2
1

σ3
1

,−µ1σ2

σ2
1

,

− 1
1− π1

− µ1

σ2
1(1− π1)

− 1
π1

1[n10 6=0],
µ1

σ2
1(1− π2)

)

(a61, a62, a63, a64, a65) =
(
− µ2

σ2
2

, 0,− 1
σ2

+
µ2

2

σ3
2

, 0,− 1
1− π2

− 1
π2

1[n20 6=0]

)
.

The determinant of `θt is:

|`θt(ψ, λ)| =





{σ5
1σ

5
2π1(1− π1)π2(1− π2)}−1 if n10 6= 0 and n20 6= 0

{σ5
1σ

5
2π1(1− π1)}−1 if n10 6= 0 and n20 = 0

{σ5
1σ

5
2π2(1− π2)}−1 if n10 = 0 and n20 6= 0

(σ5
1σ

5
2)
−1 if n10 = 0 and n20 = 0

and the determinant of `θθ is:

|`θθ(ψ, λ)| =





4n3
1n

3
2(1− π1)(1− π2)(σ4

1σ
4
2π1π2)−1 if n10 6= 0 and n20 6= 0

4n3
1n

3
2(1− π1)(σ4

1σ
4
2π1)−1 if n10 6= 0 and n20 = 0

4n3
1n

3
2(1− π2)(σ4

1σ
4
2π2)−1 if n10 = 0 and n20 6= 0

4n3
1n

3
2(σ

4
1σ

4
2)
−1 if n10 = 0 and n20 = 0

Finally, the matrix `λλ is given by `λλ(ψ, λ) = [bij ]5×5 where:

(b11, b12, b13, b14, b15) =
( t5

σ2
1

+
t6
σ2

2

,
2t1
σ3

1

− t5
σ1
− 2µ1t5

σ3
1

,
2t2
σ3

2

+
σ2t5
σ2

1

− 2µ2t6
σ3

2

,

t5
σ2

1(1− π1)
,− t5

σ2
1(1− π2)

)

(b21, b22, b23, b24, b25) =
(
b12,−3t1

σ2
1

− 6µ1t1
σ4

1

+
3t3
σ4

1

+ t5 − t5
σ2

1

+
3µ1t5
σ2

1

+
3µ2

1t5
σ4

1

,

2σ2t1
σ3

1

− σ2t5
σ1

− 2µ1σ2t5
σ3

1

,
2t1

σ3
1(1− π1)

− t5
σ1(1− π1)

− 2µ1t5
σ3

1(1− π1)
,

− 2t1
σ3

1(1− π2)
+

t5
σ1(1− π2)

+
2µ1t5

σ3
1(1− π2)

)
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(b31, b32, b33, b34, b35) =
(
b13, b23,− t1

σ2
1

− 6µ2t2
σ4

2

+
3t4
σ4

2

+
σ2

2t5
σ2

1

+
µ1t5
σ2

1

− t6
σ2

2

+
3µ2

2t6
σ4

2

,

σ2t5
σ2

1(1− π1)
,− σ2t5

σ2
1(1− π2)

)

(b41, b42, b43, b44, b45) =
(
b14, b24, b34,− t1

σ2
1(1− π1)2

+
t5

(1− π1)2
+

t5
σ2

1(1− π1)2

+
µ1t5

σ2
1(1− π1)2

+
n1 − t5

π2
1

1[n10 6=0],−
t5

σ2
1(1− π1)(1− π2)

)

(b51, b52, b53, b54, b55) =
(
b15, b25, b35, b45,

t1
σ2

1(1− π2)2
+

t5
σ2

1(1− π2)2
− µ1t5

σ2
1(1− π2)2

+
t6

(1− π2)2
+

n2 − t6
π2

2

1[n20 6=0]

)
.

Note that the components described above should be evaluated at the maximum likelihood or

constrained maximum likelihood estimates, as indicated in (22).
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Table 1: Parameters and sample sizes used in the simulation studies.

Design n1 n2 δ1 δ2 µ1 σ2
1 σ2

2

1a 10 10 0.1 0.1 0 1 1
1b 25 25
1c 10 25
2a 10 10 0.1 0.1 0.75 0.5 2
2b 25 25
2c 10 25
3a 10 10 0.1 0.2 0 1 1
3b 25 25
3c 10 25
3d 25 10
4a 10 10 0.1 0.2 0.75 0.5 2
4b 25 25
4c 10 25
4d 25 10
5a 10 10 0.1 0.2 −0.75 2 0.5
5b 25 25
5c 10 25
5d 25 10

Table 2: Results from the simulation studies.

Design Method Coverage Med. width Left error Right error Rel. bias
1a GP 96.19 4.80 1.96 1.85 −0.03

AGP 95.66 4.18 2.29 2.05 −0.06
SLLR 93.68 3.28 3.23 3.09 −0.02
MSLLR 94.05 4.20 3.06 2.89 −0.03
ML 92.88 2.61 3.63 3.49 −0.02
Bootstrap 92.44 2.60 3.75 3.81 0.01

1b GP 95.99 1.85 2.00 2.01 0.00
AGP 95.82 1.78 2.06 2.12 0.01
SLLR 94.10 1.69 2.89 3.01 0.02
MSLLR 94.67 1.80 2.59 2.74 0.03
ML 94.14 1.57 2.85 3.01 0.03
Bootstrap 93.68 1.55 3.06 3.26 0.03

1c GP 95.55 3.95 2.88 1.57 −0.29
AGP 94.85 3.31 3.65 1.50 −0.42
SLLR 93.10 2.69 4.13 2.77 −0.20
MSLLR 94.11 3.78 3.26 2.63 −0.11
ML 92.50 1.95 5.54 1.96 −0.48
Bootstrap 91.84 1.87 6.25 1.91 −0.53
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Design Method Coverage Med. width Left error Right error Rel. bias
2a GP 95.81 3.83 2.22 1.97 −0.06

AGP 95.20 3.75 1.94 2.86 0.19
SLLR 93.28 3.34 2.38 4.34 0.29
MSLLR 93.94 3.52 2.66 3.40 0.12
ML 90.28 3.77 0.71 9.01 0.85
Bootstrap 89.52 3.74 0.88 9.60 0.83

2b GP 95.30 1.94 2.53 2.17 −0.08
AGP 95.08 1.95 2.27 2.65 0.08
SLLR 93.91 1.92 2.27 3.82 0.25
MSLLR 94.62 1.96 2.52 2.86 0.06
ML 92.70 2.06 0.91 6.39 0.75
Bootstrap 92.07 2.04 1.05 6.88 0.74

2c GP 95.58 2.60 2.93 1.49 −0.33
AGP 95.21 2.45 3.07 1.72 −0.28
SLLR 94.29 2.29 2.52 3.19 0.12
MSLLR 94.71 2.51 2.48 2.81 0.06
ML 93.60 2.26 1.54 4.86 0.52
Bootstrap 93.25 2.20 1.87 4.88 0.45

Design Method Coverage Med. width Left error Right error Rel. bias
3a GP 96.36 5.55 1.32 2.32 0.27

AGP 95.73 4.86 1.57 2.70 0.26
SLLR 92.95 3.95 1.90 5.15 0.46
MSLLR 93.86 4.98 1.76 4.38 0.43
ML 92.65 2.83 3.31 4.04 0.10
Bootstrap 92.08 2.92 3.18 4.74 0.20

3b GP 95.28 2.16 1.01 3.71 0.57
AGP 94.85 2.09 1.09 4.06 0.58
SLLR 92.96 2.01 1.30 5.74 0.63
MSLLR 93.74 2.13 1.21 5.05 0.61
ML 94.18 1.66 2.59 3.23 0.11
Bootstrap 93.65 1.68 2.59 3.76 0.18

3c GP 95.58 4.48 1.90 2.52 0.14
AGP 95.15 3.79 2.39 2.46 0.01
SLLR 92.74 3.13 2.61 4.65 0.28
MSLLR 93.53 4.32 1.97 4.50 0.39
ML 92.85 2.05 5.17 1.98 −0.45
Bootstrap 92.26 2.00 5.58 2.16 −0.44

3d GP 96.08 3.08 0.87 3.05 0.56
AGP 95.42 3.02 0.82 3.76 0.64
SLLR 92.54 2.74 1.45 6.01 0.61
MSLLR 94.65 2.88 1.41 3.94 0.47
ML 92.33 2.36 1.91 5.76 0.50
Bootstrap 91.11 2.53 1.65 7.24 0.63
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Design Method Coverage Med. width Left error Right error Rel. bias
4a GP 95.98 4.48 1.60 2.42 0.20

AGP 95.32 4.40 1.40 3.28 0.40
SLLR 92.34 4.06 1.44 6.22 0.62
MSLLR 94.06 4.25 1.79 4.15 0.40
ML 89.13 4.15 0.80 10.07 0.85
Bootstrap 87.92 4.35 0.79 11.29 0.87

4b GP 95.35 2.31 1.48 3.17 0.36
AGP 94.87 2.31 1.23 3.90 0.52
SLLR 93.08 2.32 1.05 5.87 0.70
MSLLR 94.47 2.34 1.19 4.34 0.57
ML 92.17 2.22 0.83 7.00 0.79
Bootstrap 91.30 2.24 0.86 7.84 0.80

4c GP 95.50 3.02 1.95 2.55 0.13
AGP 95.11 2.87 1.96 2.93 0.20
SLLR 93.39 2.74 1.45 5.16 0.56
MSLLR 94.12 2.96 1.41 4.47 0.52
ML 93.18 2.43 1.51 5.31 0.56
Bootstrap 92.73 2.42 1.67 5.60 0.54

4d GP 95.60 3.66 1.39 3.01 0.37
AGP 94.97 3.77 1.05 3.98 0.58
SLLR 92.18 3.58 1.25 6.57 0.68
MSLLR 94.76 3.61 1.63 3.61 0.38
ML 88.20 3.82 0.61 11.19 0.90
Bootstrap 86.51 4.11 0.57 12.92 0.92

Design Method Coverage Med. width Left error Right error Rel. bias
5a GP 95.65 16.12 1.56 2.79 0.28

AGP 95.27 11.54 2.15 2.58 0.09
SLLR 93.12 7.23 3.14 3.74 0.09
MSLLR 93.29 14.57 2.49 4.22 0.26
ML 90.81 3.14 8.42 0.77 −0.83
Bootstrap 90.52 3.12 8.50 0.98 −0.79

5b GP 94.53 3.36 1.25 4.22 0.54
AGP 94.64 3.09 1.47 3.89 0.45
SLLR 93.66 2.85 1.99 4.35 0.37
MSLLR 93.71 3.31 1.58 4.71 0.50
ML 93.23 1.96 5.72 1.05 −0.69
Bootstrap 92.70 1.93 5.97 1.33 −0.64

5c GP 94.80 14.84 2.06 3.14 0.21
AGP 94.52 10.31 2.91 2.57 −0.06
SLLR 92.66 6.52 3.78 3.56 −0.03
MSLLR 93.66 14.04 2.24 4.10 0.29
ML 89.29 2.69 10.32 0.39 −0.93
Bootstrap 88.19 2.53 11.29 0.52 −0.91

5d GP 95.82 4.09 0.85 3.33 0.59
AGP 95.49 3.81 0.94 3.57 0.58
SLLR 93.51 3.27 1.97 4.52 0.39
MSLLR 94.25 3.68 1.53 4.22 0.47
ML 93.51 2.34 4.69 1.80 −0.45
Bootstrap 93.25 2.44 4.30 2.45 −0.27
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Figure 1: Coverage and bias results from the simulation studies, by method. All 108 studies (18 designs
× 6 methods) are represented.

Figure 2: Normal quantile plots for the log-transformed positive costs.

26

http://biostats.bepress.com/uwbiostat/paper296


	9-7-2006
	Generalized confidence intervals for the ratio or difference of two means for lognormal populations with zeros
	Yea-Hung Chen
	Xiao-Hua Zhou
	Suggested Citation


	tmp.1157676242.pdf.MmRoR

