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1. Introduction

Identifying biomarkers that can be used as approximate surrogates for clinical end-

points in randomized trials is useful for many reasons including shortening studies,

reducing costs, sparing study participants discomfort, and elucidating treatment effect

mechanisms. As a specific example motivating this work, an objective of placebo-

controlled preventive HIV vaccine efficacy trials is the evaluation of various vaccine-

induced immune responses as surrogate endpoints for HIV infection. Development of

such a surrogate is a central goal of vaccine research; for example the Foundation of

the NIH and the Gates Foundation list it as one of the 14 “Grand Challenges in Global

Health.” An immunological surrogate would be useful for several purposes including

guiding iterative development of immunogens between basic and clinical research, guid-

ing regulatory decisions and public immunization policy, and bridging efficacy of a

vaccine observed in a trial to a new setting.

Statistical methods for evaluating surrogate endpoints has emerged as an important

research area (Weir and Walley, 2006). This field was catalyzed by Prentice’s (1989)

definition of a surrogate endpoint as a replacement endpoint that provides a valid test

of the null hypothesis of no treatment effect on the clinical endpoint. The two main

criteria for checking this definition are: (i) the distribution of the clinical endpoint

conditional on the surrogate is the same as the distribution of the clinical endpoint

conditional on the surrogate and treatment (i.e., all of the clinical treatment effect is

“mediated” through the surrogate); and (ii) the surrogate and clinical endpoints are

correlated. Frangakis and Rubin (2002) (henceforth FR) observed that this definition

is based on observable random variables, and named a biomarker satisfying criterion

(i) a “statistical surrogate.” Since 1989, most of the surrogate-evaluation methods have

been designed to check if a biomarker is a statistical surrogate. These methods include
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estimation of the proportion of the treatment effect explained (Freedman et al., 1992;

Lin, Fleming, and DeGruttola, 1997; Wang and Taylor, 2002) and of the relative effect

and adjusted association (Buyse and Molenberghs, 1998), as well as meta-analysis

(Daniels and Hughes, 1997; Buyse et al., 2000; Gail, 2000).

Treatment effects adjusted for a variable measured after randomization (called net

effects) are susceptible to post-randomization selection bias (e.g., Rosenbaum, 1984;

Robins and Greenland, 1992; Hudgens, Hoering, and Self, 2003). Since potential sur-

rogates are measured after randomization, criterion (i) defining a statistical surrogate

is based on net effects. FR pointed out that this definition does not have a causal in-

terpretation, and proposed a new surrogate definition based on principal causal effects.

FR introduced a potential outcomes framework for evaluating “principal surrogates,”

but statistical methods for doing so have not been elaborated. A recent review paper

noted that FR “present a convincing case for the principal surrogate definition” and

called for such elaborations (Weir and Walley, 2006). The only work in this area of

which we are aware is Taylor et al.’s (2005) summary measure of surrogate quality.

Here we develop an approach for evaluating a principal surrogate from a single

large clinical trial, which to our knowledge constitutes the first such method. Follow-

ing Follmann (2006), our approach uses baseline covariates to predict missing potential

biomarker outcomes. After defining and comparing statistical and principal surrogates

in Section 2, in Section 3 we introduce a causal effect predictiveness surface, plus asso-

ciated summary parameters, which serve as appropriate estimands for quantifying how

well a biomarker predicts population level causal clinical treatment effects. Motivated

by the problem of assessing an immune response to an HIV vaccine as a surrogate

endpoint for HIV infection, in Section 4 we consider the important special case where

the biomarker has no variability in one of the treatment arms. For this setting we de-
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velop an estimated likelihood-based method for estimating the causal estimands based

on case-cohort sampling of the biomarkers. In Section 5 we evaluate the method in

simulations based on a vaccine trial, and in Section 6 we conclude with discussion.

2. Comparison of Statistical and Principal Surrogates

2.1 Statistical Surrogates are Based on Net Effects, not Causal Effects

Throughout we consider a randomized trial with treatment assignment Z (Z = 1

or 0), a biomarker endpoint S measured at fixed time t0 after treatment assignment,

and a binary clinical endpoint Y (Y = 1 for disease, 0 otherwise) measured after t0.

Because S must be measured prior to disease to evaluate it as a potential surrogate,

the analysis is restricted to subjects disease free at t0; denote this evaluability criterion

by the indicator V = 1. The biomarker S is only measured in those with V = 1,

and otherwise is undefined (denoted by S = ∗). Following FR, methods for evaluating

statistical surrogates are based on comparing the risk distributions

risk(s|Z = 1) ≡ Pr(Y obs = 1|Z = 1, V obs = 1, Sobs = s) and

risk(s|Z = 0) ≡ Pr(Y obs = 1|Z = 0, V obs = 1, Sobs = s),

where obs indicates the variable is observed. FR defined S to be a statistical surrogate

if, for all fixed values s of S, risk(s|Z = 1) = risk(s|Z = 0). The full mediation

criterion (i) requires that a treatment effect on Sobs is necessary and sufficient for a

treatment effect on Y obs; statistical surrogacy is the necessity part of (i).

Because S and V are measured after randomization, a comparison of risk(s|Z = 1)

and risk(s|Z = 0) measures treatment differences due to a mixture of the causal

treatment effect and any differences in characteristics between treatment 1 subjects

who have response level s, {Z = 1, V obs = 1, Sobs = s}, and treatment 0 subjects

who have response level s, {Z = 0, V obs = 1, Sobs = s} (i.e., the net effect). If there

is no treatment effect on S, then the net effect may approximate the causal effect.
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Biomarkers of interest are usually affected by treatment, however, and the greater the

treatment effect on S, the greater the anticipated discrepancy between the net effect

and the causal effect of interest. FR concluded that because the statistical surrogate

definition is based on net effects, employing it for evaluating a surrogate may mislead

about the biomarker’s capacity for reliably predicting clinical treatment effects.

2.2 Evaluating Statistical Surrogates Based on the PTE

Freedman et al. (1992) introduced the proportion of treatment effect explained

(PTE) as a quantitative measure of the quality of a biomarker as a statistical surrogate,

and several methods for evaluating surrogates have been developed based on the PTE

(Lin, Fleming, and DeGruttola, 1997; Wang and Taylor, 2002). To define the PTE,

consider two generalized linear models:

gY {E(Y obs
i |Zi, V

obs
i = 1)} = β0 + β1Zi,

gY {E(Y obs
i |Zi, V

obs
i = 1, Sobs

i )} = θ0 + θ1Zi + θ2S
obs
i ,

where gY {·} is a known link function. For a binary clinical endpoint Y , Freedman et

al. (1992) defined the PTE as PTE ≡ 1 − θ1/β1, which equals

1 −
gY {E(Y obs

i |Zi = 1, V obs
i = 1, Sobs

i )} − gY {E(Y obs
i |Zi = 0, V obs

i = 1, Sobs
i )}

gY {E(Y obs
i |Zi = 1, V obs

i = 1)} − gY {E(Y obs
i |Zi = 0, V obs

i = 1)}
.

A perfect statistical surrogate has PTE = 1, which means there is a treatment effect

on the clinical endpoint (β1 �= 0) and no net treatment effect after adjusting for the

observed surrogate (θ1 = 0). The latter condition is implied by risk(s|Z = 1) =

risk(s|Z = 0) for all fixed values s of S, showing that FR’s definition of a statistical

surrogate implies PTE = 1. The numerator θ1 of the PTE is a net effect, whereas

under standard assumptions A1 and A2 made for a randomized trial given below,

the denominator β1 is a causal effect. Consequently, the common description of the

PTE as a measure of the amount of the clinical treatment effect mediated through the
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surrogate seems misleading, because “mediation” should only reflect a causal effect.

The post-randomization bias inherent in the PTE suggests that alternative summary

measures, based solely on causal effects, should be considered.

2.3 Definition of a Principal Surrogate Endpoint

We introduce the potential outcomes notation (Rubin, 1986) and assumptions that

will be used for defining and identifying the causal estimands of interest. For sub-

ject i, let Yi(Z) be the potential clinical endpoint (i.e., disease) under assignment to

treatment Z, Z = 0, 1. Similarly define potential outcomes Si(Z) for the biomarker

endpoint, which is measured at time t0 after treatment assignment, and let Vi(Z)

be the potential indicators of whether the ith subject is disease free at t0. Note

that Si(Z) is undefined if Vi(Z) = 0; in this case Si(Z) = ∗. We suppose that

(Vi(1), Vi(0), Si(1), Si(0), Yi(1), Yi(0)), i = 1, . . . , n, are iid, and for simplicity assume

no drop-out. We also make the following assumptions A1, A2 (Rubin 1986), and A3.

A1 Stable Unit Treatment Value Assumption (SUTVA)

A2 Ignorable Treatment Assignments: Zi is independent of (Vi(1), Vi(0), Si(1), Si(0),

Yi(1), Yi(0)) for all i

A3 Equal Individual Clinical Risk Up to Time t0: Vi(1) = 1 if and only if Vi(0) = 1.

A1 states that the potential outcomes (Vi(1), Vi(0), Si(1), Si(0), Yi(1), Yi(0)) for each

subject are independent of the treatment assignments of other subjects, which implies

so-called “consistency”, (Vi(Zi), Si(Zi), Yi(Zi)) = (V obs
i , Sobs

i , Y obs
i ). A2 holds for ran-

domized and blinded trials. A3 will be needed for identifying the causal estimand based

on data from subjects observed to be at risk at t0. This assumption will approximately

hold if the risk of disease is the same in the two arms up to t0, or if most subjects

are at risk for disease at t0, e.g., if t0 is near baseline. A1-A3 often hold in our moti-
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vating application. In particular, A3 should approximately attain in the two ongoing

HIV vaccine efficacy trials, since the candidate immunological surrogate endpoints are

measured near baseline (at t0 = 8 weeks) (Mehrotra, Li, and Gilbert, 2006).

With these preliminaries, we now define a principal surrogate endpoint. FR sug-

gested that a surrogate S should satisfy the following property:

Causal Necessity: S is necessary for the effect of treatment on the outcome Y in the

sense that an effect of treatment on Y can occur only if an effect of treatment on S has

occurred. At the individual level, this means that Si(1) = Si(0) implies Yi(1) = Yi(0).

A population level definition of Causal Necessity, which is used in our approach to

surrogate evaluation, is given below.

FR defined the basic principal stratification P0 with respect to the post-randomization

variable S as the partition of units i = 1, . . . , n such that within any set of P0, all units

have the same vector (Si(1), Si(0)). A principal stratification is a partition of units

whose sets are unions of sets in P0. Estimands that condition on a principal stratifica-

tion are causal because, by construction, the stratification is unaffected by treatment.

FR defined a biomarker S to be a principal surrogate endpoint if, for all fixed s1 = s0,

the comparison between

risk(1)(s1, s0) ≡ Pr(Yi(1) = 1|Vi(1) = 1, Vi(0) = 1, Si(1) = s1, Si(0) = s0) and

risk(0)(s1, s0) ≡ Pr(Yi(0) = 1|Vi(1) = 1, Vi(0) = 1, Si(1) = s1, Si(0) = s0)

results in equality. FR did not explicitly condition on Vi(1) = Vi(0) = 1 in their

definition; however implicitly they must have, since (Si(1), Si(0)) is only defined if

Vi(1) = Vi(0) = 1. Henceforth, for brevity all probability statements that involve

Si(1) and Si(0) are implicitly intersected with {Vi(1) = Vi(0) = 1}. A contrast in

risk(1)(s1, s0) and risk(0)(s1, s0) measures a population level or average causal effect on
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Y for subjects with {Si(1) = s1, Si(0) = s0}. Thus with FR’s definition S is a principal

surrogate if subjects with no causal effect on the biomarker have no average causal

effect on the clinical endpoint. This is a population version of Causal Necessity, which

we call Average Causal Necessity. For reference, we define this property as follows.

Average Causal Necessity: risk(1)(s1, s0) = risk(0)(s1, s0) for all fixed s1 = s0.

Biomarkers with the greatest utility for predicting clinical treatment effects will

not only be necessary for a clinical effect, but also sufficient. Causal Sufficiency can be

defined as follows:

Causal Sufficiency: S is sufficient for the effect of treatment on the outcome Y in

the sense that an effect of treatment on S implies an effect of treatment on Y . At the

individual level, this means that Si(1) �= Si(0) implies Yi(1) �= Yi(0).

Often Causal Sufficiency is at least as important scientifically as Causal Necessity.

For example, knowing that an antibody titer > 1000 is sufficient for a vaccine to protect

an individual against HIV infection is exactly the information needed to use titer as a

reliable predictor of protection. We define Average Causal Sufficiency as

Average Causal Sufficiency: risk(1)(s1, s0) = risk(0)(s1, s0) for all fixed s1 �= s0,

and suggest a refined definition of a principal surrogate endpoint:

Principal Surrogate Endpoint: A biomarker S that satisfies both Average Causal

Necessity and Average Causal Sufficiency as defined above.

Heretofore we use this definition of a principal surrogate endpoint.

Evaluating a principal surrogate is challenging due to the missing data, which re-

sults from observing only one of (Vi(1), Si(1), Yi(1)) or (Vi(0), Si(0), Yi(0)) from each

subject (Holland, 1986). At present, it is not clear when this missing data problem can

be satisfactorily overcome to provide practically useful inferential tools for evaluating
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principal surrogates. Inaccurate modeling of the missing data could lead to bias in

assessing whether a biomarker is a principal surrogate, and it is unclear when this bias

will exceed that inherent in the definition of a statistical surrogate. However, there

are particular settings where it is auspicious to solve the missing data problem under

assumptions that are all plausible or testable, in which case it is relatively easy to

evaluate a principal surrogate. In Sections 3 and 4, we develop an evaluation method

for one such setting: where the biomarker has no variation for one treatment arm.

2.4 Illustration of Statistical versus Principal Surrogates

To illustrate the more useful scientific interpretation of a principal than statistical

surrogate, we consider a placebo-controlled vaccine trial where Y is infection and S is

a binary, taking values positive or negative immune response (vaccine “take” or not).

We suppose Si(0) = 0 for all i. The top half of Table 1 presents a perfect principal

surrogate, wherein subjects in the “not take” principal stratum have a 30% chance of

becoming infected under either assignment vaccine or placebo (0% protection), and

subjects in the “take” stratum have a 0% chance of becoming infected under vaccine

assignment and a 15% chance under placebo assignment (100% protection). Therefore

the vaccine effect on the immune response predicts perfectly whether a subject is

protected, and S is a perfect principal surrogate. However, S is not a statistical

surrogate, because for subjects with Sobs
i = 0, the probabilities of infection Pr(Y obs

i =

1|Sobs
i = 0, Zi = z) for vaccine and placebo recipients are unequal (0.3 for Z = 1 and 0.2

for Z = 0). Thus the definition of a statistical surrogate misses the predictive capacity

of S (a “false negative”). The bottom half of Table 1 presents an immune response

that does not predict whether a subject is protected at all yet is a statistical surrogate

(a “false positive”). The statistical surrogate definition fails in these examples because

of the causal vaccine effect on S, with 67% versus 0% responders in the vaccine and
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placebo arms, and the large amount of selection bias that is reflected in the net effect.

This bias could arise because vaccine recipients who fail to mount an immune response

have relatively weak immune systems, which places them at high risk for infection.

3. Causal Effect Predictiveness Surface

3.1 Quantitation of Associative and Dissociative Effects

FR suggested that the quality of a surrogate be measured by its “associative effects”

relative to its “dissociative effects”, with a ‘good’ surrogate having large associative

effects and small dissociative effects. As defined in equations 5.3 and 5.4 of FR, an

associative effect is a comparison between the ordered sets

{Yi(1) : Si(1) �= Si(0)} and {Yi(0) : Si(1) �= Si(0)},

and a dissociative effect is a comparison between the ordered sets

{Yi(1) : Si(1) = Si(0)} and {Yi(0) : Si(1) = Si(0)}.

For the purpose of quantifying these effects, we introduce a causal effect predictive-

ness surface (CEP surface). Let CE ≡ h(Pr(Yi(1) = 1), P r(Yi(0) = 1)) be the overall

causal effect of treatment on the clinical endpoint, where h(·, ·) is a known contrast

function satisfying h(x, x) = 0, for example h(x, y) = x − y or log(x/y). Let

CEP risk(s1, s0) ≡ h(risk(1)(s1, s0), risk(0)(s1, s0))

be this contrast conditional on {Si(1) = s1, Si(0) = s0}. Note that CEP risk(s, s) = 0

for all s is a population version of no dissociative effects, and is equivalent to Average

Causal Necessity, whereas CEP risk(s1, s0) �= 0 for all s1 �= s0 is a population version

of 100% associative effects, and is equivalent to Average Causal Sufficiency. Therefore

the criteria for a principal surrogate can be checked by estimating the CEP surface.

Moreover, biomarkers with capacity to predict clinical treatment effects will usually
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have |CEP risk(s1, s0)| monotone in |s1 − s0|, reflecting the situation that on average

persons with a greater causal effect on the marker have a greater causal effect on

the clinical endpoint. We refer to the capacity of a biomarker to reliably predict the

population level causal effect of treatment on the clinical endpoint as the biomarkers’

surrogate value, which can be quantified by both the nearness of |CEP risk(s1, s0)| to 0

for s1 near s0, and by the extent to which |CEP risk(s1, s0)| increases with |s1 − s0|.

The CEP surface can alternatively be defined in terms of percentiles of the marker

S. To formulate this, consider Huang et al.’s (2006) proposal to judge the value of

a marker S for predicting disease Y by the predictiveness curve, R(v) ≡ Pr(Y obs =

1|F (Sobs) = v), v ∈ [0, 1], where F is the cdf of Sobs. If F−1 exists, then

R(v) = Pr(Y obs = 1|Sobs = F−1(v)) = risk(Sobs = F−1(v)),

i.e., R(v) is risk as a function of the quantiles of Sobs, which provides a common scale

for comparing multiple markers. If we assume R(v) is a monotone increasing function

of v, then R(v) = p implies v percent of the population have risk less than or equal to p.

The predictiveness curve R(v) usefully informs about both absolute risks at different

marker quantiles and the frequency of these risks in the population. Huang, Pepe,

and Feng (2006) proposed plotting an estimate of R(v) versus v as a graphical tool

for assessing and comparing the predictiveness of markers. A predictive marker is one

with R(v) monotone (or approximately so) in v with large |R(1) − R(0)|.

Applying these ideas, we propose a scale-independent version of the causal effect

predictiveness surface, CEP R(v1, v0) ≡ h(R(1)(v1, v0), R(0)(v1, v0)), where

R(1)(v1, v0) ≡ Pr(Y (1) = 1|S(1) = F−1
(1) (v1), S(0) = F−1

(1) (v0)) and

R(0)(v1, v0) ≡ Pr(Y (0) = 1|S(1) = F−1
(1) (v1), S(0) = F−1

(1) (v0)).

In this definition, S(1) and S(0) are standardized relative to the distribution F(1) of
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S(1). Using the same reference distribution for S(1) and S(0) makes the marker values

under assignment to the two arms comparable, ensuring S(1) = S(0) if and only if

v1 = v0. With h(x, y) = x − y, the volume between CEP R(·, ·) and the zero-plane

equals CE = Pr(Y (1) = 1) − Pr(Y (0) = 1). The nearer |CEP R(v1, v0)| is to zero for

|v1 − v0| near zero and the larger |CEP R(v1, v0)| is for large |v1 − v0|, the greater the

causal treatment effect on S is predictive of the average causal treatment effect on Y .

To illustrate the interpretation of CEP R(v1, v0), we consider the unidirectional

situation where interest is in assessing if higher responses of S if assigned treatment

1 (Si(1) > Si(0)) predict clinical benefit of treatment 1. For example, this situation

might occur in trials of active treatment 1 versus placebo 0. In Figure 1(i), the fact

that CEP R(v1, v0) = CE for all (v1, v0) indicates the biomarker has no surrogate

value. In contrast, in Figure 1(ii) CEP R(v1, v0) = 0 for all v1 ≤ v0 and |CEP R(v1, v0)|

is monotone in v1 − v0 with large amount of increase, reflecting a biomarker with high

surrogate value.

Next, we consider the interpretation of the CEP surface in the special case where

Si(0) is constant. We refer to this case as A4:

A4 Uniform Biomarkers: Si(0) = c for all i for some constant c

HIV vaccine trials fit case A4, because S is an HIV-specific immune response, which

will be 0 for all subjects in the placebo arm Z = 0, since vaccine antigens must be

presented to the immune system to induce a response (Gilbert et al., 2005). Under

A4 the CEP risk(s1, c) surface is a curve in s1 and the CEP R(v1, F(1)(c)) surface is a

curve in v1. The dissociative effect can be measured by CEP R(F(1)(c), F(1)(c)), and

the associative effects by CEP R(v1, F(1)(c)) for v1 �= F(1)(c). For example, with c = L

the lower bound of S (e.g., an assay detection limit), the nearer CEP R(F(1)(c), F(1)(c))

is to zero and the greater the increase of |CEP R(v1, F(1)(c))| with v1 > F(1)(c), the
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greater the surrogate value of the biomarker (Figure 2). This kind of plot provides an

interpretable way to compare the surrogate value of multiple biomarkers.

3.2 Summary Measures of Surrogate Value

We suggest parameters that summarize the surrogate value of a biomarker, which

are functionals of the CEP surface. Again we consider the situation where interest is

in assessing whether Si(1) > Si(0) predicts clinical benefit of treatment 1 (Yi(1) = 0

and Yi(0) = 1). To summarize the asociative and dissociative effects, we consider the

expected associative effect (EAE) and the expected dissociative effect (EDE):

EAE(w) ≡ E[w(S(1), S(0))CEP risk(S(1), S(0))|S(1) > S(0)] (1)

EDE ≡ E[CEP risk(S(1), S(0))|S(1) ≤ S(0)], (2)

where w(·, ·) is a known nonnegative weight function. The EAE(w) can equivalently

be written as EAE(w) =
∫
v1>v0

w(v1, v0)CEP R(v1, v0)dv1dv0/Pr(Si(1) > Si(0)) and

similarly for EDE. Thus EAE(w = 1) is the volume between CEP R(v1, v0) and the

zero-plane in the v1 > v0 quadrant divided by Pr(Si(1) > Si(0)), and EDE is the

volume between CEP R(v1, v0) and the zero-plane in the v1 ≤ v0 quadrant divided by

Pr(Si(1) ≤ Si(0)).

We also define the proportion associative effect by

PAE(w) ≡
|EAE(w)|

|EDE| + |EAE(w)|
. (3)

The PAE(w) is the magnitude of the expected associative effect relative to the com-

bined magnitude of the expected associative effect and the expected dissociative effect.

Values PAE(w) ≤ 0.5 suggest the biomarker has no surrogate value, while values in

(0.5, 1] suggest some surrogate value.

A weight function is included in EAE(w), and thus PAE(w), to allow the pa-

rameters to reflect the idea that a biomarker with high surrogate value should have
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large |CEP risk(s1, s0)| for large |s1 − s0|. For example, weights w(s1, s0) = |s1 − s0|

or I(s1 = U, s0 = L) may be used, where L (U) is the lower (upper) bound of S.

With the latter weight, PAE(w) compares the clinical effect among groups with the

maximum surrogate effect and with no surrogate effect: PAE(w) = |CEP R(1, 0)|/

[|EDE| + |CEP R(1, 0)|].

If h(x, y) = x − y, Pr(S1(1) > Si(0)) = 0.5, and an additional monotonicity

assumption is made (that Yi(1) ≤ Yi(0) for all i, i.e., no one is harmed by treatment

1), then PAE(w = 1) equals the proportion associative (PA), defined by

PA ≡
Pr(Si(1) > Si(0), Yi(1) = 0, Yi(0) = 1)

Pr(Yi(1) = 0, Yi(0) = 1)
.

This summary measure, proposed by Taylor, Wang, and Thiebaut (2005), is interpreted

as the proportion of the study population with a beneficial causal clinical effect that

also has a positive causal surrogate effect. Note that the PA depends on the underlying

principal strata distribution F(1),(0)(s1, s0) = Pr(S(1) ≤ s1, S(0) ≤ s0); if Pr(Si(1) >

Si(0)) is small (large) then the PA will tend to be small (large), irrespective of the

surrogate value of the biomarker. By conditioning on (Si(1), Si(0)), the PAE(w) is

designed to be robust to F(1),(0)(·, ·); the PAE(w) reflects the relative magnitude of

clinical effects for those with and without surrogate effects.

Note that biomarkers satisfying Average Causal Necessity have EDE = 0 and

thus PAE(w) = 1, in which case EAE(w) contributes no information in the PAE(w).

Therefore other summary measures are needed to compare multiple biomarkers satisyf-

ing Average Causal Necessity, and more generally for better summarizing the mag-

nitude of associative effects. The EAE(w) itself may be useful for this purpose,

as may contrasts of |EAE(w)| with |EDE| other than the PAE(w). For exam-

ple, with w(s1, s0) = I(s1 = U, s0 = L), the difference |EAE(w)| − |EDE| equals

AS ≡ |CEP R(1, 0)| − |EDE|, which we refer to as the associative span (AS). Table 1
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illustrates EAE(w = 1), EDE, PAE(w = 1), and AS for two hypothetical biomarkers

S. The first has high (in fact perfect) surrogate value, with PAE(w = 1) = AS = 1,

and the second has no surrogate value, with PAE(w = 1) = 0.5 and AS = 0.

While the summary parameters may be useful, in general it is important to estimate

the CEP surface over the whole range of marker values or quantiles, to provide a full

picture of the associative and disssociative effects.

4. Estimating the Causal Effect Predictiveness Surface

4.1 Identifiability of the Causal Effect Predictiveness Surface

Due to missing potential outcomes the CEP surface is not identified without further

assumptions. A1-A3 imply

risk(1)(s1, s0) = Pr{Y obs
i = 1|Zi = 1, V obs

i = 1, Sobs
i = s1, Si(0) = s0} and

risk(0)(s1, s0) = Pr{Y obs
i = 1|Zi = 0, V obs

i = 1, Si(1) = s1, S
obs
i = s0},

demonstrating that risk(1)(s1, s0) would be identified if the Si(0)’s of arm Z = 1

subjects were known, and similarly risk(0)(s1, s0) would be identified if the Si(1)’s of

arm Z = 0 subjects were known. Estimating the CEP surface will therefore require

a study design and plausible assumptions that provide a way to predict the missing

potential biomarker outcomes. While generally challenging, these requirements are

attainable in the important special case A4. Under A4 the joint values (Si(1), Si(0)) are

observed or known for all subjects in arm Z = 1, so that risk(1)(s1, c) = risk(s1|Z = 1),

i.e., risk(1)(s1, c) is identified by the observed data in arm Z = 1. However, risk(0)(s1, c)

is still not identified, and the remaining task to identify the CEP surface entails

determining values Si(1) for arm Z = 0 subjects.

An additional advantage under A4 is that the Average Causal Necessity criterion

is greatly simplified, to CEP risk(c, c) = 0. Thus the CEP surface only has to be

estimated at a single biomarker value to check this property. Furthermore, in case A4
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it is difficult to evaluate a statistical surrogate, because it is not possible to study the

correlation of Sobs
i with Y obs

i in arm Z = 0 subjects, and it is conceptually difficult to

evaluate whether S fully mediates clinical treatment effects (Chan et al., 2002).

4.2 Baseline Predictor Study Design and Likelihood

Under A1-A4 and a standard clinical trial design with S binary, recently devel-

oped methods (for a different application) provide estimators of CEP risk(0, 0) and

CEP risk(1, 0), as well as of PAE(w) and AS (Hudgens and Halloran, 2006; Shepherd et

al., 2006). These sensitivity analysis methods posit a class of non-identified models for

the post-randomization selection bias, and repeat the estimation under each model. Al-

ternatively, in the current work, for S continuous or categorical we leverage an innova-

tive trial design to develop a non-sensitivity analysis approach for estimating the CEP

surface. Throughout we assume A1-A4 and that the constant value c for Si(0) is the re-

alized lower bound L of the biomarker S(1), c = L = min{Si(1)} = min{Sobs
i |Zi = 1}.

The estimation approach is based on Follmann (2006), who proposed augmented

vaccine trial designs for discerning if an immunological correlate of HIV infection risk

causatively impacts infection risk. Follmann did not develop this work as a method for

evaluating a principal surrogate, and here we show how it can be built upon to provide

a technique for estimating the CEP surface. Follmann proposed two techniques for

predicting S(1) for arm Z = 0 subjects, of which we consider the first, wherein a

baseline covariate vector W that is predictive of S(1) is measured in subjects in both

treatment arms. The correlation of W and S(1) observed in subjects assigned arm

Z = 1 is used to predict S(1) for subjects in arm Z = 0. A1-A3 imply S(1)|Z =

1, V obs = 1, W =d S(1)|Z = 0, V obs = 1, W , ensuring validity of this procedure. Several

potential baseline predictors are being collected in the ongoing HIV vaccine efficacy

trials (Mehrotra, Li, and Gilbert, 2006).

16

Hosted by The Berkeley Electronic Press



To develop an estimation procedure using the baseline predictor W , we assume W

does not predict clinical risk after accounting for S(1):

A5: Y (Z)|W, S(1) =d Y (Z)|S(1), Z = 0, 1.

We consider a case-cohort sampling design, in which a sub-sample of trial participants

is selected for measurement of Wi, which includes all cases and a “sub-cohort” of

controls. The biomarker Sobs
i is measured for all arm Zi = 1 subjects for whom Wi is

measured. Case-cohort sampling is efficient when Wi or Si is an expensive covariate

(Prentice, 1986). For HIV vaccine trials, Si(1) (and likely components of Wi) can be

measured after the trial using stored blood samples (Gilbert et al., 2005).

Let δi indicate whether Wi is measured. We observe iid data Oi ≡ (Zi, V
obs
i , Y obs

i , δi,

δiWi, δiZiS
obs
i ), i = 1, . . . , n. Subjects i with V obs

i = 1 contribute terms to the likeli-

hood. For subjects with Ziδi = 1, Pr(Y obs
i = 1|Zi = 1, V obs

i = 1, Sobs
i ) = risk(1)(S

obs
i , 0; β),

where risk(1)(S
obs
i , 0; β) is modeled as a function of unknown parameters β. The

likelihood contribution for subjects with (1 − Zi)δi = 1 is obtained by integrating

risk(0)(Si(1), 0; β) over the conditional cdf GS|W of S(1)|W , Pr(Y obs
i = 1|Zi = 0, V obs

i =

1, Wi) =
∫

risk(0)(s1, 0; β)dGS|W (s1|Wi); note that A5 is used here. Subjects with δi = 0

contribute Pr(Y obs
i = 1|Zi, V

obs
i = 1) =

∫
risk(Zi)(s1, 0; β)dGS(s1), where GS is the cdf

of S(1). Thus the likelihood is L(β, GS|W , GS) ≡
∏n

i=1 f(Oi)
V obs

i , where f(O) equals{
risk(1)(S

obs, 0; β)Y obs

(1 − risk(1)(S
obs, 0; β))1−Y obs

}Zδ

×

{(∫
risk(0)(s1, 0; β)dGS|W (s1|W )

)Y obs (
1 −

∫
risk(0)(s1, 0; β)dGS|W (s1|W )

)1−Y obs
}(1−Z)δ

×

{(∫
risk(Z)(s1, 0; β)dGS(s1)

)Y obs (
1 −

∫
risk(Z)(s1, 0; β)dGS(s1)

)1−Y obs
}(1−δ)

.

Since CEP risk(s1, 0; β) depends on β but not GS|W and GS, these cdfs are nui-

sance parameters. Although profile likelihood is thus a natural approach to pursue,

it is difficult to implement because the likelihood integrates over GS|W and GS. An
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alternative approach would estimate (β, GS|W , GS) by full maximum likelihood; how-

ever this would require specification of the joint distribution of (W, S(1)) and complex

numerical integration. We use estimated likelihood (Pepe and Fleming, 1991), wherein

consistent estimates of GS|W and GS are obtained based on treatment arm 1 data, and

then L(β, ĜS|W , ĜS) is maximized in β. The bootstrap can be used to get standard

errors for β̂. A re-sampling approach seems to be required because in general there is

no analytic expression for the asymptotic variance of β̂ that accounts for the variations

in ĜS|W and ĜS, and previously developed techniques for deriving the asymptotic vari-

ance of β̂ do not apply because they would assume that all subjects have a non-zero

probability that S(1) is observed (e.g., Pepe and Fleming 1991).

4.3 Models for risk(Z), GS|W , and GS

An advantage of the estimated likelihood approach is that it can be used generally

for a variety of models for risk(Z)(·, ·), GS|W , and GS. The dimensionality of W and S

determine whether parametric modeling assumptions are needed for stably estimating

GS|W and GS. For the case that δi = 1 for all i, Follmann considered a fully parametric

model, with (W, S(1)) assumed bivariate normal and Pr(Y (Z) = 1|S(1) = s1) assumed

to follow a probit model, for Z = 0, 1.

We allow case-cohort sampling and focus on the setting that S has J categories

and W has K categories. In this case nonparametric models can be used: with

θjk ≡ Pr(S(1) = j, W = k|V obs = 1), gS(j) = Pr(S(1) = j|V obs = 1) =
∑K

k=1 θjk ≡ θj ,

gS|W (j|k) = θjk/
∑J

l=1 θlk, and risk(Z)(j, 0; β) = βZj, for Z = 0, 1; j = 1, . . . , J ; k =

1, . . . , K. Then for any h(·, ·) contrast function CEP risk(j, 0; β) = h(β1j , β0j), AS =

|h(β1J , β0J)| − |h(β11, β01)|, EAE(w) = (1 − θ1)
−1 ∑J

j=2 w(j, 1)h(β1j , β0j)Pr(Sobs =

j|Z = 1), and EDE = θ−1
1 h(β11, β01)Pr(Sobs = 1|Z = 1).

4.4 Nonparametric Maximum Estimated Likelihood Estimation (MELE)
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For estimating GS|W and GS, a consistent estimator of θjk based on treatment

Z = 1 data is given by

θ̂jk = θ̂−1
j {(n1(j, k)/n1)AR + (n0(j, k)/n0)(1 − AR)} ,

where θ̂j = (n1(j)/n1)AR + (n0(j)/n0)(1 − AR), AR =
∑n

i=1 ZiV
obs
i I[Y obs

i = 1]/∑n
i=1 ZiV

obs
i , ny(j, k) =

∑n
i=1 ZiV

obs
i δiI[Y obs

i = y, Sobs
i = j, Wi = k], ny(j) =

∑n
i=1 Zi

V obs
i δiI[Y obs

i = y, Sobs
i = j], and ny =

∑n
i=1 ZiV

obs
i δiI[Y obs

i = y], for y = 0, 1.

To maximize L(β, ĜS|W , ĜS) it is convenient to partition β = (β1, β0)
′, where

risk(Z)(·, ·) depends on βZ ≡ (βZ1, . . . , βZJ)′ only, Z = 0, 1. Then the estimated

likelihood factors as L(β, ĜS|W , ĜS) = L1(β1, Ĝ
S|W , ĜS) × L0(β0, Ĝ

S|W , ĜS), where

L1 =
∏n

i=1 f(Oi)
ZiV

obs

i and L0 =
∏n

i=1 f(Oi)
(1−Zi)V obs

i . Based on L1 a closed form MELE

of β1j, j = 1, . . . , J can be derived as β̂1j = (n1(j)/n1) × (AR/θ̂j). An EM algorithm

can be used to find the MELE of the β0j . The E step entails computing the expec-

tation of Iij ≡ I[Sobs
i = j] given the observed data. For δi = 0, E[Iij |Zi = 0, V obs

i =

1, Y obs
i = y, δi = 0] = {β

Y obs

i

0j (1 − β0j)
1−Y obs

i θ̂j}/{
∑J

l=1 β
Y obs

i

0l (1 − β0l)
1−Y obs

i θ̂l}, and for

δi = 1, E[Iij |Zi = 0, V obs
i = 1, Y obs

i = y, δi = 1, Wi = k] = {β
Y obs

i

0j (1 − β0j)
1−Y obs

i θ̂jk}/

{
∑J

l=1 β
Y obs

i

0l (1 − β0l)
1−Y obs

i θ̂lk}. The M step entails replacing Iij with µij ≡ E[Iij |Zi =

0, V obs
i = 1, Y obs

i = y, δi, δiWi] in the complete data likelihood, which when maximized

yields β̂0j = {
∑n

i=1(1 − Zi)V
obs
i I[Y obs

i = y]µij}/{
∑n

i=1(1 − Zi)V
obs
i µij}.

4.5 Tests for Whether a Biomarker has Any Surrogate Value

Since PAE(w) = 0.5 supports that S has no surrogate value, Wald tests for any

surrogate value can be based on the MELE ̂PAE(w) minus 0.5 divided by its bootstrap

standard error. Similarly Wald tests of AS = 0 can be implemented based on ÂS.

We also consider a test statistic T =
∑J

j=2(j − 1){β̂0j − (β̂0j + β̂1j)(µ̂0/(µ̂0 + µ̂1))}

divided by its bootstrap standard error, where µ̂Z = 1
J

∑J
j=1 β̂Zj. This test evaluates

H0 : CEP risk(j, 1) = CE for all j versus the monotone alternative that CEP risk(j, 1)
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increases in j, and is similar to the Breslow-Day test for trend (Breslow and Day, 1980).

5. Simulation Study

We are preparing to apply the methods to forthcoming datasets (Mehrotra, Li, and

Gilbert, 2006). In the interim, based on data from the first preventive HIV vaccine

efficacy trial (Gilbert et al., 2005), we conducted a simulation study to evaluate perfor-

mance of the nonparametric MELE method. The vaccine trial was double-blind with

2:1 randomization to vaccine:placebo. A biomarker of interest S was the percentage

of antibody blocking of the binding of the HIV GNE8 recombinant gp120 molecule to

recombinant soluble CD4 (the “CD4 blocking level”) measured from a serum sample

drawn at the month 6.5 visit after randomization, and Y was HIV infection during

the 3 year follow-up period. The lower quantification limit of the CD4 blocking assay

was 0.084, and all 46 placebo recipients with S measured had Sobs
i < 0.084; thus the

data fit case A4. The range of Sobs
i was [0.084, 0.92], which we rescaled to [0, 1], so

that A4 holds with c = L = 0. In vaccine recipients Sobs
i was approximately normally

distributed, with average 0.576 and variance 0.0238.

We simulated vaccine trials with the following steps. Step 1: For all 3330 (1691)

subjects in the vaccine (placebo) arm, (Wi, Si(1)) was generated from a bivariate normal

distribution with means 0.576, variances 0.0238, and correlation ρ = 0.5, 0.7, or 0.9.

Then Wi and Si(1) were binned into quartiles. Step 2: For subjects i with quartile

j value of Si(1), Yi(Z) was generated from Bernoulli(βZj), with the βZj set to achieve

the infection rate Pr(Y (1) = 1) = 0.057 that was observed in the vaccine arm of the

trial and overall vaccine efficacy of 50% (Pr(Y (0) = 1) = 2 × Pr(Y (1) = 1)), and

to reflect a biomarker with either (i) no or (ii) high surrogate value. In scenario (i)

CEP risk(j, 1; β) ≡ log(risk(1)(j, 1; β1)/risk(0)(j, 1; β0)) = −0.69 for j = 1, . . . , 4, and

in scenario (ii) CEP risk(j, 1; β) = −0.22,−0.51,−0.92,−1.61 for j = 1, . . . , 4. With
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vaccine efficacy V E(j, 1) ≡ 1 − exp(CEP risk(j, 1; β)), scenario (i) specifies constant

V E(j, 1) = 0.5 and scenario (ii) specifies V E(j, 1) = 0.2, 0.4, 0.6, 0.8 for j = 1, . . . , 4.

Step 3: To achieve case-cohort sampling, (Wi, Si(1)) was retained for all infected

vaccine recipients and for the 406 uninfected vaccine recipients who had immunological

assays performed, and was set to missing for all other vaccine recipients. For the placebo

arm Si(1) was set to missing for everyone and Wi was retained for all infected placebo

recipients and for a random sample of 406 uninfected placebo recipients.

For each of 1000 simulated data sets the MELE β̂ was computed, which was then

used to compute the MELEs of CEP risk(j, 1), AS, and ̂PAE(w) for w(s1, s0) = 1, |s1−

s0|, and I(s1 = 4, s0 = 1). Wald tests (with bootstrap standard errors) based on

̂PAE(w) − 0.5 ÂS, and on T were used to test for any surrogate value.

Performance of the MELE β̂ was excellent (Table 2). The MELEs of CEP risk(j, 1)

also performed well, though with some bias. This bias results from the facts that

ĈEP
risk

(j, 1) involves the ratio β̂1j/β̂0j , and estimators defined by the ratio of two es-

timators, each of which is unbiased for its estimand, may be biased in moderate samples

(Chick, Barth-Jones, and Koopman, 2001). In contrast the MELEs of CEP risk(j, 1)

with h(x, y) = x − y were unbiased (results not shown).

The MELEs of PAE(w) and AS were unbiased and the confidence intervals about

them had nominal coverage. The tests for any surrogate value had approximately

nominal size and showed high power to detect surrogate value when ρ was 0.7 or

higher; the trend test had power 0.73, 0.91, and 0.99 for ρ = 0.5, 0.7, and 0.9. These

results demonstrate “proof-of-principle” that the methods can reliably estimate the

CEP surface when a reasonably good baseline predictor of the biomarker is used, and

can distinguish between biomarkers S with no or high surrogate value.

6. Discussion
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A main use of a surrogate endpoint is predicting treatment effects on a clinical end-

point. Within the principal surrogate framework, we have introduced the causal effect

predictiveness (CEP ) surface as an appropriate estimand for measuring the predictive

capacity of a candidate surrogate. The CEP surface is not identified from the data col-

lected in a standard trial design, however. On the other hand, the net effect estimand

used in the alternative framework for evaluating surrogates (statistical surrogates) is

identified, but is not causal, which may make it less useful for measuring predictive

capacity. Therefore when applied to a single trial, each framework for defining and

evaluating surrogates has a serious but different limitation. As such, both approaches

may be useful for generating preliminary evidence about approximate surrogacy, which

will require further validation. In fact, based on a single efficacy trial neither approach

is suitable for evaluating whether a biomarker can be reliably used for bridging infor-

mation about clinical efficacy to a new setting (e.g., bridge to a new human population

or treatment formulation); for this additional experiments (such as mechanistic studies

and studies that deliberately manipulate the biomarker) and meta-analysis are needed.

Since the definition of the CEP surface involves counterfactuals, strong untestable

assumptions may be needed to identify it, which may preclude its reliable estimation.

While we think this critique will sometimes hold, a thesis of this work is that given

innovative data collection and a particular kind of biomarker S, the CEP surface can

be identified and estimated under plausible assumptions. The estimation method we

developed requires A1-A5, a reasonably good baseline predictor W , a model predicting

Sobs from W in treatment arm 1, and models for risk(Z)(s1, c) ≡ Pr(Y (Z) = 1|S(1) =

s1, S(0) = c), for Z = 0, 1. A1-A2 are standard in randomized trials, and A4 is easy

to check. A1 (SUTVA) is a potentially dubious assumption in the infectious disease

setting where dependent happenings are possible (Halloran and Struchiner, 1995), but
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should approximately hold in trials with a small study population relative to the total

population of at risk individuals. While untestable, A3 will not significantly influence

the results if S is measured near baseline or if most randomized subjects are disease

free at its measurement time, but otherwise it will be important to conduct sensitivity

analyses to violations of A3. A5 is testable for treatment arm Z = 1 but not for

Z = 0. Thus it is important to evaluate plausibility of Y (0)|W, S(1) =d Y (0)|S(1)

from biological knowledge. Under A1-A5 any parametric modeling assumptions placed

on risk(1)(s1, c) and risk(0)(s1, c) can be tested. Finally, models for Sobs given W can

be directly checked using arm Z = 1 data.

A vector of baseline covariates X measured on all subjects could easily be incor-

porated into the developed estimation methods. This would allow modifying A5 to

the more defensible assumption A5′: Y (Z)|X, W, S(1) =d Y (Z)|X, S(1), Z = 0, 1. It

would also allow addressing the interaction question of how the CEP surface depends

on X, and could increase the precision for estimating the CEP surface. Furthermore,

to accommodate study drop-out that leads to missing Y ’s, including covariates could

help justify a missing at random assumption, facilitating making unbiased inferences.

To allow for drop-out A3 must be modified to A3′: Equal Individual Clinical Risk and

Drop-out Up to Time t0: Vi(1) = 1 if and only if Vi(0) = 1, where now Vi(Z) is the

potential indicator of whether the ith subject is at risk for disease at t0.

The estimands and estimation techniques developed here for a binary clinical end-

point Y also apply for a quantitative clinical endpoint Y , with all expressions Pr(Y (Z) =

1|·) replaced with E(Y (Z)|·). In either case the CEP surface describes how the av-

erage or population level causal effect on Y depends on the causal effect on S. It is

beyond the scope of this article to address the statistical generalizability of S, that

is, how reliably it can be used for predicting Y obs in a new setting. We note that the
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estimated CEP surface may be useful for this purpose, by providing a prediction of

the overall clinical effect CE in the new setting based on measurements of S, which

could be compared to an estimate of CE computed ignoring S.
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Table 1

Examples illustrating a principal surrogate compared to a statistical surrogate, S
binary with Si(0) = 0 for all i, with h(x, y) = 1 − x/y

Perfect Principal Surrogate but Not a Statistical Surrogatea

Sobs
i /

Principal Fraction Pr(Yi(1) = 1| Pr(Yi(0) = 1| Pr(Y obs
i = 1|Sobs

i , Zi)
Stratum (PS) (Si(1),Si(0)) in PS Si(1), Si(0)) Si(1), Si(0)) Zi = 1 Zi = 0
Vacc. not take (0,0) 1/3 0.3 0.3 0/0.3 0/0.2

Vacc. take (1,0) 2/3 0.0 0.15 1/0.0 0/0.2

No Value as a Principal Surrogate but a Statistical Surrogateb

Sobs
i /

Principal Fraction Pr(Yi(1) = 1| Pr(Yi(0) = 1| Pr(Y obs
i = 1|Sobs

i , Zi)
Stratum (PS) (Si(1),Si(0)) in PS Si(1), Si(0)) Si(1), Si(0)) Zi = 1 Zi = 0
Vacc. not take (0,0) 1/3 0.2 0.4 0/0.2 0/0.2

Vacc. take (1,0) 2/3 0.05 0.1 1/0.0 0/0.2
aCE = 1 − [(1/3) × 0.3 + (2/3) × 0.0]/[(1/3) × 0.3 + (2/3) × 0.15] = 0.5;
Pr(Y obs

i = 1|Sobs
i = 0, Zi = 1) = (1) × 0.3 = 0.3;

Pr(Y obs
i = 1|Sobs

i = 0, Zi = 0) = (1/3) × 0.3 + (2/3) × 0.15 = 0.2;
CEP risk(0, 0) = 1 − 0.3/0.3 = 0.0; CEP risk(1, 0) = 1 − 0.0/0.15 = 1.0;
EAE(w = 1) = (2/3) × 1.0/(2/3) = 1.0, EDE = (1/3) × 0.0/(1/3) = 0.0;
PAE(w = 1) = 1.0/(0.0 + 1.0) = 1.0; AS = 1.0 − 0.0 = 1.0
(the parameters EAE(w), EDE, and PAE(w) are defined at (1)-(3)).

bCE = 1 − [(1/3) × 0.2 + (2/3) × 0.05]/[(1/3) × 0.4 + (2/3) × 0.1] = 0.5;

Pr(Y obs
i = 1|Sobs

i = 0, Zi = 1) = (1) × 0.2 = 0.2;

Pr(Y obs
i = 1|Sobs

i = 0, Zi = 0) = (1/3) × 0.4 + (2/3) × 0.1 = 0.2;

CEP risk(0, 0) = 1 − 0.2/0.4 = 0.5; CEP risk(1, 0) = 1 − 0.05/0.1 = 0.5;

EAE(w = 1) = (2/3) × 0.5/(2/3) = 0.5; EDE = (1/3) × 0.5/(1/3) = 0.5;

PAE(w = 1) = 0.5/(0.5 + 0.5) = 0.5; AS = 0.5 − 0.5 = 0.0

27
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Figure Legends

Figure 1. Example CEP R(v1, v0) = h(R(1)(v1, v0), R(0)(v1, v0)) surfaces, with h(x, y) =

x − y or 1 − x/y. The surface in (i) reflects a biomarker with no surrogate value

(PAE(w = 1) = 0.5, AS = 0), wherein the clinical treatment effect is the same for all

treatment effects on the biomarker. The surface in (ii) reflects a biomarker with high

surrogate value (PAE(w = 1) = 1, AS = 1), wherein the average causal effect on the

clinical endpoint is zero for all v1 ≤ v0 and has a large increase in v1 − v0 for v1 > v0.

Because CEP R(v1, v0) = 0 for all v1 ≤ v0 and CEP R(v1, v0) > 0 for all v1 > v0,

the biomarker evaluated in (ii) satisfies Average Causal Necessity and Average Causal

Sufficiency, and hence is a principal surrogate.

Figure 2. For the situation A4 for which Si(0) = c for all i with c = L the lower

bound of S, biomarkers S that have no (horizontal solid line), modest (dashed line),

moderate (dotted line), and high (hatched line) surrogate value. With h(x, y) = x− y,

the area between each |CEP R(v1, F(1)(c))| curve and the zero-line equals the over-

all clinical treatment effect |CE| = 0.4. Because CEP R(F(1)(c), F(1)(c)) = 0 and

CEP R(v1, F(1)(c)) > 0 for all v1 > F(1)(c), the latter two S’s satisfy Average Causal

Necessity and Average Causal Sufficiency, and hence are principal surrogates.
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