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1 Introduction

Adoption of cancer screening by at risk populations affects cancer incidence and mortality and the

demand for health services including screening and diagnostic tests as well as treatment for detected

disease. Understanding trends in screening use can inform our interpretation of observed changes in

cancer incidence and mortality rates and may aid in the projection of future health care utilization

needs. Longitudinal estimates of the proportion of people who have been screened for cancer are

available from large, publicly available databases including surveys and public health records. We

can use these estimates to evaluate whether program goals have been met and to predict whether

future goals such as those set by the Healthy People 2010 (http://www.healthypeople.gov/) are

obtainable. In addition, models describing screening dissemination may be used by microsimu-

lation modelers such as the Cancer Intervention and Surveillance Modeling Network (CISNET:

http://cisnet.cancer.gov/) to estimate the contribution of screening to observed changes in cancer

incidence and mortality (e.g., Berry, 2005).

In this paper, we develop a model for the dissemination of endoscopy examinations in the United

States from 1975 to 2003. Our long term goal is estimation of the contribution of endoscopy to

observed changes in national colorectal cancer incidence and mortality rates. To meet this goal, our

endoscopy dissemination model will be applied to microsimulation models developed by three CIS-

NET groups: Group Health Cooperative (Rutter, Miglioretti, Savarino, in prep), Sloan-Kettering

Institute for Cancer Research/MISCAN (Loeve, et al., 1999), and Harvard School of Public Health

(Knudsen, 2005; Frazier, et al., 2000) in future research. Descriptions and comparisons of these

microsimulation models can be found at http://cisnet.cancer.gov/profiles/.
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1.1 Available Data Sources

To assess screening behaviors in the United States, Epidemiologists rely heavily on two surveys:

the National Health Interview Survey (NHIS) and the Behavioral Risk Factor Surveillance System

(BRFSS). The NHIS is a household in-person interview conducted by the Center for Disease Con-

trol’s National Center for Health Statistics. The NHIS uses a multistage area probability design

which permits representative sampling of households to provide national estimates of health be-

haviors (http://www.cdc.gov/nchs/nhis.htm). The NHIS covers the civilian noninstitutionalized

population of the United States and includes approximately 43,000 households and 106,000 persons

per year. The annual response rate is greater than 90% of eligible households.

The BRFSS is a large (approximately 160,000 participants per year) telephone survey developed

to monitor state-level health risks and behaviors (http://www.cdc.gov/brfss/). It is administered

and supported by the Center for Disease Control’s National Center for Chronic Disease Prevention

and Health Promotion. The BRFSS is limited to families with land-line telephones and the response

rate is lower than the NHIS, ranging across states from 46% to 93% (median 77%) in 1997. Most

states use disproportionate stratified sampling to allow estimation at the region as well as the state

level. All states and Washington, D.C. adopted this sampling approach by 2001.

The NHIS and BRFSS have complementary advantages that make it desirable to include both

data sources for estimating the age at first endoscopy. The high response rate of the NHIS and

the fact that it is an in-person interview likely make it less biased than the BRFSS. However, the

BRFSS is a larger survey and asked about endoscopy examinations in more years.

1.2 Modeling Challenges

In developing our model for age at first endoscopy, we faced three main challenges: First, we can

not easily obtain empirical estimates of the age at first endoscopy over the entire time-period of
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interest (1975-2003), because available survey data consists of questions of the form “Have you

ever had [the screening test under study ].” Thus, at each survey year, we observe the proportion

of participants that have had an endoscopy prior to the time of the survey. This type of data

is referred to as current status data (Jewell and van der Laan, 2002). Second, because national

survey data was not available until 1987, there is a substantial time period during which we have

no information about endoscopy use. A third challenge was including data from both the NHIS and

BRFSS to increase the amount of information about the dissemination of endoscopy. While the

NHIS is designed for estimation at the national or regional level, the BRFSS was designed to make

inference at the state level and most states did not ask about endoscopy in all years; therefore,

state-level differences must be taken into account to adjust for missing data as well as for clustering

within states.

To overcome these challenges, we use a theoretically motivated parametric model from the

diffusion of innovation literature (Mahajan and Peterson, 1985) to extrapolate from information

observed in 1987 to 2003 to estimate the rate of adoption in the earlier years. Cronin et al.

(2005) used a mixed-influence diffusion model to model time to first mammography examination

separately by birth cohort based on NHIS data only. We extend their model by incorporating

covariate effects to pool information across birth cohorts to better estimate the rate of endoscopy

adoption over time. Further, to combine information from the NHIS and BRSS to make inference

about the national-level diffusion model parameters, we link a state-specific model to the national-

level diffusion model of interest using a marginalized modeling approach (Heagerty and Zeger, 2000;

Heagerty, 2002; Miglioretti and Heagerty, 2004).

In the next section, we introduce our national-level and state-specific mixed-influence diffusion

models. In section 3, we describe our methodology for estimating the national-level diffusion model

parameters of interest. In section 4, we fit the model to the NHIS and BRFSS data to estimate the
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diffusion of endoscopy. We close with a discussion of our approach.

2 Marginalized diffusion model

We sought to combine information from the NHIS and the BRFSS at multiple survey years to

obtain national-level estimates of the diffusion of endoscopy use over time by birth year and gender.

Diffusion of innovations models are widely used in economics and social research to model the

adoption of new products or behaviors by a population. We propose using a specific type of

diffusion model, the mixed influence diffusion model (Mahajan and Peterson, 1985), to model the

age at first endoscopy examination in the United States. This model accounts for influences from

both external sources, such as mass media and physicians, and internal sources, such as discussions

with friends and family. In addition, the model can be parameterized to allow a proportion of the

population to never be screened. The regression model we use is based on the following differential

equation that describes the rate of change in endoscopy use at time T as:

dpN (t < T )

dt
=
¡
a+ bpN (t < T )

¢ ¡
c− pN (t < T )

¢
(1)

where pN (t < T ) is the proportion of individuals in the United States that have had an endoscopy

examination before time T, a > 0 measures the external influence, b > 0 measures the internal

influence, and 0 < c < 1 is the proportion of people who will ever have an endoscopy. Thus,

c− pN (t < T ) is the proportion of potential adopters remaining at time T. Integration of equation

(1) gives a model for the national cumulative incidence of endoscopy use over time:

pN (t < T ) =
ac(1− exp [− (a+ bc) (T − t0)])

a+ bc exp [− (a+ bc) (T − t0)]
(2)
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where t0 is the year endoscopy was first introduced for general use. Figure 1 displays mixed-

influence diffusion curves for a range of values of a, b, and c. Increasing the external influence

parameter a has an immediate effect on increasing the diffusion curve, because external influences

do not depend on how many people have had an endoscopy. In contrast, increasing the internal

influence parameter b has a more delayed effect on the diffusion curve. As more people have an

endoscopy, the diffusion rate increases at a faster rate for larger values of b. A delay in the rise of

the diffusion curve could also occur if there is a delay in use of endoscopy until a certain age. For

example, for younger birth cohorts, there may be a delay in the use of endoscopy until the cohort

reaches the age at which guidelines recommend use of endoscopy for screening (typically age 50).

This would result in an increase in b with increasing birth year. As the asymptote c increases, a

larger proportion of people eventually have an endoscopy.

Figure 1: Mixed-influence diffusion curves, pN (t < T ), for different values of a, b, and c.

We allow the cumulative incidence of endoscopy use to depend on covariates such as birth year

by modeling each diffusion parameter as a function of covariates x. Substituting fα (x) , fβ (x) ,

and fη (x) for a, b, and c, respectively, we use a log-link for the influence parameters fα (x) and
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fβ (x) and a logit-link for the asymptote fη (x) to maintain the parameter constraints:

log (fα (x)) = α0 + α1x

log (fβ (x)) = β0 + β1x

log

µ
fη (x)

1− fη (x)

¶
= η0 + η1x.

Incorporating these functions into equation (2) gives a cumulative incidence model conditional on

covariates:

pN (t < T |α,β,η,xk,x) = fα (x) fη (x) (1− exp [− (fα (x) + fβ (x) fη (x)) (T − t0)])

fα (x) + fβ (x) fη (x) exp [− (fα (x) + fβ (x) fη (x)) (T − t0)]
(3)

For parameter estimation, equation (3) can be directly applied to data from the NHIS when account-

ing for survey weights, because the NHIS was designed to provide estimates that are representative

at the national level. The NHIS sample size is too small to make inferences about states, and the

public data set does not contain information about an individual’s state of residence. In contrast,

the BRFSS was designed to provide estimates at the state level; however, in some years, only some

states asked about endoscopy use. Because states that did not ask about endoscopy use are likely

to be different from states that did, missing data are probably not missing completely at random

and thus estimates based only on available data will not be nationally representative. Therefore,

state differences must be taken into account when estimating national-level parameters. To do this,

we introduce a state-level model for the probability of having a previous endoscopy examination by

survey year j for the ith state and the kth covariate combination xk given state-specific effects θi :

pS (t < j|∆jk (α,β,η, θi,xk) , θi) = expit (∆jk (α,β,η, θi,xk) + θi) (4)

θi ∼ Normal
¡
0, σ2

¢
6
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where expit(·) is the inverse-logit function and ∆jk (α,β,η, θi,xk) is a tractable function of the

diffusion model parameters α, β,and η, the state-specific effects θi, the survey year j and the

covariates xk. In the following, we drop the notational dependence of ∆jk on (α,β,η, θi,xk) for

simplicity, unless it is useful for clarification. Note that all 50 states plus Washington, D.C. are

included in the BRFSS for a total of 51 state-specific effects.

The state-level model intercepts ∆ link the state-level model to the national-level model para-

meters and are fully determined by the relationship between the national and state-specific curves.

The expected value of the state-specific probabilities pS (t < j|∆jk (α,β,η, θi,xk) , θi) taken with

respect to the states (i) must equal the national-level probability for that survey year and covariate

combination pN (t < j|α,β,η,xk):

pN (t < j|α,β,η,xk) = E(i)
£
pS (t < j|∆jk (α,β,η, θi,xk) , θi)

¤
(5)

=
1P51

i=1Nijk

51X
i=1

pS (t < j|∆jk (α,β,η, θi,xk) , θi)Nijk.

where Nijk is the ith state’s population size for the kth covariate combination during the jth survey

year. We solve equation (5) for the state-level model intercepts∆ using Newton-Raphson with Nijk

taken from the census (http://www.census.gov).

3 Model Estimation

For unbiased national and state-level parameter estimates, we need to account for the survey

sampling designs. Because the design variables are not available in the NHIS or BRFSS public data

sets, we must rely on the survey weights provided in the public data files. Let h = 1 for the NHIS

and h = 2 for the BRFSS. Let nhijk be the number of individuals surveyed with survey h from state i

during year j with the kth covariate combination, i = 1, . . . , 51; j = 1, . . . , Jhi; k = 1, . . . ,K, and let
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yhijk be the number of surveyed individuals that said they have ever had an endoscopy examination.

For notational purposes, we replace the state-level subscript i with · when h = 1, because state of

residence is not available in the NHIS public use data sets. We use the survey weights whijk to create

a pseudo-sample with y∗hijk = whijkyhijk positive responses and nhijk − y∗hijk = whijk (nhijk − yhijk)

negative responses for each survey h, state i, survey year j, and covariate combination k (Cronin

et al., 2005). We take the weight whijk to be the sum of the standardized survey weights, summed

over the number of individuals surveyed and standardized to sum to the total survey sample sizePK
k=1 nhijk. This pseudo-sample approach results in a weighted version of the likelihood that

is equivalent to the pseudo-likelihood commonly used in the analysis of survey data (Korn and

Graubard, 1999; Chambers and Skinner, 2003).

As discussed in the previous section, the NHIS provides nationally representative data; therefore,

assuming the weighted observations are conditionally independent given the model, the likelihood

component for the NHIS pseudo-data y∗1 may be written as a function of the national model (3):

p (y∗1|α,β,η,x) ∝
Jh·Y
j=1

KY
k=1

pN (t < j|α,β,η,xk)y
∗
1·jk
¡
1− pN (t < j|α,β,η,xk)

¢n1·jk−y∗1·jk ,
where pN (t < j|α,β,η,x) is defined in equation (3). The BRFSS provides data that are represen-

tative at the state level, and as discussed in the previous section, differences between states must

be taken into account due to missing data for some states in some survey years; therefore, we write

the likelihood component for the BRFSS pseudo-data y∗2 in terms of the state-specific model (4).

Assuming outcomes within a state are independent conditional on the state-specific effects θ, the

likelihood for the BRFSS may be written as follows:

p (y∗2|α, β, η,xk,θ) ∝
51Y
i=1

JiY
j=1

KY
k=1

pS (t < j|α,β,η,xk, θi)y
∗
2ijk

¡
1− pS (t < j|α,β,η,xk, θi)

¢n2ijk−y∗2ijk ,
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where pS (t < j|α,β,η,xk, θi) is defined in equation (4). We take the full likelihood to be the

product of the likelihoods for the NHIS and BRFSS. While we recognize that observations within

the same state may not be independent across the two surveys, we do not have information about

an individual’s state for the NHIS, so we can not take this dependence into account.

We use Markov Chain Monte Carlo (MCMC) to sample from the posterior distribution, which

is proportional to the product of the prior distributions and the likelihood:

p (α,β,η,θ, σ|y∗,x) ∝ p (α) p (β) p (η) p (σ)
51Y
i=1

p (θi|σ) (6)

p (y∗1|α,β,η,x) p (y∗2|α,β,η,x,θ)

We use standard prior distributions, takingα, β, and η to be Normal(0, 100) and σ to be Uniform(0, 10).

In the style of Gibbs sampling (Gelfand and Smith, 1990), we update each set of parameters condi-

tional on the remaining parameters using Metropolis (random walk) steps (Metropolis, et al., 1953;

Gilks, Richardson, and Spiegelhalter, 1996).

4 Application

We used the marginalized diffusion model to estimate the age at first endoscopy examination from

current status data collected by the NHIS and BRFSS. The NHIS asked about any prior endoscopy

examination in 1987, 1992, 1998, 2000, and 2003. For the BRFSS, all states asked about prior

endoscopy in 1997, 1999, 2001, and 2002, while only some states asked about endoscopy in 1989-

1996, 1998, 2000, and 2003. The wording of the question varied by year and survey, but in general,

asked “Have you ever had a [exam-type]?” where [exam-type] was one of the following: “procto-

scopic exam,” “sigmoidoscopy or colonoscopy,” “sigmoidoscopy or proctoscopy,” or “sigmoidoscopy,

colonoscopy, or proctoscopy.” In most years, women and men ages 40 and over were asked about
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prior endoscopy. In 2001, the BRFSS started only asking the question to people 50 and over. For

analysis, if the person answered that they did not know or were unsure if they ever had an exam-

ination (<1% of observations), we assumed they never had the examination. We excluded people

that refused to answer the question (<1%).

*** TABLE 1 ABOUT HERE ***

Tables 1 displays the sample sizes and weighted percentages of men and women that reported

ever having an endoscopy. In 1987, the first year the NHIS asked about endoscopy, weighted

estimates of the percentage of people that had a prior endoscopy from the NHIS ranged from 13%

for women and 15% for men born 1940-1949 to 27% for women and 33% for men born 1910-1929.

By 2003, this number increased to 40% for women and 43% for men born 1940-1949 and to 43%

for women and 55% for men born 1910-1929.

We fit separate models for males and females. Because endoscopy was first used in the mid

1970’s, we take t0 to be 1975. To increase computational speed, we grouped people into 10 year

birth cohorts for analysis, including the mean birth year for each group as the covariate value.

Because the sample size is very small for the oldest birth cohorts, we grouped people born from

1910 to 1919 with those born in 1920. The diffusion curves are expected to be similar for these

birth cohorts, because they would have all been of screening age (50 or older) at the time endoscopy

was introduced.

For each model, we ran three samplers starting at dispersed values for 600,000 iterations each,

discarded the first 100,000 iterations for burn-in, and kept every 20th iteration for analysis. Results

are based on the 75,000 remaining iterations from the three combined samplers. To check conver-

gence, we examined trace plots and compared the three samplers to verify convergence to the same

posterior modes.
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Table 2. Parameter estimates and 95% highest posterior density (HPD)
intervals.

Females Males
Parameter Estimate 95% HPD Estimate 95% HPD

α0 -3.14 (-3.22, -3.06) -2.58 (-2.68, -2.46)
β0 -2.20 (-2.28, -2.12) -2.20 (-2.38, -1.98)
η0 0.24 (0.19, 0.29) 0.30 (0.25, 0.33)
α1 -0.092 (-0.096, -0.088) -0.087 (-0.092, -0.082)
β1 0.0030 (0.0004, 0.0053) -0.0084 (-0.013, -0.0019)
η1 0.096 (0.089, 0.10) 0.064 (0.054, 0.073)
σ 0.15 (0.13, 0.20) 0.21 (0.17, 0.26)

Diffusion model parameter estimates (posterior modes) along with 95% highest posterior den-

sity intervals are shown in Table 2. Note that the HPD intervals are approximate, because we

did not adjust for clustering within strata and probability sampling units (PSUs), and we used a

pseudo-sample for estimation. None-the-less, these intervals provide a general idea of the magni-

tude of variability in these estimates, assuming there is not a large amount of correlation within

unacknowledged clusters.

Figure 2: Diffusion model parameter estimates by birth year.

Figure 2 displays how the diffusion model parameter estimates change with birth year. For both

males and females, the external influence parameter decreases rapidly with increasing year of birth.

Males in the oldest cohort have a larger external influence parameter compared to women, but
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Figure 3: Estimated endoscopy diffusion curves for males and females born from 1910-1920 and in
1930, 1940, and 1950. N = weighted percentages from NHIS, B = weighted percentages from the
BRFSS in years that all states were surveyed, and b = weighted percentages from the BRFSS in
years when only some states were surveyed.

this difference diminishes with increasing year of birth. In contrast, the oldest males and females

have a similar internal influence parameter, but with increasing birth year, the internal influence

parameter increases for females and decrease for males, resulting in a larger internal influence

parameter for younger females relative to males. Men and women in the oldest birth cohort have

similar asymptotes, however, these asymptotes diverge as birth year increases, suggesting more

males will eventually receive an endoscopy than females among the younger birth cohorts. However,

care must be taken when interpreting the asymptote parameter, especially for the younger birth

cohorts, because it requires extrapolation outside the observed range of data. Variability between

states (Table 2) is somewhat larger for males than females.

Figure 3 shows the endoscopy diffusion curves for females and males born in 1920, 1930, 1940

and 1950. The fitted curves fit the observed data very well in years that all states were surveyed.
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5 Discussion

In this paper, we present an approach for modeling the diffusion of a cancer test within a population

based on current status data collected via national surveys. We incorporate covariate effects into

a theoretically motivated mixed-influence diffusion model (Mahajan and Peterson, 1985) to pool

information across multiple birth cohorts to estimate the rate of test adoption based on current

status data observed during a limited time-period. We use marginalized modeling methodology

to make inference about national-level parameters, combining data from two surveys: the NHIS,

which is representative at the national or regional level and the BRFSS, which is representative at

the state level. Our methodology differs from other marginalized random effects models (Heagerty

and Zeger 2000; Diggle, Heagerty, Liang, and Zeger, 2002; Miglioretti and Heagerty, 2004 ) in that

the conditional (state-level) and marginal (national-level) models are linked through a weighted

average across a fixed number of state-specific models as opposed to an integral over the entire

random effect distribution.

One advantage of the marginalized modeling approach is that the structure of the mean model

is not constrained by the study design or the desired fitting method. By using this approach, we

were able to directly model the marginal (national) mean of interest while separately specifying

a state-specific model used in the likelihood for the BRFSS. Generalized estimating equations

(GEE; Liang and Zeger, 1986) are commonly used when substantive interest is in the marginal

or population-average regression structure. However, without modification, GEE may give biased

results when data are not missing completely at random (Laird, 1988; Robins et al., 1995). The

marginalized modeling approach uses likelihood-based methods, which are robust when data are

missing at random.

We estimated model parameters using data from two surveys: the NHIS and BRFSS. The NHIS

is generally believed to be less biased than the BRFSS, because the BRFSS excludes households
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without land-line telephones and has a lower response rate than the NHIS. The rates of endoscopy

use reported here are higher for the BRFSS compared to the NHIS, suggesting some bias in the

BRFSS. However, we include the BRFSS for estimation, because the NHIS only asked about col-

orectal cancer testing in a limited number of years late in the diffusion process. There has been

some research on adjusting for bias in the BRFSS when combining data from these two surveys for

small area estimation. Elliott and Davis (2005) use a propensity score approach while Raghunathan

et al. (2006) directly adjust for an effect of having a telephone. It may be possible to incorporate

a telephone effect into our model, however, we are not interested in separate diffusion curves for

people with and without telephones. Therefore, we would need to marginalize over the telephone

effect for estimation of national-level parameters of interest, which would add an additional level

of complexity to our model.

We acknowledge that the use of a pseudo-sample is ad hoc. Design variables are not available

in the NHIS and BRFSS public use data sets, and accounting for complex survey designs using

likelihood methods is challenging without design variables (Korn and Graubard, 1999; Chambers

and Skinner, 2003). The pseudo-likelihood is commonly used in the analysis of complex surveys

and has good design-based properties (e.g., consistency). In addition, the pseudo-likelihood can

be justified from an analytic perspective (Binder and Roberts, 2003). Because our interest is in

estimation of the finite-population (i.e., national) values of the diffusion model parameters, the

pseudo-likelihood should perform well; however, more research into the use of weighted likelihoods

in Bayesian methods is needed.

For our microsimulation models, we only require estimates of model parameters and not variance

estimates. Unbiased variance estimation is difficult in this case for several reasons. First, we are

combining data from two possibly overlapping national surveys and information about common

clusters (e.g., states, counties, strata, and PSUs) between the two surveys is not available. Second,
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we are combining information across multiple years and information about common clusters across

years is not available. Last, design variables are not available in the public use data sets. To

improve variance estimation, we could incorporate strata and PSU-specific effects into another

level of conditional models for the NHIS and BRFSS and marginalize over these effects; however,

this would further complicate our model and is not necessary for our purposes.

Three CISNET groups will use these diffusion model parameter estimates as microsimulation

model inputs. We will combine the results from these models with a model for the time be-

tween endoscopy examinations. From this two-part model, we will generate endoscopy histories

for individuals in our simulated populations. Examples of such input parameter generators used

by CISNET groups, including one based on the model described in this paper, can be found at

http://cisnet.cancer.gov/interfaces/. By comparing outcomes of interest (e.g., cancer incidence and

mortality) from the same simulated population with and without endoscopy use, we will estimate

the effects of endoscopy on these outcomes. In this way, microsimulation models can greatly con-

tribute to our understanding of the benefits of endoscopy without the cost and time associated with

large randomized trials.
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Survey N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%)
NHIS

1987 51 2,935 (27%) 1,414 (22%) 1,451 (13%) 0 N/A 0 N/A 1,827 (33%) 1,120 (22%) 1,178 (15%) 0 N/A 0 N/A
1992 51 1,367 (35%) 769 (29%) 995 (21%) 387 (11%) 0 N/A 815 (44%) 590 (31%) 810 (25%) 295 (16%) 0 N/A
1998 51 3,003 (38%) 1,941 (33%) 2,585 (25%) 3,024 (13%) 0 N/A 1,770 (50%) 1,502 (47%) 2,048 (30%) 2,542 (17%) 0 N/A
2000 51 2,533 (43%) 1,822 (41%) 2,367 (30%) 3,272 (14%) 350 (09%) 1,442 (49%) 1,366 (47%) 1,947 (33%) 2,660 (15%) 310 (08%)
2003 51 2,023 (43%) 1,704 (47%) 2,292 (40%) 3,118 (20%) 1,365 (11%) 1,012 (55%) 1,194 (55%) 1,860 (43%) 2,526 (21%) 1,153 (11%)

BRFSS
1988 7 1,169 (45%) 580 (35%) 725 (18%) 0 N/A 0 N/A 645 (55%) 416 (37%) 499 (34%) 0 N/A 0 N/A
1989 7 1,008 (48%) 553 (30%) 757 (19%) 0 N/A 0 N/A 589 (56%) 375 (41%) 546 (29%) 0 N/A 0 N/A
1990 6 909 (46%) 479 (31%) 734 (22%) 102 (13%) 0 N/A 512 (58%) 355 (44%) 535 (37%) 73 (12%) 0 N/A
1991 7 1,171 (49%) 680 (34%) 905 (26%) 234 (16%) 0 N/A 609 (57%) 459 (45%) 642 (30%) 165 (18%) 0 N/A
1992 4 715 (45%) 478 (37%) 649 (24%) 257 (14%) 0 N/A 432 (61%) 338 (42%) 450 (30%) 183 (20%) 0 N/A
1993 50 12,190 (39%) 6,545 (34%) 9,052 (20%) 4,804 (12%) 0 N/A 6,875 (47%) 4,777 (39%) 7,042 (24%) 3,868 (14%) 0 N/A
1994 4 1,101 (38%) 607 (34%) 844 (21%) 542 (13%) 0 N/A 555 (45%) 459 (40%) 689 (25%) 432 (13%) 0 N/A
1995 49 12,089 (38%) 7,208 (33%) 9,415 (21%) 7,729 (13%) 0 N/A 6,689 (52%) 5,074 (43%) 7,111 (26%) 5,977 (14%) 0 N/A
1996 4 1,026 (34%) 698 (33%) 870 (20%) 842 (12%) 0 N/A 559 (45%) 464 (41%) 645 (25%) 658 (14%) 0 N/A
1997 51 13,192 (44%) 8,769 (40%) 11,409 (27%) 12,517 (15%) 0 N/A 6,971 (52%) 6,061 (47%) 8,585 (32%) 9,798 (16%) 0 N/A
1998 2 550 (47%) 350 (34%) 421 (27%) 550 (14%) 0 N/A 239 (48%) 248 (43%) 310 (33%) 424 (16%) 0 N/A
1999 51 13,422 (48%) 10,474 (45%) 13,544 (32%) 18,414 (16%) 0 N/A 6,706 (56%) 6,965 (52%) 9,933 (36%) 13,833 (16%) 0 N/A
2000 4 739 (46%) 711 (44%) 969 (36%) 1,298 (17%) 158 (09%) 385 (63%) 430 (51%) 674 (36%) 1,022 (17%) 127 (14%)
2001 51 14,764 (54%) 13,214 (52%) 17,707 (42%) 4,594 (29%) 0 N/A 7,219 (59%) 8,804 (53%) 12,497 (41%) 3,264 (28%) 0 N/A
2002 51 17,812 (56%) 17,368 (56%) 22,079 (44%) 8,296 (33%) 0 N/A 8,516 (61%) 10,863 (57%) 15,512 (45%) 6,061 (31%) 0 N/A
2003 10 3,171 (58%) 3,444 (58%) 4,633 (48%) 2,296 (36%) 0 N/A 1,584 (62%) 2,251 (61%) 3,060 (49%) 1,624 (35%) 0 N/A

*Includes Washington D.C.

1950-1959 1960-1963

Table 1. Survey sample size and weighted percentage reporting they had ever had an endoscopy exam from the NHIS and BRFSS by birth cohort and gender.
MalesFemales

1910-1929 1930-1939 1940-1949 1950-1959 1960-1963 1910-1929 1930-1939 1940-1949N 
States*
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