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1. Introduction

The accuracy of a diagnostic test can be measured by its sensitivity and specificity,

which are defined as the probabilities of correctly identifying the diseased and non-diseased

subjects, respectively. When the response of a test is continuous, we need to choose a

cut-off point for positivity of disease in order to compute sensitivity and specificity of the

test. Let Y and X be the results of a continuous-scale test for a diseased and a non-

diseased subject, respectively. For a given cut-off point c, the sensitivity and specificity

of the test are defined as

Se = P (Y ≥ c) = 1−G(c), Sp = P (X ≤ c) = F (c),

respectively, where F and G are the distribution functions of X and Y , respectively.

Therefore, for a fixed value of specificity at p, the corresponding sensitivity of the test is

R(p) = 1 − G(F−1(p)), where F−1(p) is the inverse function of F (p). The ROC curve,

R(p), is a plot of sensitivity against 1-specificity as the cut-off point c runs through the

whole range of possible test values. In practice, the optimal cut-off point is not known

because the distribution function F of the non-diseased population is unknown. The area

under the curve (AUC), defined as δ =
∫ 1
o R(p)dp, is the most commonly used summary

measure of diagnostic accuracy for a continuous-scale diagnostic test.

Bamber (1975) showed that the AUC δ = P (Y ≥ X). This can be interpreted as

the probability that in a randomly selected pair of diseased and non-diseased subjects,

the test value of the diseased subject is higher than or equal to that of the non-diseased

subject. In a more general context, Wolfe and Hogg (1971) recommended the use of this

index as a general measure for the differences between two distributions.

One important problem for the inference on the AUC is how to construct a confidence

interval for δ. Let X1, . . . , Xm be test results of a random sample of non-diseased subjects

and Y1, . . . , Yn be test results of a random sample of diseased subjects. Traditionally, the
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well known Mann-Whitney (hereafter MW) two-sample rank statistic, defined by

δ̂ =
1

mn

m∑

i=1

n∑

j=1

I(Yj ≥ Xi),

is used as a non-parametric estimator of the AUC. Based on the asymptotic normality of

MW statistic, we can construct a confidence interval (hereafter MW interval) for AUC.

Although the MW estimator of the AUC is known to be unbiased, and the coverage

probability of the MW interval is asymptotically correct, the normal approximation based

MW interval suffers from low coverage accuracy for high values of the AUC (e.g., 0.80 to

0.95, which are of most interest in diagnostic tests) when sample sizes for diseased and

non-diseased subjects are small and unequal. Therefore, it is desirable to find an reliable

alternative approach for constructing a confidence interval of the AUC.

Empirical likelihood (hereafter EL) (Owen, 1990, 2001) is a popular non-parametric

method traditionally used for providing confidence intervals for the mean. The EL method

has many advantages over other non-parametric methods. For example, it has better small

sample performance than approaches based on normal approximation, and it studentizes

internally, thereby eliminating the need for a pivot; see Hall and LaScala (1990), and

Owen (2001) for a more discussion.

In this paper, we develop an empirical likelihood (EL) approach for the inference on the

AUC. The main difficulty of developing the EL method for the AUC is that the standard

EL method can not be directly applied to the AUC setting when F and G are unknown.

We must use an adjusted EL method (cf. section 2). These kinds of adjustment are

simple and work well for many applications (Qin and Jing, 2001, 2003; Wang, Oliver and

Härdle, 2004; Wang and Rao, 2002). In Section 2 we develop the EL theory for the AUC

and propose an EL based confidence interval for the AUC. In Section 3 we extend the

EL inference on the AUC developed in Section 2 to stratified samples. In Section 4, we

conduct simulation studies to compare the relative performance of the proposed EL based

interval with the existing normal approximation based intervals and bootstrap intervals
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for the AUC. In Section 5, we apply our EL interval for the AUC to a real example. The

proof of the EL theory is deferred until the appendix.

2. Empirical Likelihood Method for AUC

For test value Y from a diseased subject, Pepe and Cai (2002) defined the placement

value as

U = 1− F (Y ).

This value can be interpreted as the proportion of non-diseased subjects with their test

values larger than Y . It essentially marks the placement of Y within the non-diseased

distribution. It is easily seen that

E(1− U) = E(F (Y )) = P (Y ≥ X) = δ.

Noticing this relationship between the AUC (δ) and the placement value U , we can derive

an empirical likelihood procedure for the AUC. Let p = (p1, p2, · · · , pn) be a probability

vector, i.e.,
∑n

j=1 pj = 1 and pj ≥ 0 for all j. The profile empirical likelihood for AUC,

evaluated at the true value δ0 of δ, can be defined as

L̃(δ0) = sup





n∏

j=1

pj :
n∑

j=1

pj = 1,
n∑

j=1

pj(1− Uj − δ0) = 0



 ,

where Uj = 1 − F (Yj), j = 1, 2, · · · , n. Since placement values Uj’s depend on the un-

known distribution function F of the non-diseased population, replacing F by its empirical

distribution F̂ , we get an estimated empirical likelihood for AUC:

L(δ0) = sup





n∏

j=1

pj :
n∑

j=1

pj = 1,
n∑

j=1

pj(1− Ûj − δ0) = 0



 ,

where Ûj = 1− F̂ (Yj), j = 1, 2, · · · , n. Then, by the Lagrange multiplier, we can easily

get

pj =
1

n

{
1 + λ(1− Ûj − δ0)

}−1
, j = 1, · · · , n,
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where λ is the solution of

1

n

n∑

j=1

1− Ûj − δ0

1 + λ(1− Ûj − δ0)
= 0. (1)

Note that
∏n

j=1 pj, subject to
∑n

j=1 pj = 1, attains its maximum n−n at pj = n−1. So we

define the empirical likelihood ratio at δ0 as

R(δ0) =
n∏

j=1

(npj) =
n∏

j=1

{1 + λ(1− Ûj − δ0)}−1.

Hence the corresponding empirical log-likelihood ratio is

l(δ0) = −2 log R(δ0) = 2
n∑

j=1

log{1 + λ(1− Ûj − δ0)}, (2)

where λ is the solution to the equation (1).

Since Ûj’s are not independent, we cannot apply the standard empirical likelihood the-

ory to derive the asymptotic distribution of our empirical likelihood ratio l(δ0). However,

in Appendix A, we show that l(δ0) still follows a scaled χ2 distribution. We summarize the

asymptotic distribution of the empirical log-likelihood ratio for the AUC in the following

theorem.

The following theorem establishes the asymptotic distribution of the empirical log-

likelihood ratio for AUC.

Theorem 2.1. If δ0 is the true value of AUC, then the limiting distribution of l(δ0),

defined by (2), is a scaled chi-square distribution with one degree of freedom. That is,

r(δ0)l(δ0)
L−→ χ2

1, (3)

where the scale constant r(δ0) is

r(δ0) =
m

m + n

∑n
j=1(1− Ûj − δ0)

2

nS2
,
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with

S2 =
mS2

01 + nS2
10

m + n
,

S2
10 =

1

(m− 1)n2

[
m∑

i=1

(Ri − i)2 −m
(
R̄− m + 1

2

)2
]
,

S2
01 =

1

(n− 1)m2




n∑

j=1

(Sj − j)2 − n
(
S̄ − n + 1

2

)2

 ,

R̄ =
1

m

m∑

i=1

Ri, S̄ =
1

n

n∑

j=1

Sj.

Here Ri is the rank of X(i) (the i-th ordered value among Xi’s ) in the combined sample

of Xi’s and Yj’s, and Sj is the rank of Y(j) (the j-th ordered value among Yj’s) in the

combined sample of Xi’s and Yj’s.

Empirical likelihood confidence intervals for the AUC can be constructed as follows.

Let

Rα(δ) = {δ : r(δ̂)l(δ) ≤ χ2
1(1− α)}, (4)

where χ2
1(1 − α) is the (1 − α)-th quantile of the chi-square distribution χ2

1. Then from

Theorem 2.1, Rα(δ) gives an approximate confidence interval for the AUC with asymp-

totically correct coverage probability 1− α, i.e.,

P (δ0 ∈ Rα(δ)) = 1− α + o(1).

3. EL Intervals for AUC with Stratified Samples

In this section we extend the EL inference on the AUC, developed in Section 2, to

stratified samples. Suppose we have L institutions participating in an ROC study of a

continuous-scale diagnostic test. We use l to index the lth institution. Let Xl and Yl
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be the results of a continuous-scale test for a non-diseased and a diseased subject in the

lth institution, Fl and Gl are the distribution functions of Xl and Yl, respectively. Let

Xl1, . . . , Xlml
be test results of a random sample of non-diseased patients and Yl1, . . . , Ylnl

be test results of a random sample of diseased subjects in the lth institution.

In this paper, we don’t assume that Fl’s and Gl’s are homogeneous across institutions.

Instead, we allow Fl’s and Gl’s to be different by institutions and only assume the accuracy

of the test is the same across institutions. That is, we assume that δ1 = δ2 = · · · δL = δ,

where δl denotes the AUC for the lth institution. This is the same assumption made

in Tsimikas, Bosch, Coull and Barmi (2002) when the response of a diagnostic test is

categorical (ordinal rating).

Let pl = (pl1, pl2, · · · , plnl
) be a probability vector for l = 1, 2, · · · , L. Similar to those

in Section 2, we can define the profile EL for the common diagnostic accuracy as measured

by the AUC, δ, as follows:

L(δ) = sup





L∏

l=1

nl∏

j=1

plj :
nl∑

j=1

plj = 1,
nl∑

j=1

plj(1− Ûlj − δ) = 0, l = 1, 2, · · · , L


 ,

where Ûlj = 1 − F̂l(Ylj), l = 1, 2, · · · , L, j = 1, 2, · · · , nl, and F̂l is the empirical

distribution of Fl.

The corresponding empirical log-likelihood ratio is

l(δ) = 2
L∑

l=1

nl∑

j=1

log{1 + λl(1− Ûlj − δ)}, (5)

where λl is the solution to the following equation:

1

nl

nl∑

j=1

1− Ûlj − δ

1 + λl(1− Ûlj − δ)
= 0, l = 1, 2, · · · , L. (6)

Once again, we cannot use the standard empirical likelihood theory to derive the asymp-

totic distribution of l(δ0) because Ûlj’s are not independent. In Appendix, we show that

8

http://biostats.bepress.com/uwbiostat/paper268



the asymptotic distribution of l(δ0) is still a weighted sum of independent χ2 distributions.

We summarize the asymptotic result in the following theorem.

Theorem 3.1. If δ0 is the true value of the common AUC, then the limiting distribution of

l(δ0) is a weighted sum of independent chi-square distributions with one degree of freedom.

That is,

l(δ0)
L−→ w1χ

2
1,1 + · · ·+ wLχ2

L,1, (7)

where the weights wl = limml,nl→∞ ŵl(δ0), 1 ≤ i ≤ L, with

ŵl(δ0) =
ml + nl

ml

nlS
2
l∑nl

j=1(1− Ûlj − δ0)2
,

S2
l =

mlS
2
01(l) + nlS

2
10(l)

ml + nl

,

S2
10(l) =

1

(ml − 1)n2
l

[
ml∑

i=1

(Ri(l)− i)2 −ml

(
R̄l − ml + 1

2

)2
]
,

S2
01(l) =

1

(nl − 1)m2
l




nl∑

j=1

(Sj(l)− j)2 − nl

(
S̄l − nl + 1

2

)2

 ,

R̄l =
1

ml

ml∑

i=1

Ri(l), S̄l =
1

nl

nl∑

j=1

Sj(l).

Here Ri(l) is the rank of Xl(i) ( the i-th ordered value among Xl1, . . . , Xlml
) in the l-th

combined sample of Xli’s and Ylj’s, and Sj(l) is the rank of Yl(j) ( the j-th ordered value

among Yl1, . . . , Ylnl
) in the l-th combined sample of Xli’s and Ylj’s.

We can then construct the EL confidence interval for the common AUC as follows.

Let

Rα(δ) = {δ : l(δ) ≤ c1−α}, (8)

where c1−α is the (1−α)-th quantile of the weighted chi-square distribution ŵ1(δ̂)χ
2
1,1+· · ·+

ŵL(δ̂)χ2
L,1. In practice, a simple Monte Carlo simulation is needed to calculate the critical
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value c1−α in (8). This can be done by first generating a large number of realizations of

ŵ1(δ̂)χ
2
1,1 + · · · + ŵL(δ̂)χ2

L,1 and then taking c1−α to be the (1 − α)-th sample quantile.

Then, from the earlier discussion, Rα(δ) gives an approximate confidence interval for the

AUC with asymptotically correct coverage probability 1− α.

4. Simulation Studies for EL Intervals

In this section, we report the three simulation studies for evaluating coverage accuracy

and interval length of the newly proposed EL interval for the AUC when the AUC is

taken to be 0.8 (moderate accuracy), 0.9 and 0.95 (high accuracy) in finite-sample sizes.

For simplicity, we take L = 1 in these simulation studies. In each study, we generated

10,000 random samples of size m from F for test responses of non-diseased subjects, and

another 10,000 independent random samples of size n from G for test responses of diseased

subjects.

Since the AUC is restricted to [0,1], Pepe (2003) has argued that an asymmetric

confidence interval within (0,1) should be preferred. Using a logistic transformation, the

lower and upper limits of (1 − α)% confidence interval for logit AUC = log(AUC/(1 −
AUC)) are

LL = log
δ̂

1− δ̂
− z1−α/2

√
var(δ̂)

δ̂(1− δ̂)
, UL = log

δ̂

1− δ̂
+ z1−α/2

√
var(δ̂)

δ̂(1− δ̂)
,

respectively. Therefore, the (1− α)% confidence interval for the AUC is

[
exp(LL)

1 + exp(LL)
,

exp(UL)

1 + exp(UL)

]
.

Pepe (2003, p107) recommended the use of the logit transformation based confidence

intervals (Hereafter LT interval) for the AUC. Because bootstrap confidence intervals

usually are good competitors to the EL based intervals; hence for comparison, we include
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the LT interval, the normal approximation based interval (MW interval), the standard

percentile bootstrap (PB) interval, and percentile-t bootstrap (PTB) interval for the AUC

in these simulation studies.

In the first simulation study, F is chosen to be the standard normal distribution (with

mean µ0 = 0 and standard deviation σ0 = 1), and G is chosen to be a normal distribution

N(µ, σ2) having mean µ =
√

5Φ−1(δ) (Φ is the cdf of the standard normal distribution)

and standard deviation σ = 2. In the second study, F is chosen to be the standard log-

normal distribution, and G a log-normal distribution Log-N(µ, σ2) with µ =
√

401Φ−1(δ)

and σ = 20. Note that in these simulation settings, δ represents the true AUC and is

related to the mean and standard deviation by the following relation:

δ = Φ


 µ− µ0√

σ2 + σ2
0


 . (9)

Thus, δ can be estimated by substituting the maximum likelihood estimates of the mean

and standard deviation into (9). Obuchowski and McClish (1997, formula (6)) gave the

variance estimate for this estimator of AUC. Therefore another normal approximation

based confidence interval for the AUC (hereafter ML interval) can be constructed by

applying the asymptotic normality of the ML based estimate for the AUC.

In the third study, F is chosen to be the standard exponential distribution (with rate

υ = 1), and G a exponential distribution with rate θ = 1/δ − 1. The AUC is

δ =
υ

υ + θ
(10)

and can be estimated by replacing υ and θ by its maximum likelihood estimates. This

maximum likelihood (ML) based estimate for the AUC is

δ̃ =
Ȳ

X̄ + Ȳ
.

Using the delta method, we can find the asymptotic variance of δ̃ and hence obtain the
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normal approximation based ML interval for AUC as follows:


δ̃ ∓ z1−α/2

√
1

m
+

1

n

X̄Ȳ

(X̄ + Ȳ )2


 ,

where z1−α/2 is (1− α/2)-th quantile of standard normal distribution.

For each of the parameter and distribution settings mentioned above, two sided 90%

and 95% EL intervals, MW intervals, ML intervals and LT intervals for the AUC are

constructed for five combinations of sample sizes of (m,n), followed by the calculation of

coverage probabilities, average interval lengths. The computation results are presented in

Tables 1-6.

Place Tables 1-6 here

Tables 1-6 indicate that EL intervals always have better coverage accuracy than MW

intervals. Particularly, for high values of the AUC, EL intervals greatly outperform MW

intervals. All intervals have similar interval lengths.

The ML interval for the AUC has good coverage accuracy when the underlying para-

metric assumptions are true. Our EL intervals have similar coverage accuracy to the ML

intervals for parametric models considered here. While the validity of ML intervals is

relied on the parametric distributional assumptions, the EL interval is purely a nonpara-

metric approach and makes no assumptions about the distributional forms for diseased

and non-diseased populations. On additional problem with the parametric ML interval

is that it does not have the invariant property, which requires the ROC curve of a test

be invariant to any monotone increasing transformation of test results, a fundamental

property of an ROC curve.

The LT interval for the AUC also has good coverage accuracy but has the longest

interval length. One serious problem with the LT interval is that it can break down when
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the observed AUC δ̂ is close to one (see Tables 3-4 when true AUC=0.95. “NA” means

“not available”). Particularly, if the estimated AUC δ̂ = 1, no LT interval for the AUC

can be constructed. For those situations when we can compute the LT intervals, our EL

intervals have similar coverage accuracy as the LT intervals.

Comparing with the standard bootstrap intervals for the AUC, EL intervals have

better coverage accuracy than the PB intervals. The PTB intervals over-cover the AUC

and have bigger coverage errors than the EL intervals in most settings considered here.

Furthermore, the PTB is the computationally the most extensive method among all the

methods considered here.

In summary, we suggest the use of EL intervals for the AUC when the underlying

distributions for diseased and non-diseased populations are unknown. The ML interval

for the AUC should be used when the underlying parametric models are believed to be

true.

5. A Real Application: Dermoscope Example

We illustrate the application of the proposed EL interval for AUC in the study of

the accuracy of dermatoscopy in distinguishing patients with malignant melanoma (MM)

from those without MM.

The most deadly kind of skin disease is malignant melanoma (MM), and early detection

of MM combined with excision of MM is the only way to cure patients with MM. Stolz

et al. (1994) studied the accuracy of clinical evaluation with the aid of dermatoscopy

in detecting malignant melanoma by using the ABCD (Asymmetry, irregular Border,

different Colors, and Diameter larger than 6mm) rule. The dermatoscopy is a hand-

held instrument for skin surface microscopy at 10 times magnification (Stolz et al., 1989).

Dermatologists want to know what the diagnostic accuracy of dermatoscopy is in detecting
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patients with MM. The study sample consists of 21 patients with MM and 51 patients with

benign melanocytic lesions, and the gold standard used in the study is biopsy. Because

the distributions of the measurement from dermatoscopy for the two group of patients

are unknown and the sample sizes are unequal, based our simulation studies, we would

use the EL interval for the AUC as the range of the diagnostic accuracy of dermatoscopy.

The estimated AUC of dermatoscopy based on MW estimator is 0.900. The 95% EL

interval for the AUC is [0.812, 0.955]. This EL interval suggests that the dermatoscopy

has moderate to high level of diagnostic accuracy in detecting patients with MM.

6. Discussion

In this paper we have proposed an empirical likelihood (EL) based confidence interval

for the area under the ROC curve of a continuous-scale test. We have shown that the

proposed method has some nice theoretical property, and our simulation results have

indicated the proposed EL based interval outperforms the existing methods, particularly

when the AUC is close to 1.0.

Our proposed method is an additional contribution for constructing an confidence in-

terval for the AUC of a highly accurate diagnostic test. When the response of a diagnostic

test is ordinal, Tsimika et al (2002) have proposed a profile-likelihood method for con-

structing such a interval. However, their method cannot be applied when the response of

the test is continuous.

6. Appendix: Proof of Theorems

We need the following lemma for the proofs of Theorems 2.1 and 3.1.

Lemma 1. Under the same conditions as in Theorem 2.1, we have

(i). 1
n

∑n
j=1(1− Ûj − δ0)

2 p−→ σ2
0, where σ2

0 = E [F 2(Y )]− δ2
0.
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(ii).
(

mn
m+n

)1/2
δ̂0−δ0

S

L−→ N(0, 1), where δ̂0 = 1
n

∑n
j=1(1− Ûj).

Proof of Lemma 1.

Lemma 1(i) follows from the uniform consistency of empirical distribution F̂ and the

fact that
1

n

n∑

j=1

(1− Uj − δ0)
2 p−→ E [F (Y )− δ0]

2 = σ2
0

Lemma 1(ii) is from Sen (1967).

Proof of Theorem 2.1:

Using Lemma 1 and the similar arguments used in Owen (1990), we can prove that

|λ| = Op(n
−1/2). Noting that max1≤j≤n |1 − Ûj − δ0| = O(1), a.s., by Taylor’s expansion

to (2), we have

l(δ0) =
n∑

j=1

log{1 + λ(1− Ûj − δ0)}

=
n∑

j=1

[
λ(1− Ûj − δ0)− 1

2

(
λ(1− Ûj − δ0)

)2
]

+ rn

with

|rn| ≤ C
n∑

j=1

|λ(1− Ûj − δ0)|3 ≤ C|λ|3n = O
(
n−1/2

)
.

From (1), it follows that

λ =

∑n
j=1(1− Ûj − δ0)

∑n
j=1(1− Ûj − δ0)2

+ Op

(
n−1/2

)
,

n∑

j=1

λ(1− Ûj − δ0) =
n∑

j=1

[
λ(1− Ûj − δ0)

]2
+ op(1).

Therefore,

rl(δ0) = r
n∑

j=1

λ(1− Ûj − δ0) + op(1)
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= r ·
[

1√
n

∑n
j=1(1− Ûj − δ0)

]2

1
n

∑n
j=1(1− Ûj − δ0)2

+ op(1)

= r ·
[√

n(δ̂0 − δ0)
]2

1
n

∑n
j=1(1− Ûj − δ0)2

+ op(1)

=

[(
mn

m + n

)1/2 δ̂0 − δ0

S

]
+ op(1)

L−→ χ2
1.

The proof of Theorem 2.1 is thus completed.

Proof of Theorem 3.1.

Similar to the proof of Theorem 2.1, we have

λl =

∑nl
j=1(1− Ûlj − δ0)∑nl
j=1(1− Ûlj − δ0)2

+ Op

(
n
−1/2
l

)
,

nl∑

j=1

λl(1− Ûlj − δ0) =
nl∑

j=1

[
λl(1− Ûlj − δ0)

]2
+ op(1),

and

l(δ0) =
L∑

l=1

nl∑

j=1

λl(1− Ûlj − δ0) + op(1)

=
L∑

l=1

ŵl · 1

ŵl

nl∑

j=1

λl(1− Ûlj − δ0) + op(1)

=
L∑

l=1

ŵl ·
[(

mlnl

ml + nl

)1/2 δ̂l0 − δ0

Sl

]
+ op(1)

L−→ w1χ
2
1,1 + · · ·+ wLχ2

L,1,

where δ̂l0 = 1
nl

∑nl
j=1(1− Ûlj). The proof of Theorem 3.1 is completed.
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Table 1. Normal distribution: coverage probabilities and average lengths of

90% confidence intervals for AUC. The average lengths are the numbers

in the rows below the corresponding coverage probabilities.

AUC (m,n) EL MW ML LT PB PTB

0.80 (50,50) 0.8938 0.8911 0.8858 0.9101 0.8930 0.9240

0.1499 0.1519 0.1433 0.1519 0.1502 0.1626

(80,80) 0.8996 0.8975 0.8859 0.9016 0.8860 0.9200

0.1188 0.1197 0.1139 0.1200 0.1185 0.1259

(100,100) 0.8988 0.8988 0.8956 0.9010 0.9000 0.9190

0.1064 0.1071 0.1019 0.1073 0.1071 0.1126

(50,80) 0.8917 0.8886 0.8955 0.9036 0.8830 0.9100

0.1246 0.1257 0.1197 0.1262 0.1252 0.1327

(70,100) 0.8909 0.8842 0.8943 0.9018 0.8860 0.9090

0.1102 0.1109 0.1056 0.1111 0.1107 0.1165

0.90 (50,50) 0.8780 0.8713 0.8794 0.8937 0.8790 0.9350

0.1070 0.1069 0.1007 0.1101 0.1058 0.1252

(80,80) 0.8941 0.8801 0.8849 0.9006 0.8740 0.9230

0.0849 0.0846 0.0801 0.0860 0.0841 0.0930

(100,100) 0.8987 0.8853 0.8917 0.9006 0.8710 0.9100

0.0759 0.0757 0.0716 0.0767 0.0752 0.0817

(50,80) 0.8991 0.8869 0.8891 0.8976 0.8920 0.9230

0.0886 0.0882 0.0836 0.0902 0.0883 0.0973

(70,100) 0.8968 0.8857 0.8971 0.8970 0.8750 0.9140

0.0783 0.0781 0.0740 0.0794 0.0782 0.0847

0.95 (50,50) 0.8528 0.8407 0.8689 0.8804 0.8500 0.9080

0.0723 0.0711 0.0659 0.0765 0.0706 0.1013

(80,80) 0.8762 0.8595 0.8826 0.8924 0.8660 0.9250

0.0582 0.0571 0.0523 0.0600 0.0569 0.0704

(100,100) 0.8852 0.8711 0.8863 0.8928 0.8630 0.9240

0.0522 0.0513 0.0469 0.0531 0.0512 0.0603

(50,80) 0.8845 0.8696 0.8803 0.8946 0.8730 0.9250

0.0604 0.0593 0.0546 0.0626 0.0595 0.0727

(70,100) 0.8892 0.8752 0.8870 0.8956 0.8820 0.9270

0.0537 0.0527 0.0483 0.0546 0.0522 0.0612

19

Hosted by The Berkeley Electronic Press



Table 2. Normal distribution: coverage probabilities and average lengths of

95% confidence intervals for AUC. The average lengths are the numbers

in the rows below the corresponding coverage probabilities.

AUC (m,n) EL MW ML LT PB PTB

0.80 (50,50) 0.9407 0.9379 0.9351 0.9538 0.9300 0.9690

0.1783 0.1808 0.1712 0.1808 0.1746 0.1971

(80,80) 0.9431 0.9418 0.9427 0.9530 0.9450 0.9690

0.1419 0.1431 0.1357 0.1430 0.1379 0.1508

(100,100) 0.9489 0.9454 0.9394 0.9514 0.9380 0.9590

0.1269 0.1278 0.1215 0.1279 0.1246 0.1346

(50,80) 0.9468 0.9412 0.9393 0.9513 0.9310 0.9610

0.1487 0.1501 0.1428 0.1501 0.1458 0.1594

(70,100) 0.9472 0.9440 0.9459 0.9513 0.9290 0.9570

0.1310 0.1320 0.1260 0.1326 0.1287 0.1391

0.90 (50,50) 0.9352 0.9204 0.9257 0.9468 0.9150 0.9700

0.1281 0.1271 0.1199 0.1326 0.1228 0.1591

(80,80) 0.9411 0.9264 0.9347 0.9471 0.9310 0.9670

0.1015 0.1008 0.0955 0.1035 0.0976 0.1136

(100,100) 0.9468 0.9356 0.9356 0.9486 0.9220 0.9540

0.0909 0.0904 0.0853 0.0922 0.0877 0.0997

(50,80) 0.9458 0.9281 0.9349 0.9547 0.9340 0.9630

0.1061 0.1053 0.0995 0.1084 0.1025 0.1188

(70,100) 0.9434 0.9297 0.9384 0.9498 0.9290 0.9580

0.0936 0.0931 0.0882 0.0951 0.0908 0.1025

0.95 (50,50) 0.8964 0.8818 0.9166 0.9289 0.8840 0.9490

0.0874 0.0850 0.0788 0.0930 0.0814 0.1360

(80,80) 0.9252 0.9064 0.9264 0.9414 0.9180 0.9610

0.0700 0.0680 0.0624 0.0727 0.0658 0.0905

(100,100) 0.9340 0.9142 0.9298 0.9366 0.9180 0.9660

0.0628 0.0612 0.0559 0.0643 0.0594 0.0758

(50,80) 0.9269 0.9060 0.9258 0.9462 0.9150 0.9720

0.0728 0.0707 0.0649 0.0756 0.0690 0.0936

(70,100) 0.9351 0.9138 0.9314 0.9478 0.9230 0.9660

0.0643 0.0625 0.0575 0.0663 0.0605 0.0773
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Table 3. Log-normal distribution: coverage probabilities and average lengths of

90% confidence intervals for AUC. The average lengths are the numbers

in the rows below the corresponding coverage probabilities.

AUC (m,n) EL MW ML LT PB PTB

0.80 (50,50) 0.8941 0.8789 0.8800 0.9053 0.8840 0.917

0.1771 0.1805 0.1492 0.1812 0.1518 0.1642

(80,80) 0.8969 0.8931 0.8873 0.9061 0.8970 0.9250

0.1413 0.1430 0.1186 0.1433 0.1191 0.1262

(100,100) 0.8996 0.8955 0.8909 0.9046 0.8810 0.9080

0.1268 0.1280 0.1064 0.1281 0.1071 0.1128

(50,80) 0.8962 0.8926 0.8924 0.9097 0.8930 0.9220

0.1415 0.1433 0.1188 0.1434 0.1247 0.1322

(70,100) 0.8990 0.8961 0.8921 0.9016 0.9180 0.9330

0.1269 0.1281 0.1064 0.1283 0.1110 0.1168

0.90 (50,50) 0.8776 0.8632 0.8806 NA 0.8720 0.9360

0.1315 0.1329 0.1078 NA 0.1057 0.1242

(80,80) 0.8915 0.8834 0.8839 0.9052 0.8960 0.9230

0.1056 0.1063 0.0859 0.1092 0.0853 0.0944

(100,100) 0.8958 0.8872 0.8924 0.9165 0.8890 0.9190

0.0946 0.0951 0.0771 0.0973 0.0765 0.0829

(50,80) 0.8864 0.8800 0.8902 0.9129 0.8800 0.9280

0.1054 0.1061 0.0861 0.1093 0.0872 0.0961

(70,100) 0.8971 0.8838 0.8905 0.9077 0.8780 0.9080

0.0944 0.0950 0.0771 0.0973 0.0781 0.0847

0.95 (50,50) 0.8699 0.8629 0.8661 NA 0.8570 0.9230

0.0928 0.0921 0.0719 NA 0.0712 0.1022

(80,80) 0.8726 0.8697 0.8792 NA 0.8630 0.9130

0.0754 0.0751 0.0575 NA 0.0573 0.0703

(100,100) 0.8936 0.8695 0.8813 NA 0.8680 0.9240

0.0680 0.0678 0.0515 NA 0.0509 0.0601

(50,80) 0.8678 0.8676 0.8817 NA 0.8610 0.9280

0.0751 0.0748 0.0577 NA 0.0588 0.0722

(70,100) 0.8980 0.8609 0.8857 NA 0.8670 0.9150

0.0681 0.0678 0.0517 NA 0.0527 0.0620
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Table 4. Log-normal distribution: coverage probabilities and average lengths of

95% confidence intervals for AUC. The average lengths are the numbers

in the rows below the corresponding coverage probabilities.

AUC (m,n) EL MW ML LT PB PTB

0.80 (50,50) 0.9354 0.9312 0.9313 0.9564 0.9410 0.9650

0.2102 0.2151 0.1778 0.2162 0.1764 0.1994

(80,80) 0.9437 0.9423 0.9442 0.9537 0.9380 0.9660

0.1680 0.1704 0.1415 0.1709 0.1381 0.1508

(100,100) 0.9442 0.9392 0.9417 0.9558 0.9380 0.9630

0.1507 0.1524 0.1266 0.1529 0.1245 0.1347

(50,80) 0.9421 0.9361 0.9430 0.9545 0.9380 0.9610

0.1678 0.1703 0.1416 0.1711 0.1449 0.1588

(70,100) 0.9516 0.9456 0.9413 0.9561 0.9530 0.9680

0.1508 0.1525 0.1266 0.1530 0.1291 0.1392

0.90 (50,50) 0.9344 0.8975 0.9250 NA 0.9130 0.9690

0.1562 0.1578 0.1286 NA 0.1226 0.1575

(80,80) 0.9427 0.9253 0.9306 0.9561 0.9370 0.9650

0.1254 0.1263 0.1023 0.1317 0.0991 0.1151

(100,100) 0.9456 0.9346 0.9362 0.9632 0.9340 0.9600

0.1129 0.1135 0.0918 0.1171 0.0888 0.1007

(50,80) 0.9415 0.9229 0.9347 0.9581 0.9270 0.9730

0.1254 0.1263 0.1026 0.1318 0.1013 0.1177

(70,100) 0.9431 0.9303 0.9355 0.9558 0.9260 0.9510

0.1128 0.1134 0.0918 0.1171 0.0905 0.1024

0.95 (50,50) 0.8975 0.8941 0.9101 NA 0.9010 0.9520

0.1109 0.1094 0.0864 NA 0.0824 0.1387

(80,80) 0.9344 0.8945 0.9215 NA 0.9090 0.9510

0.0905 0.0897 0.0685 NA 0.0661 0.0905

(100,100) 0.9490 0.8989 0.9312 NA 0.9060 0.9610

0.0813 0.0806 0.0614 NA 0.0589 0.0756

(50,80) 0.9504 0.8969 0.9205 NA 0.9030 0.9650

0.0902 0.0894 0.0687 NA 0.0681 0.0929

(70,100) 0.9474 0.8946 0.9279 NA 0.9080 0.9660

0.0810 0.0804 0.0613 NA 0.0611 0.0780
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Table 5. Exponential distribution: coverage probabilities and average lengths of

90% confidence intervals for AUC. The average lengths are the numbers

in the rows below the corresponding coverage probabilities.

AUC (m,n) EL MW ML LT PB PTB

0.80 (50,50) 0.8927 0.8905 0.8947 0.9039 0.8840 0.9040

0.1444 0.1462 0.1054 0.1466 0.1454 0.1561

(80,80) 0.8940 0.8915 0.8984 0.9008 0.8860 0.9150

0.1143 0.1152 0.0832 0.1155 0.1146 0.1208

(100,100) 0.8957 0.8940 0.8935 0.9049 0.8900 0.9110

0.1025 0.1032 0.0743 0.1032 0.1029 0.1081

(50,80) 0.8961 0.8911 0.8951 0.9038 0.8950 0.9200

0.1238 0.1249 0.0946 0.1250 0.1240 0.1310

(70,100) 0.8965 0.8942 0.8924 0.9060 0.9100 0.9240

0.1085 0.1092 0.0818 0.1094 0.1092 0.1146

0.90 (50,50) 0.8886 0.8791 0.8921 0.9051 0.8800 0.9310

0.1048 0.1047 0.0597 0.1076 0.1035 0.1200

(80,80) 0.8941 0.8849 0.8987 0.9011 0.8820 0.9110

0.0830 0.0828 0.0471 0.0841 0.0827 0.0908

(100,100) 0.8958 0.8872 0.9030 0.8939 0.8870 0.9220

0.0741 0.0740 0.0421 0.0751 0.0739 0.0800

(50,80) 0.8953 0.8889 0.9032 0.8986 0.8800 0.9030

0.0873 0.0871 0.0535 0.0886 0.0873 0.0954

(70,100) 0.8981 0.8875 0.8968 0.9059 0.8950 0.9280

0.0769 0.0767 0.0464 0.0777 0.0765 0.0826

0.95 (50,50) 0.8613 0.8479 0.9010 NA 0.8660 0.9150

0.0729 0.0718 0.0315 NA 0.0726 0.1043

(80,80) 0.8793 0.8627 0.8945 0.8898 0.8780 0.9240

0.0585 0.0576 0.0249 0.0603 0.0577 0.0714

(100,100) 0.8902 0.8746 0.8994 0.8958 0.8680 0.9290

0.0525 0.0518 0.0222 0.0537 0.0507 0.0602

(50,80) 0.8801 0.8617 0.8981 0.8994 0.8780 0.9410

0.0603 0.0593 0.0284 0.0625 0.0591 0.0725

(70,100) 0.8867 0.8692 0.8912 0.8957 0.8890 0.9300

0.0537 0.0529 0.0245 0.0552 0.0523 0.0611
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Table 6. Exponential distribution: coverage probabilities and average lengths of

95% confidence intervals for AUC. The average lengths are the numbers

in the rows below the corresponding coverage probabilities.

AUC (m,n) EL MW ML LT PB PTB

0.80 (50,50) 0.9446 0.9394 0.9433 0.9551 0.9270 0.9570

0.1725 0.1746 0.1256 0.1748 0.1692 0.1887

(80,80) 0.9459 0.9432 0.9422 0.9547 0.9280 0.9540

0.1366 0.1376 0.0992 0.1378 0.1336 0.1450

(100,100) 0.9507 0.9456 0.9500 0.9478 0.9380 0.9540

0.1223 0.1230 0.0886 0.1232 0.1196 0.1286

(50,80) 0.9469 0.9444 0.9442 0.9550 0.9370 0.9620

0.1478 0.1489 0.1128 0.1489 0.1439 0.1568

(70,100) 0.9477 0.9410 0.9481 0.9541 0.9450 0.9660

0.1292 0.1301 0.0978 0.1303 0.1269 0.1370

0.90 (50,50) 0.9321 0.9200 0.9428 0.9482 0.9240 0.9740

0.1254 0.1247 0.0710 0.1290 0.1198 0.1501

(80,80) 0.9423 0.9291 0.9432 0.9514 0.9240 0.9600

0.0990 0.0984 0.0560 0.1010 0.0961 0.1106

(100,100) 0.9499 0.9380 0.9493 0.9485 0.9340 0.9610

0.0887 0.0882 0.0502 0.0898 0.0857 0.0964

(50,80) 0.9467 0.9312 0.9454 0.9535 0.9270 0.9610

0.1044 0.1036 0.0639 0.1064 0.1012 0.1163

(70,100) 0.9467 0.9364 0.9459 0.9520 0.9310 0.9670

0.0919 0.0913 0.0552 0.0933 0.0886 0.0996

0.95 (50,50) 0.8977 0.8817 0.9421 NA 0.9000 0.9460

0.0881 0.0859 0.0377 NA 0.0838 0.1427

(80,80) 0.9296 0.9090 0.9471 0.9398 0.9160 0.9660

0.0705 0.0688 0.0297 0.0732 0.0670 0.0930

(100,100) 0.9412 0.9174 0.9441 0.9473 0.9110 0.9660

0.0630 0.0616 0.0265 0.0650 0.0589 0.0758

(50,80) 0.9329 0.9080 0.9424 0.9446 0.9220 0.9750

0.0726 0.0707 0.0338 0.0759 0.0683 0.0935

(70,100) 0.9356 0.9117 0.9437 0.9435 0.9340 0.9710

0.0643 0.0629 0.0292 0.0668 0.0607 0.0768
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