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1 Introduction

In a longitudinal study, of focus is to examine the association of covariate process {X(t), t ∈
[0, τ ]} and the response process {Y (t), t ∈ [0, τ ]}, where the predetermined constant τ is
the end of study or time at which the last person to follow drops out. A very important
feature of longitudinal data is the actual timing of observations. The actual timing can be
divided into three categories: designed sampling times that are strictly followed; designed
sampling times that are not strictly followed; and observational times. An example of the
second timing category, where there is an extra noise to the pre–defined sampling times,
is the health research study data we analyze in Section 6. It is a study on a population
of homeless people, where the investigators experienced an extreme non–compliance to
the scheduled visits. An example of the third category of timing are administrative data,
where the actual sampling process is not part of the study. When data are collected under
the second or third category, the irregular sampling times present an extra challenge for
the statistical analysis of such data set. There, the investigator has no control over the
sampling times and the related frequency of sampling the individuals. These irregular
sampling times can be subject-specific. That can introduce a biased sampling design for
the mean–response model, when factors that are not included as covariates influence sam-
pling times. We demonstrate the philosophy of biased sampling with a simple example
taken from air pollution. Assume a binary indicator, Z(t), of an asthma attack at time t.
Further assume an air pollution measure at time t as a covariate X(t). Let the outcome
be a lung function measure, such as FEV1, the volume exhaled during the first second
of a forced expiratory maneuver started from the level of total lung capacity. The lung
function measure clearly is associated both with the air pollution measure and presence
or absence of the asthma attack. Also, the occurrence of an asthma attack may be related
to the the air pollution measure. Assume that a person with an asthma attack searches
for medical help more often and that the person has a lower lung function measure. So,
data characterized by present asthma attacks form the majority of the observed data. Our
overall philosophy behind choosing covariates is that the mean–response model covariates
X should be picked on scientific ground purpose but the covariates Z for sampling–times
model should cover the true nature of the sampling process. Then, modeling response with
the air pollution covariate only we obtain unbiased estimates for those who have come for
a visit, primarily people who suffer from an asthma attack at that time. However, we
obtain an exaggerated estimate of the lung function measure and air pollution measure
association for the general public.

Under discrete time, when the sampling times come from a finite set of points, the
sampling can be viewed as a missingness problem. Taxonomy of missingness, as formalized
by Rubin (1976), is based on factors that drive the seeing of observations. The key issue
is whether the fact that data are missing is related to the values of the variables in the
data set. For a complete survey of the current methodology of missing data we refer
a keen reader to Little & Rubin (2002). In discrete time models we can view biased
sampling as being equivalent to missingness at random given covariates X and Z. It is
informative missingness given covariates X only. Other terms that are being used in that
situation of biased sampling under discrete time are informative intermittent missingness
or informative follow-up. In continuous time, when the sampling times come from an
interval such as [0, τ ], we can not talk about missingness in the original meaning. Here
the data are missing with probability 100% as the response is observed at discrete time
points, not continuously over time as a curve. Nevertheless, we can look at inclusion of
the data rather than missingness of the data, from a similar perspective.
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Generalized estimating equations, introduced in Liang & Zeger (1986) and denoted
by GEE, are a popular estimation method. It is well known that the standard inferen-
tial approach based on the GEE yields biased inference if the sampling times depend,
additionally to dependence on the mean–response model covariates, on response or other
covariates related with response. Moreover, as discussed by Pepe & Anderson (1994),
when using other than working independence, additional marginalization assumption on
the mean of response at certain time conditional on the covariates X at that time,
E[Y (t)|X(s), s ∈ [0, τ ]] = E[Y (t)|X(t)], is needed. This assumption can be hard to
satisfy. History of covariates can be incorporated into the current covariates. But suppos-
ing that conditioning on future covariates on top of the current ones does not alter the
mean–response model is a strong assumption. Imagine that a hypertensive drug is chosen
based upon current blood pressure measurement. We are interested in the association of
the chosen drug and next visit blood pressure measurement. We can assume that given
the current drug the mean current blood pressure is independent of the drug history. It
is very unlikely though that given the mean current drug the current blood pressure and
the future drug assignment are independent. However, in modeling the association of
treatment and blood pressure we still want to condition only on current treatment. Fully
marginal regression models, where the marginalization assumption is not required, seem
an attractive alternative when analyzing longitudinal data.

Some of the statistical literature on longitudinal data with continuous sampling times
can deal with informative drop-out, also called right censoring, see Wu & Carroll (1988),
Diggle & Kenward (1994) and Scharfstein et al. (1999). The procedures of Troxel et al.
(1998), accommodating intermittent informative missingness, is not suitable for data that
occur at non-predefined, irregular times.

The approach of Lipsitz et al. (2002) is likelihood–based and thus it accommodates
biased sampling when the sampling times depend on the previous value of response. It
does not accommodate biased sampling when there are additional covariates, associated
with response, that govern the sampling process. They separate the likelihood function
into two components: one for the response process and the other for the sampling–times
process, where they compute the likelihood of the time elapsed between two sampling
times. In order to ignore the later process, Lipsitz et al. impose a strong sampling–times
model assumption of dependence only on history of observed response measurements. In
their fully parametric approach they assume that the repeated measures of response have
a multivariate Gaussian distribution. Moreover, the estimation procedure relies for consis-
tency of the estimators of interest on correct specification of the autocorrelation structure
of response. Lipsitz et al. point out that “the potential bias due to misspecification of the
covariance can be considerable”.

D. Lin & Ying (2001) integrate counting processes techniques with longitudinal data
settings under continuous time. They assume a linear regression model

E[Yi(t)|Xi(t)] = α0(t) + βT
0 Xi(t). (1·1)

The parameter of interest, β0, is a p–dimensional vector. The effect of time is modeled com-
pletely non-parametrically and the intercept curve α0(·) is an infinite-dimensional nuisance
parameter. In spite of providing a very powerful framework for incorporating sampling–
times patterns into estimation of a mean–response regression model parameters, D. Lin
& Ying impose assumption about the response process and the sampling–times process
relationship that does not enable biased sampling. That assumption is independence of
the response process and the sampling–times process conditional on mean–response model
covariates. In our example of studying an association between the lung function measure
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and the air pollution we would either need to include adjusting for the asthma attack
or assume independence of the sampling–times process and the lung function measure
conditioning on the air pollution alone.

In the model (1·1) that we adopt the intercept function α0(·) is an unspecified ar-
bitrary function of time. The reason why non-parametric modeling of the intercept is
attractive is that the effect of time may be complicated and it would be better modeled
non-parametrically in order to avoid model misspecification. This concept is generalization
to longitudinal data of the intercept in cross-sectional models based on one observation
time point only. There, the intercept is, however, a one–dimensional unknown parameter,
whereas here in longitudinal setting it is an infinitely–dimensional unknown parameter.
We note that this non-parametric intercept modeling is not needed in discrete times models
with a small set of possible sampling times. There, we can add a sampling–time–specific
parameter, resulting in a fully parametric model. The semiparametric form of the mean–
response model with unspecified intercept is used as well by X. Lin & Carroll (2001a)
and X. Lin & Carroll (2001b). They denote Tij the j–th sampling time of individual i
and assume that θ0(·) is an unspecified function of time, but smooth. The mean–response
model is

E[Yi(Tij)|Xi(Tij), Tij ] = g
[
θ0(Tij) + βT

0 Xi(Tij)
]
. (1·2)

Additionally, they assume an assumption similar to Pepe & Couper (1997)

E[Yi(Tij)|Xi(Tij), Tij ] = E[Yi(Tij)|Xi(Tij), Tij , (Xi(Tik), Tik)∀k 6=j ] (1·3)

that can be limiting as we discussed previously. X. Lin and Carroll use profile–based
estimating equation for estimation of the parameter of interest and kernel estimating
equation for the nonparametric estimation. They note that for longitudinal data kernel
smoothing does not involve band–width selection issues only. It is a hard task to provide
a
√

n–consistent estimator there, achieved either by artificially under–smoothing or using
a working independence in the profile–kernel estimating equations. The approach of X.
Lin and Carroll does not handle biased sampling.

We note that our way of incorporating time, similar to Lipsitz et al. (2002), D. Lin &
Ying (2001) and H. Lin et al. (2004), is a functional or process–like approach. We model
the conditional mean of response for a certain individual for any time t, unlike for instance
X. Lin & Carroll (2001a), we do not condition on the set of the individual’s observation
times. We say that at any time t the conditional mean response exists and follows our
given model or that it only exists and follows the given model at the observation times
but if we had observed response at a different time it would have existed and followed the
given model. Conditioning on the observation times can be appropriate when the response
either does not exist at other than observation times or that it does not follow the given
mean model at other than observation times. Now we give an example of such situation
when conditioning on observation time is reasonable whereas our process–like approach is
not. Assume that we have longitudinal data consisting of birth–weight of children born to
a certain population of women. Interest is in the association of a child’s birth weight and
his/her mother’s age. It is obvious that process-like modeling is inappropriate as birth
can not happen at any time but the possibility of the event is dependent on when the last
event occurred. Thus the response is not defined at times within 9 months of any previous
observation time.

We start with notation introduction. Then we describe the estimation under the
sampling–times model and followed with a brief summary of the D. Lin & Ying (2001) esti-
mator. In Section 5 we are suggesting a class of estimators that account for the possibility
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of biased sampling under continuous time in linear regression setting with unspecified in-
tercept. Our sampling–times model covariates are not restricted in any way. For instance,
the response at a previous sampling time can be included or an average of a covariate over
a subject’s history. In the class of estimators we are highlighting an estimator that has cer-
tain variance–stabilizing properties. The new estimators were shown to be

√
n-consistent

with normal limiting distribution and simple asymptotic variance.
In Section 6 we illustrate our method on a health service research study, the HUD–

VASH study. The data were obtained from H. Lin at Yale University, New Haven with
permission from the study primary investigator Dr. R. Rosenheck at Veterans Affairs
Northeast Program Evaluation Center, West Haven. Homeless people with mental illness
were randomized to three different interventions. Percentage days homeless within the
last three months as an outcome variable and a handful of covariates were recorded at
follow–up times. Those times were fixed by design but not followed. Intervention efficacy
is the scientific question of our interest. This data set was recently used in H. Lin et al.
(2004). There, they developed a class of “inverse–intensity–of–visit process–weighted”
estimators in marginal regression models for longitudinal responses that might be observed
in a continuous-time fashion. However, their mean–response model covariates are fixed
over time. Next, their sampling–times model does not allow for pre–specified visit times.
Also, their estimator is fairly complicated, involving smoothing techniques.

To investigate finite sample behavior of the proposed estimator we have performed
simulation studies, reported in Section 7. They show even for moderate sample sizes that
asymptotic approximations are accurate. The proposed estimators have smaller squared
error compared to the standard independent GEE estimators even with known correctly
specified intercept and also compared to the original Lin and Ying’s estimators.

2 Notation and models

We assume a fully marginal model for mean of response Yi(t), denoted by µi(t), as a func-
tion of covariates Xi(t) of individual i ∈ {1, . . . , n} and baseline α0(t) at time t ∈ [0, τ ].
The linear regression full data model is

E[Yi(t)|Xi(t)] = α0(t) + βT
0 Xi(t). (2·1)

The parameter of interest, β0, is a p dimensional vector. The effect of possibly time–
varying covariates X is modeled linearly and the effect of time is modeled completely
non-parametrically. The intercept curve α0(·) is modeling the mean of response at a
certain time given covariates X at that time are zero. It is not of special interest, it is
a infinite-dimensional nuisance parameter. We note that there are no assumptions about
the form of the intercept function, we require neither smoothness nor continuity of that
function. This concept is a generalization to longitudinal data of the intercept in cross-
sectional models based on one time point only. Estimators of β0 that we consider do not
require to estimate α0(·) correctly for their validity. We actually totally avoid estimation
of α0(·). On the other hand, as α0(·) is not estimated, prediction of the mean of response
is not possible.

We do not impose distributional assumption on the response process {Y (t) : t ∈ [0, τ ]}
in any way. We do not need to specify the within–person auto-covariance of the response
process.

We model fully marginal mean of response and thus we do not need the Pepe &
Anderson (1994) assumption about modeling the mean response at time t conditional on
the whole covariate process over time.
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The model for response, formulated in equation (2·1), is a functional full data model.
However, we assume to observe response not continuously over time but at certain ob-
servation times only. Denote for individual i ∈ {1, . . . , n} the set of observation times
{Ti1, Ti2, . . . , TiKi

} as Ti, with 0 ≤ Ti1 < Ti2 < . . . < TiKi
≤ τ . Total number of observed

events of the i-th individual, Ki, is random. Denote T = {Tj, j = 1, . . . , n} the set of

observation times across all individuals. Define Ni(t) =
∑Ki

k=1 I(Tik ≤ t) the number of
observations of individual i by time t. Further let us define Ni(0) = 0. The underlying
uncensored process we denote as N∗

i (·) with Ni(t) = N∗
i (t ∧ Ci), where the symbol ∧ is

the minimum and variable Ci is drop-out time or end of follow-up τ , whatever comes first.
We assume a marginal rate model for the uncensored observation times of each indi-

vidual i ∈ {1, . . . , n} at time t ∈ [0, τ ]

E[dN∗
i (t)|Zi(t)] = exp{γT

0 Zi(t)}dΛ0(t). (2·2)

We assume that EN∗
i (τ) < ∞. Λ0(·) is an arbitrary non-decreasing function of time t,

continuous up to countably many points, in our settings a finite number of points suffices.
The comparison of the proportional rate model (2·2) to the classical Cox-type propor-

tional mean model can be found in D. Lin et al. (2000).
We impose two crucial assumptions: non-informative drop-out for the mean of re-

sponse,

E[Yi(t)|Xi(t), Ci ≥ t] = E[Yi(t)|Xi(t)], (2·3)

saying that mean of response Y at time t depends on covariates X at time t and drop-out
time C through covariates X at time t only; and an independent sampling assumption,

E[dN∗
i (t)|Zi(t),Xi(t), Yi(t), Ci ≥ t] = E[dN∗

i (t)|Zi(t)], (2·4)

saying that sampling times depend on covariates Z,X, response Y and drop-out time C
through sampling times covariates Z only.

We define the at–risk process {ξ(t), t ∈ [0, τ ]} as ξ(t) = I(C > t) and assume that
Pr(C ≥ τ) > 0.

Note, that although response Y of the i–th individual is observed only at a set Ti of
random times, the expectations in (2·1) and (2·2) do not condition on these times.

Additional technical assumptions are given in the Appendix.
D. Lin & Ying (2001) require an additional assumption, which does exclude biased

sampling. The assumption is that the response variable is assumed independent of the
sampling times given the covariates of the mean–response model. That is, the sampling
times are not allowed to depend on additional covariates not in the mean–response model;
covariates Z must be part of covariates X. D. Lin & Ying’s independent sampling as-
sumption is

E[dN∗
i (t)|Zi(t),Xi(t), Yi(t), Ci ≥ t] = E[dN∗

i (t)|Xi(t)]. (2·5)

The difference between our independent sampling assumption (2·4) and their independent
sampling assumption (2·5) is conditioning on covariates Z(t) instead of X(t) on the right
hand side of the equation. It is a major difference. Our philosophy behind choosing model
covariates is that the mean–response model covariates X should be picked on scientific
ground purpose but the covariates Z for sampling–times model should cover the true
nature of the sampling process. However, when we allow the two sets of covariates to be
arbitrary, we can introduce a biased sampling scheme into our mean–response model and
thus we need to account for the biased sampling to obtain consistent estimators of β0.
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3 Sampling–times model

Based on the proportional rates model (2·2) and the drop-out part of assumption (2·4)
the parameter vector γ0 of length g can be consistently estimated by γ̂, the solution to a
set of estimating equations U †(γ̂) = 0. The estimating function U †(γ) is defined as

U †(γ) =
n∑

i=1

∫ τ

0
{Zi(t) − Av1(Z)(t; γ)}dNi(t), (3·1)

where the weighted mean Av1 of any variable V at time t is

Av1(V )(t; γ) =

n∑

i=1

Vi(t)
ξi(t) exp{γT Zi(t)}∑n

j=1 ξj(t) exp{γT Zj(t)}
. (3·2)

The weighted mean Av1 has weights proportional to the probability that individual i,
relative to other individuals, has an observation at time t under the sampling–times
model (2·2).

Estimation of the parameter γ0 is β0-free. Solution of the estimating equation and
derivation of asymptotic properties of the estimator are based on a zero–mean random
process {Mi(t; γ0,Λ0(·)), t ∈ [0, τ ]} defined as

Mi(t; γ,Λ(·)) = Ni(t) −
∫ t

0
ξi(s) exp{γT Zi(s)}dΛ(s). (3·3)

Though the estimating function (3·1) is the same as under the Cox proportional hazards
model, the asymptotic variance is different due to imposing weaker assumptions in the
proportional rate model (2·2). Define the asymptotic weighted mean curve of a covariate
process {V (t), t ∈ [0, τ ]} as

av1(V )(t; γ) = lim
n→∞

Av1(V )(t; γ) =
E[V1(t)ξ1(t) exp{γT Z1(t)}]

E[ξ1(t) exp{γT Z1(t)}]
.

and a matrix A and a matrix Σ as

A = lim
n→∞

E
1

n

[−∂U †(γ)

∂γ
|γ0

]

= E

∫ τ

0
[Z1(t) − av1(z)(t; γ0)]

⊗2 ξ1(t) exp{γT
0 Z1(t)}dΛ0(t) (3·4)

Σ = lim
n→∞

Cov

[
1√
n

U †(γ0)

]

= E

[∫ τ

0
[Z1(t) − av1(z)(t; γ0)] dM1(t; γ0,Λ0(·))

]⊗2

.

Notation v⊗2 stands for the outer product vvT of a vector v. The matrix A is further used
in the formula for variance of estimator of β0 in the mean–response model (2·1) that is
dependent upon estimation of the parameter γ0. The asymptotic variance of

√
n(γ̂ − γ0)

is Γ, where Γ = A−1ΣA−1. A straightforward consistent estimator of the variance Γ is
Γ̂ = Â−1Σ̂Â−1, where

Σ̂ =
1

n

[
n∑

i=1

∫ τ

0
[Zi(t) − Av1(Z)(t; γ̂)] dMi(t; γ̂, Λ̂(·))

]⊗2

Â =
1

n

n∑

i=1

∫ τ

0
[Zi(t) − Av1(Z)(t; γ̂)]⊗2 ξi(t) exp{γ̂T Zi(t)}dΛ̂(t)
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with Aalen–Breslow estimator of Λ0(t)

Λ̂(t) =

n∑

i=1

∫ t

0

dNi(s)∑n
j=1 ξj(s) exp{γ̂T Zj(s)}

.

See D. Lin et al. (2000) for detailed derivation of the parameter estimation in the
sampling–times model (2·2) and comparison of assumptions and estimation to the widely
used proportional mean model.

4 Lin and Ying’s estimator

D. Lin & Ying (2001) defined the estimator of parameter β0 in the mean–response model (2·1)
as

β̂(γ̂) =

[
n∑

i=1

∫ τ

0
W (t) {Xi(t) − Av1(X)(t; γ̂)}⊗2 dNi(t)

]−1

×

×
n∑

i=1

∫ τ

0
W (t) {Xi(t) − Av1(X)(t; γ̂)} {Yi(t) − Av1(Y

?)(t; γ̂)} dNi(t). (4·1)

They denote Y ?(t) any approximation to the true response value at time t that has a
nonrandom limit. We use nearest neighbor approximation both in our simulations and
the data analysis. The equation (4·1) is resembling a least squares estimator with, at each
time point t, centered both covariates X and response Y . D. Lin & Ying (2001) showed
that, under the additional assumption (2·5) of no biased sampling, the estimator β̂(γ̂) is√

n–consistent and asymptotically normal.

5 Estimation under biased sampling

We define a class of new estimators for a general case of dependence of the sampling–times
process and the mean–response process allowing for biased sampling. Out of the class
we highlight one estimator with certain variance–stabilizing properties. This “ stabilized”
estimator collapses down to the original D. Lin and Ying’s estimator under unbiased
sampling, once sampling-times model covariates Z are subset of the mean–response model
covariates X.

For individual i ∈ {1, . . . , n} at time t ∈ [0, τ ] we define the inverse weights as

ρi(t; γ, h) =
exp{γT Zi(t)}

h(Xi(t))
. (5·1)

The inverse weight ρi(t; γ0, h) is proportional to the probability that individual i, relative
to other individuals, has an observation at time t under the sampling–times model (2·2).
The weight helps us to standardize the observed data to the underlying population. The
important component in the inverse weights (5·1) is the numerator; the denominator does
not change the conditional expectation as long as it is a deterministic function of the mean–
response models covariates X. The denominator is there only to improve the precision.

To insure nice asymptotic properties of the final estimator of β0 we assume that ρi(t; γ0, h)
is bounded away from zero and that the function h(·) has bounded variation. That is for
some c > 0 for all t ∈ [0, τ ]

ρi(t; γ0, h) > c
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for all individuals i ∈ {1, . . . , n} and for some K < ∞

|h(0)| +
∫ ∞

0
|dh(x)| ≤ K.

We note that ρ bounded away from zero restricts the variation of sampling probability
between individuals, but not between time points. It is not necessary that Λ(t) be contin-
uous.

Let us define a random process {Mi(t) = Mi(t;β, γ,A(·), h(·)), t ∈ [0, τ ]} as

Mi(t) =

∫ t

0

1

ρi(s; γ, h)

{[
Yi(s) − βT Xi(s)

]
dNi(s) − ξi(s) exp{γT Zi(s)}dA(s)

}
, (5·2)

where A(t) =
∫ t

0 α(s)dΛ(s). We note that the process defined by equation (5·2) is a
weighted version of the process used by D. Lin & Ying (2001). We claim that

E [dMi(t;β0, γ0,A0(·), h)|Xi(t)] = 0

for any h(Xi(t)). With no knowledge about the variance of response, we want to make
the weights variance, var[ρi(t; γ, h)], as small as possible to increase the efficiency of the
estimator of β0. Motivated by Hernán et al. (2002) we try to find a function h(·) that
decreases the variability of the weights. We choose

h0(Xi(t)) = exp{δT
0 Xi(t)}

and we call the inverse weight ρi(t; γ, h0) a “stabilizing”inverse weight and the estimator
using this weight a “stabilized” estimator. The best choice of δ0 we base on an estimator of
δ0 in a proportional rate model conditioning on covariates X, similar to model (2·2). When
sampling–times model covariates Z are a subset of the mean–response model covariates
X, then ρi(t; γ, h0) = 1 for all individuals at all times, using the independent sampling
assumption (2·4).

The fundamental set of estimating equations, based on the process {Mi(t), t ∈ [0, τ ]}
as defined in equation (5·2), and its properties, is

n∑

i=1

Mi(t;β, γ0,A(·), h) = 0 ∀t ∈ [0, τ ] (5·3)

n∑

i=1

∫ τ

0
W (t)Xi(t) dMi(t;β, γ0,A(·), h) = 0, (5·4)

where {W (t), t ∈ [0, τ ]} is a weight process. We solve the infinite-dimensional equa-
tion (5·3) for {Â(t), t ∈ [0, τ ]}. Solving equation (5·3) at time t ∈ [0, τ ] yields

Â(t) =
n∑

i=1

∫ t

0

1
ρi(s;γ,h)

(
Yi(s) − βT Xi(s)

)
dNi(s)

∑n
j=1

1
ρj(s;γ,h) ξj(s) exp{γT Zj(s)}

.

We define a weighted mean Av2 for any variable V at time t as

Av2(V )(t;h) =

n∑

i=1

Vi(t)
ξi(t)

1
ρi(t;γ,h) exp{γT Zi(t)}

∑n
j=1 ξj(t)

1
ρj(t;γ,h) exp{γT Zj(t)}

=

n∑

i=1

Vi(t)
ξi(t) h(Xi(t))∑n

j=1 ξj(t) h(Xj(t))
.
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The sample mean curve is γ–free and β–free. Replacing A(t) with its actual estimator
obtained above, equation (5·4) yields an estimating function

U(β; γ0, h) =

n∑

i=1

∫ τ

0
W (t) [Xi(t) − Av2(X)(t;h)]

[
Yi(t) − βT Xi(t)

] 1

ρi(t; γ0, h)
dNi(t).(5·5)

Inspired by Rotnitzky et al. (1998), we add a quantity into the estimating function that
does not change its expectation at true (β0, γ0) but decreases its variance. We can subtract
an arbitrary deterministic function of time denoted by g(t) from the third right-hand side
term of expression (5·5). To minimize variance of our proposed estimator, an optimal g(t)
is α0(t), approximated by Av2(Y

?)(t;h) − βT Av2(X)(t;h). We set the estimating func-
tion (3·1) to 0 for γ̂ and substitute those into equation (5·5) as well. The final estimating
equation becomes

U(β; γ̂, h) =
n∑

i=1

∫ τ

0
W (t) [Xi(t) − Av2(X)(t;h)] ×

×
{
Yi(t) − Av2(Y

?)(t;h) − βT [Xi(t) − Av2(X)(t;h)]
} 1

ρi(t; γ̂, h)
dNi(t).(5·6)

The proposed final estimator of β0 from model (2·1) has the form

β̂(γ̂, h) =

[
n∑

i=1

∫ τ

0
{Xi(t) − Av2(X)(t;h)}⊗2 W (t)

ρi(t; γ̂, h)
dNi(t)

]−1

×

×
n∑

i=1

∫ τ

0
{Xi(t) − Av2(X)(t;h)} {Yi(t) − Av2(Y

?)(t;h)} W (t)

ρi(t; γ̂, h)
dNi(t).(5·7)

When using the stabilized estimator, we can substituted the unknown δ0 in (5·7) with its
estimator without changing the asymptotic properties, see van der Vaart (2000) Theorem
5.31.

The asymptotic variance of
√

n(β̂(γ̂, h) − β0) is D−1V D−1. The matrix of derivatives
of the estimating function U with respect to the parameter of interest β is

D = lim
n→∞

E

[
− 1

n

∂U(β; γ0, h)

∂β
|β0

]

= E

∫ τ

0
w(t) [X1(t) − av2(X)(t;h)]⊗2 1

ρ1(t; γ0, h)
dN1(t), (5·8)

where the asymptotic weighted mean av2 for a variable V at time t is

av2(V )(t;h) = lim
n→∞

Av2(V )(t, h) =
E[V1(t) ξ1(t) h(X1(t))]

E[ξ1(t) h(X1(t))]
.

Matrix D can be consistently estimated by

D̂ =
1

n

n∑

i=1

∫ τ

0
W (t) [Xi(t) − Av2(X)(t;h)]⊗2 1

ρi(t; γ̂, h)
dNi(t).

Further, we define the covariance matrix of the estimating function U as

V = lim
n→∞

Cov

[
1√
n

U(β0; γ̂, h)

]
= E

[∫ τ

0
w(t) [X1(t) − av2(X)(t;h)] dR1(t;β0, γ0,A0(·), h)−

−HA−1

∫ τ

0
[Z1(t) − av1(Z)(t; γ0)]

T dM1(t; γ0,Λ0(·))
]⊗2

, (5·9)
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where we account for the dependence of the estimator of β0 on estimation of the sampling–
times model parameter γ0. Matrix A is as defined in formula (3·4) and process {M(t), t ∈
[0, τ ]} in formula (3·3). We define process {R(t), t ∈ [0, τ ]} as

Ri(t;β, γ,A(·), h) = Mi(t;β, γ,A(·), h)−
∫ t

0
(Ȳ ?(s;h)−βT Av2(X)(s;h))

1

ρi(t; γ, h)
dMi(s; γ,Λ(·))

and the matrix H is a matrix of derivatives of the estimating function U with respect to
the sampling–times model parameter γ at the true parameter value γ0

H = lim
n→∞

E

[
− 1

n

∂U(β0; γ, h)

∂γ
|γ0

]
= E

∫ τ

0
w(t) [X1(t) − av2(X)(t;h)]×

×
[
Y1(t) − av2(Y

?)(t;h) − βT
0 [X1(t) − av2(X)(t;h)]

]
Z1(t)

1

ρ1(t; γ0, h)
dN1(t).(5·10)

The matrix H can be consistently estimated by

Ĥ =
1

n

n∑

i=1

∫ τ

0
W (t) [Xi(t) − Av2(X)(t;h)] ×

×
[
Yi(t) − Av2(Y

?)(t;h) − β̂T [Xi(t) − Av2(X)(t;h)]
]
Zi(t)

1

ρi(t; γ̂, h)
dNi(t).

A consistent estimator of the matrix V is thus

V̂ =
1

n

n∑

i=1

[∫ τ

0
W (t) [Xi(t) − Av2(X)(t; γ̂)] dRi(t; β̂, γ̂, Â(·), h)−

−ĤÂ−1

∫ τ

0
[Zi(t) − Av1(Z)(t; γ̂)]T dMi(t, γ̂, Λ̂(·))

]⊗2

.

6 HUD–VASH study

In 1992, the US Department of Housing and Urban Development (HUD) and the US
Department of Veterans Affairs (VA) established the HUD–VA Supported Housing (HUD–
VASH) program. The study took place at four sites across the country. Veterans were
eligible if they were homeless at the time of outreach assessment, had been homeless for one
month or longer, and had received a diagnosis of a major psychiatric disorder or an alcohol
or drug abuse disorder. All veterans provided written informed consent to participate in
the study. The 460 homeless veterans were randomly assigned to one of three intervention
groups:

• HUD–VASH intervention consisting of case management and housing vouchers (182
individuals);

• case management (90 individuals);

• standard VA homeless services (188 individuals).

Vouchers authorized payment of a standardized local fair–market rent less 30% of the
individual beneficiary’s income. The scientific question was whether setting aside housing
resources is either necessary or sufficient for facilitating exit from homelessness in this
population. The primary outcome was percentage of days homeless during the last three
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Table 1: HUD–VASH: quantiles of number of follow–up visits per individual by treatment
arm.

minimum 25% median 75% maximum

HUD–VASH 1 7 9 10 12
case management 1 5 7 9 12
standard care 1 3 6 8 12

months. The data collected at baseline were income, an indicator of receiving any social
security or VA benefits and a Lehman measure of the quality of life. Auxiliary time–
dependent variables collected during the study were income in the past three months
and whether social security or VA benefits were received during the past three months.
Follow–up interviews were scheduled for every three months. However, subjects often
missed assessment and came between scheduled interviews. Concern was raised that there
as an association between the visit process and the outcome process. For detailed study
description see Rosenheck et al. (2003). This paper also addresses cost-effectiveness
considerations for the three interventions.

In the analysis of the data, we set τ to 48 months based on the span of the observed
data and Ci = τ for all individuals i ∈ {1, . . . , 460}. That means that we do not allow
anybody to drop–out of the study sooner than at the 48 months. There is not any drop–
out by protocol that would exclude certain individuals after study beginning and if no
event occurs by the study end we consider that just an intermittent missing data. The
460 individuals made a total of 2855 follow–up visits by 48 months since randomization.
Quantiles of the total counts of follow–up visits per treatment arm, shown in Table 1,
suggest highest follow–up for the HUD–VASH intervention group, lower for the case–
management group and lowest for the standard VA care. Figure 1 shows the primary
outcome of percentage days homeless during the last 3 months specific for each treatment
group. The time discretization is based on 6 months intervals. A crude view at the data
suggests that the HUD–VASH intervention is more effective in reducing homelessness that
the other two interventions that appear comparable. The HUD–VASH intervention group
has the highest level of follow–up visits and the standard care group the lowest level of
visiting.

To answer the question of efficacy of intervention we model the percentage days home-
less during the last three months, denoted as PH, as a function of treatment assignment.
We consider a linear regression model

E [PHi(t)|Trti] = α0(t) + β01 I(Trti = HUD–VASH) +

+ β02 I(Trti = case management). (6·1)

The mean–response model (6·1) assumes a shift of the mean curve of days homeless within
the last three months across the interventions. The standard VA homeless service arm is
the reference group. The primary parameter of interest is the 2-dimensional parameter
vector β0 = (β01, β02)

T .
The sampling–times model we define in equation (6·2) as a proportional rate model.

The covariates were suggested by the primary investigator Dr. Rosenheck. The time–
invariant predictors of timing of visits are intervention assignment, income at baseline, in
thousands of dollars, denoted as IB, an indicator of receiving any social security or VA
benefits at baseline, BB and a Lehman measure of the quality of life at baseline. Time–
varying predictors for the sampling–times model are percentage homeless approximated
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Figure 1: HUD–VASH: averaged percentage days homeless during the last three months
by treatment arm.
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by previous value carried forward, denoted by PH?, and cumulative number of visits so
far, denoted by N−.

E [dN?
i (t)|Trti, IBi, BBi, PH?

i (t), QLBi,N−i(t)] = exp {γ01I(Trti = HUD–VASH)+

+ γ02I(Trti = case management) + γ03IBi + γ04BBi + γ05PH?
i (t) + γ06QLBi+

+γ07N−i(t) + γ08N
HUD–VASH
− i(t) + γ09N

case management
− i(t)

}
dΛ0(t) (6·2)

We estimate the parameter γ0 of dimension 9. Parameter estimates, as shown in Ta-
ble 2, suggest that higher intensity of visiting is associated with lower baseline income,
lower baseline quality of life, receiving any social or VA benefits at baseline, having higher
approximated percentage days homeless and higher cumulative number of visits so far,
differentiated by treatment arm. At any time, individual in the HUD–VASH intervention
arm is more likely to have a visit than an individual under only case management, com-
paring two individuals on the same level of baseline income, with the same quality of life
baseline measure, indicator of social or VA benefits at baseline, approximated percentage
days homeless and having the same number of visits so far, assuming that the number of
visits so far is in the range of (0, 11). Similarly, individual under case management is more
likely to have a visit than an individual on standard care, comparing two individuals on
the same level of baseline income, with the same quality of life baseline measure, indicator
of social or VA benefits at baseline, approximated percentage days homeless and having
the same number of visits so far, ranging from 0 to 11.

On the 5% level we see a statistically significant difference of proportion of days home-
less within the last 3 months between the HUD–VASH intervention arm and standard
VA care arm, favoring the HUD–VASH intervention. At any time the percentage days
homeless during the last three months averaged in the HUD–VASH treatment arm is by
10.344% lower than in the case management treatment arm. The 95% confidence interval
is (3.6%, 17.0%). Scientifically a 10% decrease in the proportion of days homeless is sig-
nificant. The estimate of β02 suggests increase of proportion days homeless comparing the
case management group to the standard VA care. However, on 5% statistical significance
level we did not have enough power to find evidence that the case management treatment
resulted differentially than the standard VA care on the percentage days homeless. We
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Table 2: HUD–VASH: parameter estimates and their standard errors in the intensity rate
model (6·2) for sampling times.

γ̂0 SE(γ̂0)

HUD–VASH 0.359 0.044
case management 0.217 0.054
IB -0.172 0.482
BB 0.104 0.041
PH? 0.001 0.001
QLB -0.007 0.019
N− 0.044 0.015
NHUD–VASH

− -0.018 0.016

N case management
− -0.014 0.023

note that the sign of that estimate is surprisingly positive. These findings support the
conclusion that setting aside housing resources is necessary and sufficient for facilitating
exit from homelessness in this population.

Table 3: HUD–VASH: estimates of primary parameter of interest (β01, β02) and their
standard errors in the mean–response model (6·1).

Intervention group
HUD–VASH Case management

β̂0 -10.344 0.594

SE(β̂0) 3.411 5.843

We contrast our results to those obtained when fitting the linear regression model (6·1)
but not accounting for the biased sampling. There, we compute the Lin and Ying’s es-
timates as well as the naive estimates that would have very often be used, based on the
GEE. There the parametric model is

E [PHi(t)|Trti] = β00f(t) + β01 I(Trti = HUD–VASH) +

+β02 I(Trti = case management), (6·3)

where f(t) is a natural cubic spline with 4 degrees of freedom. Both naive parameter
estimates, shown in Table 4, suggest qualitatively the same answer. However, we see in
both a decrease in favoring the HUD–VASH treatment and also increase of disliking the
case management care. Fitting the sampling–times model (6·2) we learned that individuals
who were worse off, which is those with more homelessness, lower baseline income and
receiving baseline benefits, tended to have increased intensity of visiting. We conclude
that the data tend to be biased upwards. We note that we do not see any substantial
efficiency loss when in the mean–response model we leave the intercept unspecified as in
equation (6·1) versus using the natural spline in equation (6·3).

7 Simulations

We consider a semi-parametric additive marginal model

E [Y (t)|X1(t)] = α0(t) + β01X1(t), (7·1)
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Table 4: HUD–VASH: Lin & Ying estimates in model (6·1) and naive GEE estimates in
model (6·3) of the primary parameter of interest β0 = (β01, β02)

T . Standard errors are
included in parenthesis.

Intervention group

β̂0 (SE(β̂0)) HUD–VASH Case management

LY -8.141 (3.001) 2.054 (4.978)
GEE -7.571 (2.841) 5.141 (4.446)

where the mean–response model covariate is X1. Estimation of parameter β01 is of our
major interest, quantifying the association between the response and the covariate X1.
The model (7·1) arises from a random effect model such as

Y (t) = α0(t) + β01X1(t) + β02 (Z2(t) − E[Z2(t)|X1(t)]) + ε(t). (7·2)

We note that we do not want to confuse the reader with confounding in the mean–response
model (7·1) and thus in model (7·2) we subtract the expectation of the covariate Z2

conditional upon covariate X1. Model (7·1) is desirable for instance when the covariate
Z2 is modifying the association of response and covariate X1. To link the motivating
example of biased data, the covariate X1 is the air pollution measure and covariate Z2

is the indicator of an asthma attack. However, the sampling–times are driven by both
covariates Z1 = X1 and Z2. The random effect, hidden in the error term ε, is used to
introduce autocorrelation. We impose a Normal distribution on the error εi of the form
εi|φi ∼ N(φi, σ

2
ε ), with mean φi being an N(0, σ2

φ) random variable. As φi is fixed for a
person, errors and thus responses on the same subject are positively correlated in time
whenever σ2

φ > 0. We take σφ = 0.2 and σε = 0.1, resulting in error variance 0.05 and
correlation 0.8 for any two time points.

The following functions were considered as the baseline predictor α0(t): a nonlin-
ear trend

√
t, a sine–wave sin(t), and three fairly extreme functions exp (range | sin(t)|) ,

sin(peak t) and exp(range | sin(peak t)|). Parameter range controls the extreme size of
the intercept values and was set to 2. The peakedness parameter peak was set to 3. In
Figure 2 we plot the five functions considered with the specific parameters. The nonlinear√

t trend and sine wave were considered in D. Lin & Ying (2001) in simplified models. The
two exponential baseline curves should mimic air pollution data with the signal order of
magnitude smaller than confounders, as found in Dominici (2004). We do not assume any
specification of the intercept function, therefore these various cases are used to demonstrate
the estimator performance under a range of various scenarios of the baseline function.

Covariate X1 is chosen to be Bernoulli distributed with 0.5 success probability at any
time, demonstrating a treatment when X1(t) = 1 and placebo when X1(t) = 0. The second
covariate Z2 is dependent upon the first covariate. If a person is not at certain time t on
treatment, then Z2(t) is normally distributed with mean and variance four. If a person
is at certain time on a treatment, then Z2(t) is normally distributed with mean two and
variance one. The intention in these settings is to model a reducing effect of treatment on
values of the second covariate. Discretization of continuous time is based on a grid of 100
per a time unit. Parameters β01 and β02 were set to 1 and 3, respectively.

For the sampling–times model, the observation times follow a random-effect Poisson
counting process with intensity λi(t) = ηi exp{γ01Z1i(t)+γ02Z2i(t)}. The random effect ηi

is Gamma distributed with mean µη = 1 and variance σ2
η = 0.01. Thus for each individual

the times of observations are positively correlated. Parameter γ1 we set to -0.2, γ2 to 0.3,
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Table 5: Quantiles of number of follow–up visits per individual in simulations.
minimum 25% median 75% maximum

τ = 1 1 1 2 3 13
τ = 4 1 6 8 10 29

making a person on a treatment at time t less likely to have an observation at that time.
The censoring variable C is distributed uniformly on the interval (τ/2, τ). Setting with

τ to 1 and 4 should demonstrate cases of a few and many observations per person. The
resulting quantiles of number of observations taken over all individuals and simulations
are in Table 5. The weight W is set to 1 over the entire time span [0, τ ].

We present bias, sampling standard error, SSE, and sampling mean of estimated stan-
dard errors, SEE, of the estimates β̂01 taken over 1000 simulations. We also present two
measures of squared errors comparison among two estimation approaches, denoted for
convenience by relative efficiency RE. RE I is based on mean of the ratio of empirical
mean squared error of estimate (4·1) of β01 over empirical mean squared error of GEE
estimate of β01. RE II is based on empirical median of ratios of squared errors, a more
robust efficiency estimate motivated by Pitman closeness. We report 95% sampling cover-
age probability. With 1000 simulations the precision of the coverage probability is about
1.4%. Number of individuals in a sample is set to 20, 50, 100 and 200.

We compare the proposed estimator with the independent GEE estimator assuming
a working independence and a known intercept as well as the original Lin and Ying’s
estimator. In these biased settings the proposed estimator can account for the biased
sampling and thus is still consistent. However, both the GEE estimator and the original
LY estimator are inconsistent.

Simulation results for sample size 50 we show in Table 6 and for sample size Table 7.
Findings from those tables are consistent for sample sizes of 20 and 100 individuals as well,
those tables are not shown here. The bias estimate of the proposed estimator is always
negligible relative to the sampling standard error, SSE, for all intercept functions and the
two scenarios of numbers of observations per individual. The model based variance of the
proposed estimator of the coefficient β01, SEE, is usually very slightly underestimating
the true variance of the estimator of β01, SSE. This discrepancy between SEE and SSE is
diminishing with increasing sample size. We do not see any pattern regarding the intercept
function. The 95% coverage probability of the proposed estimator, CP, is ranging from
92% to 94% for studies with 50 individuals and from 94% to 95% for studies with 200
individuals.

Both RE I and RE II favor the proposed estimator over the two naive estimators.
RE II, based on Pitman closeness, favors our proposed estimator more than RE I. Based
on median RE II is robust to ratios of squared errors that are large in rare cases. As
we expected, the RE of the proposed IIRR estimator over GEE estimator with provided
intercept as an offset is smaller that the RE of the proposed IIRR estimator over the LY
estimator. The reason is the provided intercept for the GEE estimator. In our studies that
drawback of both the LY estimator and our proposed IIRR estimator of increased variance
was largely overcome by the decreased bias term. With more repeated measurements per
person as well as larger sample size are both RE measures increasing. Our proposed
estimator performs well under moderate and small sample size, including the estimator of
its variance. It performs superior to the GEE estimator and the LY estimator.

In other simulations under unbiased sampling we addressed the possible loss of precision
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under extreme intercept functions in the LY estimators (and thus the IIRR estimators)
compared to the GEE estimators. Under those scenarios even a slight misspecification of
the intercept function in the GEE estimator produced however much greater squared error
in the GEE estimate than the loss of precision due to unspecified intercept. We concluded
there that the precision loss was hugely overweighted by unbiasedness.

Figure 2: Intercept functional forms: α = 1 for
√

t, α = 2 for sin(t), α = 3 for
exp (range | sin(t)|) , α = 4 for sin(peak t) and α = 5 for exp(range | sin(peak t)|).
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8 Discussion

In this paper, we propose a class of consistent and asymptotically normal estimators for the
parameters of group contrasts in the linear regression model for longitudinal data under
biased sampling that occurs at continuous time. We call our estimators “inverse–intensity
rate–ratio–weighted” estimators, abbreviated as IIRR estimators.

Under biased sampling, the mean–response process and the sampling–times process are
allowed to be correlated conditional on the mean–response model covariates. We believe
that this biased sampling setting is very appealing when longitudinal data are collected at
irregular, possibly subject–specific times. Those can arise as a result of noncompliance to
the scheduled visit times or as a result of observational nature of the data where there is
no visit schedule.

Our mean–response model is a fully marginal model, where we model response at any
time as a function of covariates at that time point only, not requiring the Pepe & Anderson
(1994) assumption. We adapt a process–like approach where we say that the response
follows the given model at any time, regardless whether an observation was collected or
not.

The sampling–times model we use, namely a proportional rate model, is a semipara-
metric model allowing for flexibility. However, we note that for validity of our proposed
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Table 6: Statistics for the proposed estimator of parameter β01 in model (7·1) under biased
sampling for sample size 50.

GEE LY
Bias SSE SEE CP RE I RE II RE I RE II

α = 1, τ = 1 −0.111 1.188 1.096 0.92 1.8 2.5 4.5 9.6
α = 2, τ = 1 −0.106 1.151 1.091 0.92 1.8 2.5 4.8 8.8
α = 3, τ = 1 −0.126 1.191 1.104 0.93 1.7 2.3 4.6 8.6
α = 4, τ = 1 −0.136 1.196 1.091 0.93 1.7 2.3 4.4 8.8
α = 5, τ = 1 −0.055 1.205 1.151 0.94 1.8 2.2 4.4 8.4
α = 1, τ = 4 −0.065 0.626 0.609 0.94 2.3 4.6 14.5 28.5
α = 2, τ = 4 −0.071 0.639 0.615 0.92 2.2 4.7 14.2 29.8
α = 3, τ = 4 −0.080 0.637 0.620 0.93 2.2 4.5 14.2 31.4
α = 4, τ = 4 −0.110 0.620 0.602 0.93 2.3 4.7 14.8 33.4
α = 5, τ = 4 −0.083 0.635 0.628 0.94 2.1 4.5 14.4 32.2

Table 7: Statistics for the proposed estimator of parameter β01 in model (7·1) under biased
sampling for sample size 200.

GEE LY
Bias SSE SEE CP RE I.1 RE II.1 RE I.2 RE II.2

α = 1, τ = 1 −0.073 0.572 0.575 0.94 2.6 5.0 21.5 42.9
α = 2, τ = 1 −0.052 0.575 0.573 0.95 2.7 5.5 21.0 44.3
α = 3, τ = 1 −0.039 0.593 0.568 0.94 2.4 5.5 19.7 45.0
α = 4, τ = 1 −0.045 0.600 0.572 0.94 2.5 5.2 19.4 42.7
α = 5, τ = 1 −0.027 0.580 0.595 0.94 2.7 5.9 20.8 48.9
α = 1, τ = 4 −0.013 0.320 0.312 0.94 8.1 18.6 66.7 152.9
α = 2, τ = 4 −0.024 0.316 0.311 0.94 8.2 18.6 68.7 164.3
α = 3, τ = 4 −0.032 0.324 0.314 0.94 7.8 17.7 64.5 144.7
α = 4, τ = 4 −0.038 0.314 0.312 0.94 8.1 18.4 69.5 157.6
α = 5, τ = 4 −0.003 0.318 0.320 0.95 8.3 18.5 67.5 149.2

estimators it is extremely important to specify the sampling–times model correctly. The
parametric part of the model can be specified different and, after modification of the de-
finition of the inverse weights, we would still obtain correct inference. We will further
study the robustness of our estimation approach under sampling–times model misspecifi-
cation where a multiplicative model is not suitable. We note that a positive probability
of having an observation at certain time, which means spikes in the intensity function, is
manageable by our approach, once all individuals share those time points. The covariates
of the sampling–times model should be strongly predictive of the sampling times, whereas
choice of the covariates of the mean–response model should be governed by the scientific
question.

Our mean–response model is a semiparametric model, where we do not specify the
intercept function. Naturally, efficiency of estimation under the semiparametric mean–
response models can be lower than under a correct parametric mean–response model.
In simulations we have seen, however, that under those scenarios where most efficiency
was lost, a huge amount of accuracy was lost when an incorrect parametric intercept
was used. Also, elsewhere we provide an estimation approach that accommodates biased
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sampling using a parametric model and thus reader has the option of a parametric versus
semiparametric model choice.

We do not impose any distributional assumptions on the response process. Covariates
in the mean–response model can contain lagged covariate values. Moreover, covariates in
the sampling–times model can contain lagged response values.

We require a non–informative drop–out for the mean–response model. This assumption
might seem to be a strong one. However, if there is still a slightest chance that a person
has not completely dropped out but we just temporarily do not see any observations, we
can handle that as biased sampling.

Survival analysis with time–varying covariates requires that the entire covariate process
is observed. It is not a coincidence that our approach requires the same. To be specific, we
need covariate values on any individual at any observation time in the sample as long as the
individual is still under follow–up. There is not a simple solution to that data collection
issue. Approximations of the covariate processes cause biased estimators. Subcohort
sampling techniques are not trivially applied in practice. H. Lin et al. (2004) solve the
same problem in an effectively equivalent way by defining a sampling–times model that
conditions on the last observed value of covariates.

Separation of the sampling–times model and the mean–response model as two dis-
tinct models enables to perform model checking separately. A range of model checking
techniques of the sampling–times model (2·2) was suggested in Section 4 of D. Lin et al.
(2000) using certain cumulative sums of residuals based on the process {M(t), t ∈ [0, τ ]}
defined in equation (3·3). We keep in mind that those residuals are not martingales and
thus present a technical challenge to construct formal tests. Those model checking tech-
niques include both graphical and numerical inspections for functional form of covariates,
exponential link function and proportional rates assumptions. For the last we can plot
Schoenfeld residuals against time with a fitted smoother, just as described in Grambsch
& Therneau (1994) checking proportional hazard assumption. Also an omnibus test for
checking the overall fit of the model was constructed. We would like to address simi-
lar matter in our future work for the mean–response model checking. We believe that
the residuals based on the process {M(t), t ∈ [0, τ ]} could be used for that in a similar
fashion.

9 Appendix

Assumptions

We assume that (Yi(·),Xi(·), Zi(·),N∗
i (·), ξi(·)) are i.i.d. quintuples of random processes

over time t ∈ [0, τ ] for individuals 1 through n. The counting uncensored process of events
at the end of follow-up τ, N?

i (τ), is required to be bounded by a constant. Both mean–
response model covariates Xi and sampling–times model covariates Zi need to have a
bounded total variations by a constant for all individuals. That is |Zji(0)|+

∫ τ

0 |dZji(t)| ≤
K, j = 1, . . . , g and |Xji(0)|+

∫ τ

0 |dXji(t)| ≤ K, j = 1, . . . , p. The function h(·) also needs
to have bounded variation.

The inverse weight ρi(t; γ, h) needs to bounded away from zero. The weight function
W (·) is assumed to be a difference of two monotone functions, each of which converges to
a deterministic function. We denote the asymptotic limit of W (·) by w(·).
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Implementation of the estimation procedure

The above estimation procedure can be implemented in S-plus/R with relative ease. The
sampling–times model can be fitted by function coxph to obtain estimates of γ0 and δ0.
Function lm being applied to centered, by subtracting the mean curve, covariates X and
centered and weighted by inverse of ρ response Y provides the estimate of β0. The stan-
dard errors of β̂(γ̂, δ̂) can be obtained by bootstrapping or implementing the asymptotic
formulas for variance. We will add an implicit function into R to provide the estimate of
β0 and its variance directly based on row data.

Large Sample Theory

Based on the asymptotic theory as established in D. Lin & Ying (2001) using monotone
functions and “manageable processes” tools, as described in Pollard (1990) and Bilias et al.
(1997), we derive the large sample properties of the proposed estimator. The estimating
function (5·6) at point (β0; γ0, h) can be written as

U(β0; γ0, h) =
n∑

i=1

∫ τ

0
W (t) [Xi(t) − Av2(X)(t;h)] dRi(t;β0, γ0,A0(·), h).

Further 1√
n
U(β0; γ0, h) is asymptotically equivalent to

1√
n

∫ t

0
w(s)

n∑

i=1

Xi(s) dMi(s;β0, γ0,A0(·), h) −

− 1√
n

∫ t

0
w(s)

[
av2(Y

?)(s;h) − βT
0 av2(X)(s;h)

] n∑

i=1

ρi(s; γ0, h)Xi(s) dMi(s; γ0,Λ0(·)) −

− 1√
n

∫ t

0
w(s)av2(X)(s;h)

n∑

i=1

dMi(s;β0, γ0,A0(·), h) +

+
1√
n

∫ t

0
w(s)av2(X)(s;h)

[
av2(Y

?)(s;h) − βT
0 av2(X)(s;h)

] n∑

i=1

ρi(s; γ0, h)dMi(s; γ0,Λ0(·)).

A sequence of Taylor series expansions yield

1√
n

U(β0; γ̂, h) =
1√
n

U(β0; γ0, h) − 1

n

∂U(β0; γ, h)

∂γ
|γ◦

(
1

n

∂U †(γ)

∂γ
|γ?

)−1
1√
n

U †(γ0) (9·1)

with γ◦ and γ? being on the line segment between γ0 and γ̂.
Estimating function 1√

n
U(β0; γ̂, h) is asymptotically equivalent to

1√
n

n∑

i=1

{∫ τ

0
w(t) [Xi(t) − av2(X)(t;h)] [dMi(t;β0, γ0,A0(·), h)−

−
(
av2(Y

?)(t;h) − βT
0 av2(X)(t;h)

)
ρi(t; γ0, h)dMi(t; γ0,Λ0(·))

]
−

− HA−1

∫ τ

0
[Zi(t) − av1(Z)(t; γ0)]

T dMi(t; γ0,Λ0(·))
}

,

which is a sum of n independent identically distributed mean zero random vectors.
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Based on equation (9·1)

√
n(β̂(γ̂, h) − β0) =

(
− 1

n

∂U(β; γ̂, h)

∂β
|β?

)−1 1√
n

U(β0; γ̂, h)

=

(
− 1

n

∂U(β; γ̂, h)

∂β
|β?

)−1

×
[

1√
n

U(β0; γ0, h)−

− 1

n

∂U(β0; γ, h)

∂γ
|γ◦

(
1

n

∂U †(γ)

∂γ
|γ?

)−1
1√
n

U †(γ0)

]
(9·2)

and thus
√

n(β̂(γ̂, h) − β0) is asymptotically equivalent to

1√
n

n∑

i=1

D−1

[∫ τ

0
w(t) [Xi(t) − av2(X)(t;h)] [dMi(t;β0, γ0,A0(·), h)−

−(av2(Y
?)(t;h) − βT

0 av2(X)(t;h))ρi(t; γ0, h)dMi(t; γ0,Λ0(·))
]
−

− HA−1

∫ τ

0
[Zi(t) − av1(Z)(t; γ0)]

T dMi(t; γ0,Λ0(·))
]

.

It is a sum of mean zero i.i.d. random vectors for any function h(Xi(·)). Using arguments
similar to Liang & Zeger (1986), asymptotically we obtain equivalent expressions when
using a random variable δ̂ instead of fixed δ0 when talking about the stabilized estimator.

This plus consistency of β̂(γ̂, h) and of D̂ yields that
√

n
(
β̂(γ̂, δ̂) − β0

)
is asymptoti-

cally normal with a consistent estimator of the asymptotic variance being D̂−1V̂ D̂−1 where
we use δ̂ instead the unknown δ0.
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