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1.  Introduction 

The case-crossover design belongs to a class of designs in air pollution epidemiology that is 

aimed at assessing the short term health effects of air pollution.1  Referred to as acute effects 

studies, these designs enable estimation of the effect of day-to-day variation in pollution on 

morbidity and mortality.   Various adverse health events have been studied, including deaths and 

myocardial infarctions.  Ambient air pollution concentrations, measured at centrally located 

monitors in particular geographic regions, typically serve as the exposure of interest.  Hence, the 

same exposure is used for all subjects in the study; we refer to this as a “shared” exposure series.  

Particulate matter (PM) has been the most commonly studied pollutant.   

 

There are many challenges involved in acute effects studies, including error in the measurement 

of exposure and the discrepancy between ambient and personal exposures.  Confounding is also 

a major concern.  Time-independent confounding can occur, even with a shared exposure series, 

if subjects are observed at different points in time.  Even more problematic are time-dependent 

confounders, such as season and concentrations of other pollutants.  These factors are strongly 

associated with day-to-day variation in both exposure and many adverse health outcomes.  

Biases are especially troublesome because the effect of exposure is usually very small, and the 

effects of some time-dependent confounders many times larger.2    

 

The case-crossover design represents a novel approach to controlling for confounding.  Given a 

sample of subjects who experienced the event of interest, exposure just prior to the event, the 

“index” time, is compared with exposure at comparable control, or “referent” times.3  The idea is 
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similar to a matched case-control study; the exposure at each index time is part of a matched set 

of exposures consisting of exposures for the subject at his/her referent times.  This matched set is 

called a “referent window”.  By making within-subject comparisons, time-independent 

confounders are controlled by design.  More importantly, if the referent times are matched to the 

index time with respect to time-dependent confounders (for example, if the referents are 

restricted to the same season as the index time), these effects are also controlled by design.  This 

is in stark contrast to other approaches to the estimation of acute pollution effects (e.g. time 

series studies), in which time-dependent confounding is controlled by modeling. 

 

The selection of referent times is a key issue in the case-crossover design.  We refer to this 

choice as the “referent selection strategy” or “referent scheme”.  As stated above, the referent 

selection strategy is important in terms of controlling for time-dependent confounding.  In 

addition, the case-crossover design makes the implicit assumption that there is no time trend in 

exposure within the referent window.  Moreover, only with certain referent strategies are the 

estimating equations typically used, the conditional logistic regression estimating equations, 

unbiased.  We call this bias in the conditional logistic regression estimating equations “overlap 

bias”.  (The use of the term “overlap” will be discussed in Section 5.)  Bias in any estimating 

equation is problematic, since it implies that the associated parameter estimates are biased, even 

in large samples.  In contrast, an unbiased estimating equation guarantees unbiased estimates in 

large samples.  In this paper, we focus on bias in the estimating equations, rather than in the 

estimates themselves, since the latter have small sample bias. 
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A variety of referent schemes have been utilized in air pollution studies.4-10  General 7;11-15 and 

air pollution specific 16-22 case-crossover methods papers have addressed referent selection, but 

so far none have presented a cohesive set of guidelines for evaluating and choosing a referent 

selection strategy.  The purpose of this paper is to review referent selection practices in air 

pollution case-crossover studies, and to clarify key referent selection issues.  In Section 2, we 

review the referent selection strategies that have been used in air pollution case-crossover 

studies.  Section 3 provides an overview of the case-crossover method.  We present the statistical 

model appropriate for air pollution exposures, the estimation method that is used, aspects of the 

design that are useful with air pollution exposures, and potential biases associated with the 

design.  In Section 4, we describe the different types of referent selection strategies and discuss 

how each deals with the various types of bias.  Section 5 illustrates the phenomenon of overlap 

bias using a numeric example, and describes the magnitude of the bias.  In Section 6, we discuss 

the relative efficiencies of two referent selection strategies.  Section 7 extends our review to 

situations in which the exposure is not shared (in contrast to all previous sections).  Finally, we 

conclude with recommendations for choosing a referent selection strategy for a case-crossover 

analysis of air pollution exposure data. 

 

2.  Review of Referent Selection Strategies Used in Case-Crossover Studies of Air 

Pollution Exposures 

We reviewed 19 case-crossover studies of air pollution exposure data, published between the 

introduction of the design in 1991 and June of 2004.  We limit our attention to applied, rather 

than methodological papers (see Table 1). 4-6;8-10;23-35   All of the studies that we reviewed 
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examined ambient, shared air pollution exposures.  Outcomes such as non-accidental mortality 

and hospitalization for myocardial infarction and asthma were studied.   

 

By far, the most popular referent selection strategy is the symmetric bidirectional design,16 in 

which referents are at a fixed lag before and after the index time.  Sixty-three percent of the 

studies we reviewed used this design.  A distant second in popularity is the time stratified design, 

used in 26% of studies.  With this design, 22 time is stratified a priori, and all other days in the 

stratum in which the index day falls serve as referents.  The restricted unidirectional design was 

also used.  Unidirectional sampling usually means that referents are selected only prior to the 

index day, although one study sampled unidirectional referents prospectively.5  Restricted 

unidirectional referents are at fixed lags relative to the index day.  Finally, several studies 

reported the results of multiple analyses, each using a different referent selection strategy.  This 

practice is not recommended, since it makes interpretation difficult and induces model selection 

bias.36-38 While these referent schemes may appear to be quite similar, we will show that the 

distinctions between them are important, and have implications for bias.   

 

3. The Case-Crossover Method 

3.1  Appropriate Exposures and Outcomes 

The case-crossover design is appropriate for assessing the association between a short-term 

exposure and the risk of an acute event.  It is most suited to exposures that are transient and do 

not have carryover effects.  In this review, we focus on the case of a rare event.  In other words, 

we assume that, for each individual, events occur with a low probability.     
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3.2  Relevant Aspects of Air Pollution Exposure Data 

In most air pollution case-crossover studies, the exposure is shared among all individuals in the 

study.  Hence, when deriving the likelihood of the data, it is appropriate to condition on this 

fixed exposure series.  (The likelihood can be thought of as the probability model for the data.)  

In addition, when evaluating the properties of the effect estimate, we should condition on the 

exposure.  Because we have only one exposure series, we want to know that the estimate and the 

corresponding estimating equations are unbiased for this specific exposure series; knowing that 

they are unbiased when averaged over all possible exposure series is of little value.   We note 

that most standard regression analyses, such as linear and logistic regression, also condition on 

exposure.  With the exception of a review of case-crossover methods appropriate for unshared 

exposures in Section 7, we restrict our attention to analyses conditional on exposure. 

 

Another important property of ambient air pollution exposure data is that it is exogenous.  

Exogenous exposures are generated independently of the individual under study.  In contrast, 

endogenous exposures are influenced by the individual; they can only be observed while the 

individual is observed, and may change as a result of having experienced the event.  Personal air 

pollution is an example of an endogenous exposure.  Our review is limited to exogenous 

exposures.   

 

3.3  Attributes of the Design Useful in the Air Pollution Context 

The main strengths of the case-crossover design are that it does not require a control sample (and 

hence avoids bias associated with improper control selection), makes effect modification 

assessment relatively simple, and controls for fixed confounders by design.  Also very appealing 
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is the fact that time-dependent confounders can be controlled by design, by matching referents to 

the index time with respect to these factors.   

 

Another method commonly used to assess the association between short-term air pollution 

exposure and adverse health events is time series regression.  The main difference between time 

series regression and the analysis of a case-crossover design using conditional logistic regression 

is that the former requires modeling the confounders.  With a conditional logistic regression 

analysis, the confounding effects of all matching variables are controlled by design (through 

matching).  Further control could be accomplished by also modeling these factors in the 

conditional logistic regression model. 

 

3.4  The Time-Varying Exposure Model and Estimation Method 

The statistical model first postulated for the case-crossover design was a precipitating event 

model.3  This model assumes that time can be discretized into “exposed” and “unexposed” 

periods.  It stipulates that a subject is at high risk for a fixed time following an exposed period, 

and thereafter returns to background risk, until the next exposed period.  (Note that, under certain 

conditions, this model is subject to length bias, as noted by Varachan and Frangakis. 39)  

However, the proportional hazards model for a rare disease with a constant baseline hazard for 

each individual, first proposed for case-crossover studies by Navidi 7 and Marshall and 

Jackson12, is more appropriate for air pollution exposures, which are not binary.  We call this the 

time-varying exposure model.   
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The time-varying exposure model states that there is only one event for each case (a legitimate 

assumption for a rare event), and specifies risk as a function of time and exposure.  If past 

exposure lags are included, this model also allows the risk to increase due to past exposures.  

Under the time-varying exposure model, the hazard rate of person i at time t given time-varying 

covariates xit is given by ( ; ) exp( )i it i itt x xλ λ β= .  Over a short time period, the assumption of a 

constant baseline hazard is often reasonable, and is equivalent to assuming smooth seasonal 

effects in a time series analysis.22  The parameter eβ  can be interpreted as the change in the risk 

of an event associated with a short-term unit increase in exposure.   

 

Conditional logistic regression is typically used to estimate β in the time-varying exposure 

model.  The use of this method has been motivated by the analogy to matched case-control 

designs, where the conditional logistic regression likelihood is exactly the likelihood of the data.  

Its use makes sense, since the idea is to control for confounding by making comparisons within 

referent windows, and hence we want to condition on the referent windows in the analysis.   

 

The Mantel-Haenszel estimator was used in some early case-crossover studies with binary 

exposures.3  With only one referent for each case, (i.e., matched pairs), the two estimation 

procedures are identical.40  However, in general, conditional logistic regression is a better choice, 

since it can be used with non-binary exposures, and makes control of additional confounders 

(those not used in the matching) easier.  These factors can simply be included in the regression 

model.     

 

3.5  Potential Biases Associated With the Choice of Referent Selection Strategy 
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The likelihood of the data for the case-crossover design depends on the choice of referent 

selection strategy.  The conditional logistic regression estimating equations are only unbiased 

with certain referent selection strategies.  For most of the commonly used referent selection 

strategies (e.g. symmetric bidirectional referents), the conditional logistic regression estimating 

equations are not unbiased 22;41; this is called overlap bias.  In Section 4, we identify the referent 

schemes that are subject to overlap bias, and in Section 5, we describe overlap bias in more 

detail.   

 

Greenland 11 and Navidi 7 showed that the case-crossover design relies on the assumption that 

there is no trend in exposure within the referent window.   This assumption is required since the 

effect of exposure is estimated by contrasting exposures at the index and referent times.  If, for 

example, referents are always prior to the index time, and there is a decreasing trend in exposure 

over time, the effect estimate will be negatively biased.  With the strong long-term time trends 

often present in air pollution data, bias due to time trend is a concern.  We discuss a method for 

controlling for this bias in Section 4.   

 

Finally, the case-crossover design assumes that the referent exposures are representative of the 

usual distribution of exposure, and that the index exposure represents the exposure that generated 

the event. 

 

4. Referent Selection Strategies 

4.1  Classes of Referent Selection Strategies 
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As mentioned, a number of fundamentally different types of referent selection strategies have 

been used in air pollution studies, including the unidirectional, full stratum bidirectional, 

symmetric bidirectional, time stratified, and semi-symmetric bidirectional designs, listed in 

Table 2.  We have proposed a taxonomy of referent selection strategies, with groups that 

correspond to the statistical properties of these designs.41  We classify designs as localizable or 

non-localizable, and, within the localizable designs, ignorable or non-ignorable.  Localizable 

designs are those for which the likelihood of the index times conditional on the referent windows 

contains information about β.  In contrast, with a non-localizable design, the conditional 

likelihood is uninformative for β.  An example of a non-localizable design is the symmetric 

bidirectional design, in which the index time is fixed in the center of the referent window, and 

hence the location of the index time within the referent window yields no information about β.  

Localizability is desirable since, when estimation can be based on making comparisons within 

the referent windows, which are presumably matched on time-dependent confounders, these 

confounders are controlled.  Of the designs in Table 2, only the time stratified, full stratum 

bidirectional, and semi-symmetric bidirectional designs are localizable.   

 

The localizable designs are classified as either ignorable or non-ignorable.  Ignorable designs are 

those which have a referent sampling scheme that can be ignored when analyzing the data; 

conditional logistic regression can be used to obtain unbiased estimates.  With a non-ignorable 

design, the likelihood of the data depends on the referent sampling scheme, and this likelihood 

must be used for an unbiased analysis.  We note that this definition of ignorability is the same as 

that proposed by Little and Rubin, and used in the missing data context.42  In either case, 

ignorability implies that the data can be analyzed as if the observed data were the complete data, 

Hosted by The Berkeley Electronic Press



 10

without having to account for how the data were sampled.  Of the referent strategies listed in 

Table 2, only the time stratified and full stratum bidirectional designs are localizable and 

ignorable. 

 

These referent class distinctions are relevant when choosing a statistical analysis.  Conditional 

logistic regression yields unbiased estimates for localizable, ignorable designs.  However, the 

conditional logistic regression estimates have overlap bias under non-localizable or localizable, 

non-ignorable referent selection. 41 With a non-localizable design, the likelihood of the data must 

be used to obtain unbiased effect estimates, but the use of this likelihood in applications is 

impractical. 41 With a localizable, non-ignorable referent scheme, again, the likelihood of the 

data must be used for unbiased estimation, but in this case, there is a simple way to obtain these 

estimates (see Section 4.6).   

 

4.2  Unidirectional Referent Sampling 

With a restricted unidirectional design, confounding due to season and day of the week are 

controlled by selecting referents close to, and on the same day of the week as the index day (see 

Figure 1A).  Yet, this design is non-localizable, and thus estimates from conditional logistic 

regression have overlap bias.41   

 

Unidirectional sampling has a major disadvantage in air pollution studies.  Selecting referents 

only prior to the index time can lead to time trend bias.  The bias will be larger the further the 

referents are from the index time.  For this reason, unidirectional sampling is not commonly done 

in air pollution studies.   
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4.3  Full stratum Bidirectional Referent Selection 

Greenland 11 was the first to recognize the pitfall with unidirectional referent selection in the 

presence of an exposure trend.  Navidi 7 proposed that the time trend bias could be eliminated by 

choosing referents both before and after the index time, a strategy called bidirectional referent 

selection (sometimes called ambidirectional selection21).  Technically, bidirectional sampling is 

only valid when cases are still at risk after an event, an assumption that is certainly not valid 

when the event is death.  Navidi justified bidirectional sampling by noting that, with air pollution 

data, the exposure is exogenous and is available for all cases both before and after the event.  A 

more rigorous justification was given by Lumley and Levy 22 who showed that, with a rare event, 

the bias due to sampling referents after the at-risk period is small.   More importantly, the bias 

associated with sampling referents after the time at risk is smaller than the bias that would be 

incurred with unidirectional referent selection in the presence of a time trend.   

 

Navidi proposed full stratum bidirectional referent selection (Figure 1B), in which the referents 

are all days in the exposure series other than the index day. 7  Interestingly, Lumley and Levy 

showed that a case-crossover analysis with full stratum bidirectional referents and a shared 

exposure series is equivalent to a Poisson regression analysis. 22  However, while bias due to 

time trend is controlled, time-dependent confounding (e.g. season) is not.  Time-dependent 

confounding must be controlled by modeling, since the referent window is so large that 

confounding is not controlled by design.  The full stratum bidirectional design is a localizable, 

ignorable design, so overlap bias is not a problem.41   
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4.4  Symmetric Bidirectional Referent Selection 

The symmetric bidirectional design 16 is a popular alternative to the full stratum bidirectional 

design (Figure 1C).  This design controls for bias due to time trend and confounding by both 

season and day of the week if referents are within the same season and on the same day of the 

week as the index time.16  Simulation studies have shown that shorter lags ensure less 

confounding bias, and that confounding is not as well controlled if the seasonal pattern of 

exposure is not symmetric.16;20   

 

The fundamental problem with the symmetric bidirectional design is that it is non-localizable.  

Hence, conditional logistic regression estimates are subject to overlap bias.41   

 

4.5 Time Stratified Referent Selection 

The time stratified design is not subject to bias due to time trend since there is no pattern in the 

placement of referents relative to the index time.  In addition, the design controls for time-

dependent confounding by matching.  For instance, restricting referents to the same day of the 

week, month, and year as the index day controls for season and day of the week.  The time 

stratified design is a localizable, ignorable design;41 hence, conditional logistic regression can be 

used to obtain unbiased effect estimates.  

 

The time stratified design has some interesting relationships with other designs.  The full stratum 

bidirectional design is a special case of a time stratified design in which there is one large 

stratum (although in this case confounding must be controlled by modeling).22  In addition, a 

conditional logistic regression analysis of a shared exposure series with time stratified by year, 
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month, and day of the week is the same as a Poisson regression analysis with dummy variables to 

adjust for day of the week within each month, and month within each year.21   

 

4.6  Semi-Symmetric Bidirectional Referent Selection 

With the semi-symmetric bidirectional design,14 one referent is randomly chosen from days at a 

fixed lag pre- and post-event; if only one of these days is available (due to the case being at 

either end of the exposure series), it serves as the referent.   If the lag is small and a multiple of 

seven, confounding by season and day of the week can be controlled by design.  There is no bias 

due to time trend, since referents are bidirectionally sampled.   

 

The semi-symmetric bidirectional design is a localizable, non-ignorable design.  The likelihood 

of the data must be used in order to obtain an unbiased effect estimate, and standard conditional 

logistic regression estimates have overlap bias.  It turns out, however, that in this case estimates 

based on this likelihood can be obtained using standard conditional logistic regression software 

when an offset is used (that takes a value of log2 for cases with only one possible referent, and 

zero otherwise). 41    

 

5.  Overlap Bias 

The term “overlap bias” was first used by Lumley and Levy,22 who observed that this bias is 

similar to the bias due to using friend controls in matched case-control studies.43;44  Yet, the term 

overlap is somewhat misleading in that it suggests that a design in which an individual’s set of 

possible referent windows is overlapping is subject to overlap bias, and a design with disjoint 

windows is not.  This is not the case: in both the full stratum bidirectional and symmetric 
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bidirectional designs, the referent windows overlap.  Yet, the full stratum bidirectional design is 

free from overlap bias, and the symmetric bidirectional design is not.  Alternatively, we 

considered identifying designs subject to overlap bias according to whether or not the index time 

is fixed within the referent window.  While all of the existing referent strategies for which the 

index time is fixed within the referent window (e.g. the symmetric bidirectional design) are 

subject to overlap bias, and those with random index times within the referent window (e.g. the 

time stratified design) are not, it would be possible to configure a referent strategy with a random 

index time which is subject to overlap bias.  Hence, we have not found a satisfactory heuristic 

explanation of overlap bias.  The bias is a purely mathematical phenomenon.  Whether or not 

bias exists for a particular referent strategy depends on the form of the likelihood under that 

strategy.  In this sense, overlap bias is similar to the well-known bias associated with using 

unconditional logistic regression in a case-control study with finely matched data.40  We seek to 

illustrate, with the following numerical example, the mathematical basis of overlap bias, and its 

non-intuitive nature. 

 

5.1 Numerical Example 

In this example, we calculate the overlap bias, as a function of the exposure series, for two 

different referent selection strategies.  We will demonstrate that, for a fixed referent strategy, 

determining what types of exposure series are prone to overlap bias is virtually impossible.  In 

addition, for a given exposure series, there is no intuitive explanation as to why certain referent 

strategies induce overlap bias, and others do not.  We consider the simple case of a shared binary 

exposure series of length 10.  We contrast the symmetric bidirectional referent strategy16 (with 

referents one day before and after the index day), a design which is subject to overlap bias, with 
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the time stratified referent strategy (with strata of length 2 and 3), which does not have overlap 

bias.22;41   

 

We first calculate the overlap bias under symmetric bidirectional referent selection, as a function 

of the exposure series.  Let T be the length of the series, and K the number of days with 

“positive” exposure.  The binary exposure series, z , can be reduced to a set of six parameters 

which refer to the number of instances of particular arrangements of exposures.  Let 

1001101011001010 and,,,,, zzzzzz  denote to the number of instances of the following exposure 

arrangements: 010; 001 or 100; 011 or 110; 101; 01 at the beginning of the series or 10 at 

the end; and 10 at the beginning of the series or 01 at the end.  We show in Appendix A that the 

overlap bias can be expressed as /X Y where  

 010 001 011 101 10 012 2
( ) 2 1 2 1

z z z z z zeX
T K Ke e e e

β

β β β β

− − −⎛ ⎞= + +⎜ ⎟− + + + +⎝ ⎠
                                                (1) 

 010 001 011 101 10 01
2 2 2

2 2 2 2 .
( ) (2 ) (1 2 ) (1 )

e z z e z z e z zeY
T K Ke e e e

β β ββ

β β β β

⎛ ⎞+ + +
= + +⎜ ⎟− + + + +⎝ ⎠

                                 (2) 

(Here, X is the expected value of the conditional logistic regression estimating equations.)  

Hence, overlap bias occurs whenever X is nonzero.   

 

This expression for overlap bias is a complex function of the parameters of the exposure series.  

Its form reveals that there is no simple intuitive way to characterize the exposure series which 

have overlap bias.  Table 3 gives four different length-10 binary exposure series, along with their 

parameters and the value of X at various values of β.  Figure 2 shows the overlap bias associated 

with each of these series ( /X Y ).  We see that there is a large amount of variation in the amount 

of bias across the exposure series.  For some series, the bias is substantial, while for others, there 
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is virtually none.  For example, although Series D differs on just one day from Series C, these 

two series have dramatically different amounts of overlap bias.  Series D has essentially no bias, 

while for Series C, there is a large amount of bias for all β.  We also observe that, in several 

instances, the bias is larger than β itself.  Finally, the bias can exist for very small β, typical in air 

pollution exposure studies.   

 

We show in Appendix A a similar expression for overlap bias for the time stratified design.  

Algebraically, terms cancel, and the expression reduces to zero for all β.  Hence, there is never 

overlap bias with the time stratified design.  Once again, this exercise does not reveal any 

intuition as to why the time stratified design is free from bias and the symmetric bidirectional 

design is not.  This is merely a consequence of the differences in the likelihoods under the two 

referent strategies.   

 

5.2 The Magnitude of the Overlap Bias 

Given an exposure series and a referent selection strategy, the magnitude of the overlap bias can 

be calculated, as was done in Section 5.1 (see also 41).   The bias is generally small, but it is 

highly unpredictable.  Simulation studies examining continuous exposures have shown that it 

depends on the particular exposure series. 41  Bias can exist even for small β, which is 

particularly worrying for air pollution studies.  In addition, for a given exposure series, there may 

be bias with some referent strategies and not with others.  Moreover, there is no existing method 

for predicting in advance the magnitude or direction of the overlap bias, thereby making it 

impossible to know if the effect estimate is being dampened or magnified.  Therefore, it is 

prudent to choose a referent strategy that avoids this bias entirely.   
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Overlap bias can exist even when β = 0, thus making it possible to erroneously detect effects that 

do not in fact exist.  However, when there is no exposure effect, the nature of the overlap bias is 

somewhat different.  When β = 0, the bias occurs only if cases at the ends of the exposure series 

have a different referent strategy than other cases.  For example, with the symmetric bidirectional 

design, cases at the beginning of the series will not have pre-event referents, and cases at the end 

will not have post-event referents.  Bateson and Schwartz17 called this “selection bias”, and 

suggested subtracting it off.  While this correction is sufficient when β = 0, for other β, this 

correction does not in fact subtract off all of the overlap bias.  Another unique aspect of overlap 

bias when β = 0 is that it decreases rapidly with the length of the exposure series.22  This is not 

true for other values of β.  In general, the bias will decrease as the length of the exposure series 

increases, but the speed of this convergence is much slower for 0β ≠ . 

 

6.  Referent Selection: Efficiency Concerns 

As is the case with any design, there is a clear bias-efficiency tradeoff in the case-crossover 

design.  (Efficiency is usually quantified using the variance of the effect estimate.)  Increasing 

the number of referents will lead to gains in efficiency, but decreased control over confounders.  

Yet, in the air pollution setting, bias is generally the dominant concern, due to the small effect 

sizes.  For this reason, we study efficiency alone, assuming confounding has already been 

controlled by matching the referents to the index times.  We note, however, that the necessity of 

controlling for confounding may leave little choice as to the number of referents.  For example, 

with the time stratified design, the desire to match with respect to year, season, and day of the 

week (or another confounder) restricts the stratum size to four or five.     
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Mittleman et al. 13and Bateson and Schwartz 16 investigated the statistical efficiency of a variety 

of referent strategies.  However, both sets of investigators assumed the conditional logistic 

regression model to be true when calculating the variances.  This model is only valid for 

localizable, ignorable designs, and not for the non-localizable designs studied by these authors.  

This is another manifestation of overlap bias: for non-localizable designs, not only are the 

conditional logistic regression estimating equations biased, but the conditional logistic regression 

variances are as well.  Hence, the conclusions of these authors are not necessarily correct.   

 

Here, we compare the efficiency of the time stratified and full stratum bidirectional designs, two 

localizable, ignorable designs, as a function of the stratum size in the time stratified design.  The 

variances for the two designs for a given exposure series are given in Appendix B.   After 

controlling for confounding by matching, the exposure will have no seasonality or time trend 

within-stratum.  Hence, we simulated exposures to mimic Seattle PM10 data, without seasonality, 

day-of-week effects, or long-term time trend.  The lognormal exposure series are 100 days long, 

have serial correlation on adjacent days (ρ = 0.6), a mean of 3.6, and a variance of 0.2.    

 

The relative efficiency (the ratio of the variances) of the two designs depends on the exposure 

series, the stratum size in the time stratified design, denoted by M, and β.   We show in Figure 

3A the relative efficiency for three different exposure series as a function of M, when  β = 0.  

There is variation in relative efficiency across the exposure series, but for these three exposures, 

we find relative efficiency to be approximately 70% when M = 10, 40-50% when M = 5, and 10-

25% when M = 2.  More extensive simulations revealed that the relative efficiency tends to 
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decrease as β increases, but for the small β observed in air pollution studies, the plots of relative 

efficiency look almost identical to Figure 3A.   

 

Positive autocorrelation in the exposure series also decreases efficiency.  If referents are close to 

the index time, they will be auto-correlated with the index exposure, and, hence, there will be 

less power to detect an exposure effect.  This is illustrated in Figure 3B.  For the same three 

exposures shown in Figure 3A, we show the relative efficiency of the time stratified and full 

stratum bidirectional designs.  In contrast to Figure 3A, in which the strata in the time stratified 

design are sets of adjacent days, the referents in Figure 3B are interspersed throughout the 

exposure series (e.g., if M = 4, the first stratum consists of days 1, 2, 3, and 4 in Figure 3A, and 

days 1, 26, 51, and 76 in Figure 3B).   Indeed, we see that the efficiency of the time stratified 

design is higher in Figure 3B than in Figure 3A.  Thus, it is advisable to choose referents that are 

not adjacent to the index time (e.g. six days apart) in order to maximize the information 

contributed by each referent.   

 

7. Case-Crossover Methods for Unshared Exposure Series 

This paper has focused on the case of a fixed, shared exposure series.  Hence, throughout our 

discussion we have conditioned on exposure within the referent windows.  If, however, exposure 

is not shared, it may be more appropriate not to condition on exposure.  In particular, if 

exposures are independent across subjects, the set of observed exposures can be thought of as a 

random sample from a given distribution.  We call such exposures “random”.  With random 

exposures, it is appropriate not to condition on exposure, but to examine the properties of the 
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effect estimate and estimating equations averaged over all possible exposure series.  Several of 

the case-crossover methods papers have considered random exposures.12;15   

 

We note, however, that not all unshared exposures are random.  If, for example, ambient 

exposure series are available for several different geographic regions, these series may be 

spatially correlated.  With this type of exposure, whether or not to condition on exposure is 

debatable. 

 

With a random exposure, under non-localizable referent selection, Vines and Farrington 15 

showed that the conditional logistic regression estimate may be biased when averaging over 

exposures, except under very strict conditions.  In fact, with a random exposure and non-

localizable design, we know of no unbiased estimator.   

 

In contrast, with a localizable, ignorable referent scheme, and any exposure distribution, there is 

no bias in the conditional logistic regression effect estimate when averaging over exposures.  

This follows since, for localizable, ignorable referent schemes, there can be no overlap bias for a 

given exposure series, and hence there is no bias averaged across exposure series (i.e. for 

exposures X, ˆ ˆ( ) ( ( | )) (0) 0X XE E E X Eβ β β β− = − = = ).  However, conditional logistic 

regression may not be the most efficient way to estimate the exposure effect.  The most efficient 

estimate would come from assuming a model for the exposure distribution and basing estimation 

on the likelihood of the exposure conditional on the index times and referent windows. 
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This discussion emphasizes, once again, the different properties of the referent selection classes.  

With a non-localizable referent scheme, and a shared exposure series, there does not exist a 

method for obtaining unbiased effect estimates conditional on exposure.41  Specifically, the 

conditional logistic regression estimates have overlap bias.   In addition, with a random exposure 

series, there is no existing method for calculating unbiased effect estimates.  In contrast, with a 

localizable, ignorable referent scheme, the conditional logistic regression estimates are unbiased 

regardless of whether we do or don’t condition on exposure.     

 

8. Discussion and Conclusions 

The case-crossover design is well suited to the study of the association between short-term air 

pollution exposure and the risk of an acute adverse health event.  By making within-person 

comparisons, confounding by time-independent confounders is eliminated.  Moreover, if 

referents are matched on important time-dependent confounders, these effects are also 

controlled.  Effect modification can easily be assessed, and standard conditional logistic 

regression methods can be used for analysis.   

 

With air pollution exposures, confounding is of particular concern, since confounders tend to 

dominate the exposure effects.  Due to time-dependent confounding and time trends and 

autocorrelation in air pollution exposure series, proper referent selection is particularly 

important. Referents should be matched on the most dominant time varying confounders, and 

should be sampled bidirectionally.  Sampling referents too close to the index day will result in a 

loss of power due to autocorrelation in the exposure series.  If there remains a choice as to the 

number of referents after these concerns are taken into account, using more referents will 
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increase efficiency.  Finally, the analysis should condition on the fixed and known exposure 

series.   

 

If a non-localizable or localizable, non-ignorable referent scheme is used, conditional logistic 

regression yields biased estimates.  This bias is usually small, though it can exist for effect 

estimates in the range of those typically seen in air pollution studies, and even when there is no 

exposure effect.  The magnitude of the overlap bias varies according to the referent scheme and 

depends on the particular exposure series; hence, model shopping on referent strategies will tend 

to exacerbate the bias.  (Model shopping occurs when a referent selection strategy is chosen 

because it results in larger estimates of effect than other candidate referent selection strategies).  

Therefore, it is wise to avoid overlap bias entirely.  Localizable, ignorable referent schemes 

allow for unbiased estimation using a standard conditional logistic regression analysis.   

 

Our recommendations for the choice of referent selection strategy in an air pollution exposure 

study assume that the exposure is exogenous and the outcome rare.  The time stratified design 

should be used for referent selection, since it avoids overlap bias and bias due to time trend.  The 

stratification can be tailored to match on the most important time-dependent confounders.  

Stratifying on year and month, as well as one or more of day of the week, temperature, 

measurement time, and co-pollutants should be adequate for most studies.  While the semi-

symmetric bidirectional design can also achieve these goals, it requires modification of the 

traditional conditional logistic regression analysis, and will be less efficient than a time stratified 

design because fewer referents are used.   
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Appendix A 

Standard estimating equation theory tells us that we can approximate the bias in β̂  by 
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where ( )iU β is the conditional logistic regression estimating equation for subject i, and the 

expectations are taken with respect to the event time, it .  At this point, we drop the i subscript, 
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where tz  is the exposure on day t and tW is the referent window for day t.22;41  Also,  
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Notice that both (2a) and (3a) are sums over all days in the exposure series.  The summands are 

functions of the exposures within the referent windows surrounding each day.  They are 

independent of the outcome, and depend only on the exposures. 

 

We consider the case of a single binary exposure series of length T, where there are K “positive” 

exposure days.   Using the symmetric bidirectional design, we sample referents one day before 

and after the index day.  With a binary exposure series, the overlap bias (1a) reduces to a very 

simple form.  The form of the bias depends on the number of each of the possible exposure 

arrangements within a referent window.  Since the referent window includes the index day and 
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the previous and subsequent days, there are 32 possible exposure arrangements within the 

window.  Yet index days on the first or last day of the series have only one referent.  Hence there 

are 22 possible values for the 2 exposures within these referent windows.  Some of the exposure 

arrangements contribute the same amount to the bias, and hence are equivalent in terms of our 

calculations.  Exposure arrangements with no variation in exposure contribute nothing to the 

bias.  The unique arrangements of exposures that concern us are: 010, 001 (equivalent to 100), 

011 (equivalent to 110), 101, 01 at the beginning of the series (equivalent to 10 at the end of 

the series), and 10 at the beginning of the series (equivalent to 01 at the end of the series).  The 

numbers of each of these arrangements are represented by 010z , 100z , 110z , 101z , 01z , and 10z , 

respectively.  The arrangements 000 and 111 do not contribute to the summations in (2a) and 

(3a).   Using this notation and some simple algebra, we find that (2a) and (3a) reduce to 

equations (1) and (2) shown in the text. 

 

In contrast, with time-stratified referent selection, and strata of length two and three, X becomes 

010 001 011 101

01 10
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which simplifies to zero.   

 

Appendix B 

We use the inverse of expression (3a) in Appendix A as the variance of β̂  for a given exposure 

series.   Note that this expectation is taken over all event times (not conditional on the referent 
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windows).  Hence, it is not the same as the conditional logistic regression variance of β̂ , 
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, which is conditional on the observed referent windows, and thus 

depends on the observed outcome.  We use the inverse of (3a) because it does not depend on the 

outcome, and thus ensures that our efficiency results are more generalizable.   

 .    

 

 
 
 

Reference List 
 

 (1)  Dominici F, Sheppard L. Health effects of air pollution: a statistical review. International 
Statistical Review 2003; 71:243-276. 

     (2) Dominici F, McDermott A, Hastie T. Improved semi-parametric time series models of air 
pollution and mortality. Journal of the American Statistical Association, in press. 

 (3)  Maclure M. The case-crossover design: A method for studying transient effects on the 
risk of acute events. Am J Epidemiol 1991; 133(2):144-153. 

 (4)  Kwon HJ, Cho SH, Nyberg F, Pershagen G. Effects of Ambient Air Pollution on Daily 
Mortality in a Cohort of Patients with Congestive Heart Failure. Epidemiology 2001; 
12:413-419. 

 (5)  Lee JT, Schwartz J. Reanalysis of the effects of air pollution on daily mortality in Seoul, 
Korea: A case-crossover design. Environ Health Perspect 1999; 107:633-636. 

 (6)  Levy D, Sheppard L, Checkoway H, Kaufman J, Lumley T, Koenig J et al. A case-
crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac 
arrest. Epidemiology 2001; 12:193-199. 

 (7)  Navidi W. Bidirectional case-crossover designs for exposures with time trends. 
Biometrics 1998; 54:596-605. 

 (8)  Neas LM, Schwartz J, Dockery D. A case-crossover analysis of air pollution and 
mortality in Philadelphia. Environ Health Perspect 1999; 107:629-631. 

Hosted by The Berkeley Electronic Press



 26

 (9)  Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and 
the triggering of myocardial infarction. Circulation 2001; 103:2810-2815. 

 (10)  Sunyer J, Schwartz J, Tobias A, Macfarlane D, Garcia J, Anto JM. Patients with chronic 
obstructive pulmonary disease are at increased risk of death associated with urban 
particle air pollution: A case-crossover analysis. Am J Epidemiol 2000; 151:50-56. 

 (11)  Greenland S. Confounding and exposure trends in case-crossover and case time-control 
designs. Epidemiology 1996; 7:231-239. 

 (12)  Marshall RJ, Jackson RT. Analysis of case-crossover designs. Stat Med 1993; 12:2333-
2341. 

 (13)  Mittleman MA, Maclure M, Robins JM. Control sampling strategies for case-crossover 
studies: An assessment of relative efficiency. American Journal of Epidemiology 1995; 
142(1):91-98. 

 (14)  Navidi W, Weinhandl E. Risk set sampling for case-crossover designs. Epidemiology 
2002; 13(1):100-105. 

 (15)  Vines SK, Farrington CP. Within-subject exposure dependency in case-crossover studies. 
Stat Med 2001; 20:3039-3049. 

 (16)  Bateson TF, Schwartz J. Control for seasonal variation and time trend in case crossover 
studies of acute effects of environmental exposures. Epidemiology 1999; 10:539-544. 

 (17)  Bateson TF, Schwartz J. Selection bias and confounding in case-crossover analyses of 
environmental time-series data. Epidemiology 2001; 12:654-661. 

 (18)  Fung KY, Krewski D, Chen Y, et al. Comparison of time series and case-crossover 
analyses of air pollution and hospital admission data. International Journal of 
Epidemiology 2003; 32(6):1064-1070. 

 (19)  Jaakkola JJK. Case-crossover design in air pollution epidemiology. European 
Respiratory Journal 2003; 21: Suppl. 40(81s):85s. 

 (20)  Lee JT, Kim H, Schwartz J. Bidirectional case-crossover studies of air pollution: Bias 
from skewed and incomplete waves. Environ Health Perspect 2000; 108(12):1107-1111. 

 (21)  Levy D, Lumley T, Sheppard L, et al. Referent selection in case-crossover analyses of 
acute health effects of air pollution. Epidemiology 2001; 12:186-192. 

 (22)  Lumley T, Levy D. Bias in the case-crossover design: Implications for studies of air 
pollution. Environmetrics 2000; 11:689-704. 

 (23)  D'Ippoliti D, Forastiere F, Ancona C, et al. Air pollution and myocardial infarction in 
Rome: A case-crossover analysis. Epidemiology 2003; 14(5):528-535. 

http://biostats.bepress.com/uwbiostat/paper214



 27

 (24)  Kan H, Chen B. A case-crossover analysis of air pollution and daily mortality in 
Shanghai. Journal of Occupational Health 2003; 45(2):119-124. 

 (25)  Lin M, Chen Y, Burnett RT, et al. The influence of ambient coarse particulate matter on 
asthma hospitalisations in children: Case-crossoover and time-series analyses. 
Environmental Health Perspectives 2002; 110(6):575-581. 

 (26)  Lin M, Chen Y, Burnett RT, et al. Effect of short-term exposure to gaseous pollution on 
asthma hospitalisation in children: A bidirectional case-crossover analysis (Research 
report). Journal of Epidemiology and Community Health 2003; 57(1):50-55. 

 (27)  Schwartz J. Is the association of airbone particles with daily deaths confounded by 
gaseous air pollutants?  An approach to control by matching. Environmental Health 
Perspectives 2004; 112(5):557-561. 

 (28)  Sullivan J, Ishikawa N, Sheppard L, et al. Exposure to ambient fine particulate matter and 
primary cardiac arrest among persons with and without clinically recognized heart 
disease. American Journal of Epidemiology 2003; 157(6):501-509. 

 (29)  Sunyer J, Basagana X. Particles, and not gases, are associated with the risk of death in 
patients with chronic obstructive pulmonary disease. International Journal of 
Epidemiology 2001; 30(5):1138-1140. 

 (30)  Sunyer J, Basagana X, Belmonte J, et al. Effect of nitrogen dioxide and ozone on the risk 
of dying in patients with severe asthma. Thorax 2002; 57(8):687-693. 

 (31)  Tsai SS, Huang CH, Goggins WB, et al. Relationship between air pollution and daily 
mortality in a tropical city: Kaohsiung, Taiwan. Journal of Toxicology and 
Environmental Health, Part A 2003; 66(14):1341-1349. 

 (32)  Tsai SS, Goggins WB, Chiu HF, et al. Evidence for an association between air pollution 
and daily stroke admissions in Kaohsiung, Taiwan. Stroke 2003; 34(11):2612-2616. 

 (33)  Yang CY, Yong-Shing C, Chiang-Hsing Y, et al. Relationship between ambient air 
pollution and hospital admissions for cardiovascular diseases in Kaohsiung, Taiwan. 
Journal of Toxicology and Environmental Health, Part A 2004; 67:483-493. 

 (34)  Yang CY, Chang CC, Hung-Yi C, et al. Relationship between air pollution and daily 
mortality in a subtropical city: Taipei, Taiwan. Environment International 2004; 30:519-
523. 

 (35)  Yang Q, Chen Y, Shi Y, et al. Association between ozone and respiratory admissions 
among children and the elderly in Vancouver, Canada. Inhalation Toxicology 2003; 
15(13):1297-1308. 

 (36)  Clyde M. Bayesian model averaging and model search strategies (with discussion). In: 
JM Bernado, JO Berger, AP Dawid, AFM Smith, eds. Bayesian Statistics 6. Oxford: 
Oxford University Press; 1999: 157-185. 

Hosted by The Berkeley Electronic Press



 28

 (37)  Clyde M. Model uncertainty and health effect studies for particulate matter. 
Environmetrics 2000; 11:745-763. 

 (38)  Lumley T, Sheppard L. Assessing seasonal confounding and model selection bias in air 
pollution epidemiology using positive and negative control anayses. Environmetrics 
2000; 11:705-718. 

 (39)  Varachan R, Frangakis CE. Revealing and addressing length bias and heterogeneous 
effects in frequency case-crossover studies. Am J Epidemiol 2004; 159(6):596-602. 

 (40)  Breslow NE, Day NE. Statistical Methods in Cancer Research. Lyon: International 
Agency for Research on Cancer, 1980. 

 (41)  Janes H, Sheppard L, Lumley T. Overlap bias in the case-crossover design, with 
application to air pollution exposures. Statistics in Medicine, in press.  Published online: 
www.interscience.wiley.com. 

 (42)  Little RJA, Rubin DB. Statistical analysis with missing data. New York: John Wiley, 
1987. 

 (43)  Austin H, Flanders WD, Rothman KJ. Bias arising in case-control studies from selection 
of controls from overlapping groups. International Journal of Epidemiology 1989; 
18:713-716. 

 (44)  Robins J, Pike M. The validity of case-control studies with nonrandom selection of 
controls. Epidemiology 1990; 1:273-284. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://biostats.bepress.com/uwbiostat/paper214



 29

Table 1    Case-crossover studies of air pollution exposures.  Studies are listed in (reverse) 
chronological order.  
 
Authors Pub. 

Date 
Exposure Outcome Study Population Referent Strategy 

Yang et al.31 2004 PM10, CO, 
NO2, SO2, O3 

cardiovascular 
disease hospital 
admissions 

Kaohsiung, Taiwan symmetric bidirectional 7 

Yang et al.32 2004 PM10, CO, 
NO2, SO2, O3 

non-accident 
mortality Taipei, Taiwan symmetric bidirectional 7 

D’Ippoliti et 
al.21 2003 TSP, CO, 

NO2, SO2 
acute MI hospital 
admission Rome, Italy time stratified by DOW, 

month, year 

Kan et al.22 2003 PM10, NO2, 
SO2 

non-accident 
mortality Shanghai, China 

unidirectional 7,14,21 
symmetric bidirectional 
7,14,21 

Lin et al.24 2003 CO, NO2, SO2, 
O3 

asthma hospital 
admission 

children in Toronto, 
Canada symmetric bidirectional 14 

Schwartz25 
 2004 PM10 

non-accident 
mortality 14 US cities time stratified by month, 

year, gaseous pollutant* 

Sullivan et 
al.26 2003 PM10, CO, 

SO2 

out of hospital 
primary cardiac 
arrest 

Washington State time stratified by DOW, 
month, year 

Tsai et al.29 2003 PM10, CO, 
NO2, SO2, O3  

non-accident 
mortality Kaohsiung, Taiwan symmetric bidirectional 7 

Tsai et al.30 2003 PM10, CO, 
NO2, SO2, O3  

stroke hospital 
admission Kaohsiung, Taiwan symmetric bidirectional 7 

Yang et al.33 2003 COH, CO, 
NO2, SO2, O3 

ozone and 
respiratory hospital 
admission 

children and elderly in 
Vancouver, Canada symmetric bidirectional 7 

Lin et al.23  2002 PM10-2.5, PM2.5, 
PM10 

asthma hospital 
admission 

children in Toronto, 
Canada 

unidirectional 14 
symmetric bidirectional 14 

Sunyer et 
al.28  2002 

PM10, black 
smoke, CO, 
NO2, SO2, O3 

asthma visits to the 
emergency room 

asthma patients 14 years 
and older in Barcelona, 
Spain 

time stratified by DOW, 
month, year 

Kwon et al.2  2001 PM10, CO, 
NO2, SO2, O3  

non-accident 
mortality 

patients with congestive 
heart failure 
in Seoul, South Korea 

symmetric bidirectional 7,14 

Levy et al.4 2001 PM2.5**, PM10 
out-of hospital 
primary cardiac 
arrest 

Seattle, WA time stratified by DOW, 
month, year 

Peters et al.7 2001 PM2.5 acute MI Boston, MA unidirectional 2,3,4 

Sunyer et 
al.27 2001 PM10, CO, 

NO2, O3  
non-accident 
mortality 

adults in Barcelona with 
chronic obstructive 
pulmonary disease 

symmetric bidirectional 7 

Sunyer et 
al.8 2000 black smoke non-accident 

mortality 

patients with chronic 
obstructive pulmonary 
disease in Barcelona, Spain 

symmetric bidirectional 7 

Lee and 
Schwartz3 
 

1999 TSP, SO2, O3 
non-accident 
mortality Seoul, South Korea 

unidirectional retrospective 
and prospective 7 and/or 14; 
symmetric bidirectional 7 

Neas et al.6 1999 TSP non-accident 
mortality Philadelphia, PA symmetric bidirectional 

7,14,21 
      
* stratified by month, year, and one of four gaseous pollutants: CO (within 0.03 ppm), NO2 (within 1 ppb), 
SO2 (within 1 ppb), O3 (within 2 ppb).   
** measured by light scattering 
TSP = total suspended particulates; MI = myocardial infarction; PMx = particulate matter less 
than x µm in diameter; DOW = day of week 
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Table 2  Characteristics of the referent selection strategies commonly used in air pollution 
studies. 
Referent Selection 
Strategy 

Referent Class Controls for time 
trend bias? 

Controls for  
confounding 
by design?  

CLR 
estimates 
unbiased?* 

Restricted            Non-localizable No No No 
    unidirectional     
Full stratum  
    bidirectional 

Localizable, 
ignorable Yes No Yes 

Symmetric      
    bidirectional Non-localizable Yes Yes No 

Time stratified Localizable, 
ignorable Yes Yes Yes 

Semi-symmetric  
    bidirectional 

Localizable, non-
ignorable Yes Yes No** 

* CLR: conditional logistic regression. 
** Conditional logistic regression with an offset of log(2) for cases with only one referent, and 
zero otherwise, will produce unbiased estimates. 
 
 
 
 
Table 3    Four different length 10 binary exposure series, their parameters, and the values of the 
expected conditional logistic regression estimating equation (X) for different values of β. 
 
                                                             Parameters                  X = expected estimating equation  

 Exposure Series z010 z001 z101 z011 z01 z10   β = 0 β = 0.05 β = 0.15 
A 0111100000 0 1 0 2 1 0 -0.0167 -0.0176 -0.0193 
B 0101101010 3 0 3 2 2 0 -0.0331 -0.0305 -0.0248 
C 1101010111 2 0 3 2 0 0 0.0169 0.0202 0.0269 
D 1101110111 0 0 2 4 0 0 <0.0001 <0.0001 <0.0001
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Figure 1   Restricted unidirectional, full stratum bidirectional, and symmetric bidirectional 
referent selection strategies.  
 

A B C

Restricted Unidirectional 7 Full Stratum Bidirectional Symmetric Bidirectional 7,14

event time event time event time

referent referents referents

 
 
 
Figure 2  The large sample bias as a function of β for the exposure series shown in Table 3.  We 
show bias on two scales: for β between -1 and 1, and β between -.2 and .2.  In the second plot, 
the line y = x is superimposed so that we can observe when the bias is larger than β itself.  Note 
that the large sample bias scale is different on the two plots.  
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Figure 3   Efficiency of the time stratified design relative to the full stratum bidirectional design, 
as a function of the stratum size in the time stratified design.  Relative efficiency is shown for 
three randomly chosen simulated exposure series with autocorrelation, when β = 0.  On the left, 
the time stratified design uses strata as sequences of adjacent days (i.e., if the stratum size is 4, 
the first stratum consists of days 1 to 4), and in the right panel, the referents are spaced in the 
series (i.e., if the stratum size is 4, the first stratum consists of days 1, 26, 51, 76).   
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