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1 Introduction

Medical diagnostic tests play an important role in health care. New diagnostic tests for detecting viral

and bacterial infections are continually being developed. The performance of a new diagnostic test is

ideally evaluated by comparison with a perfect gold standard test (GS) which assesses infection status

with certainty. Many times a perfect gold standard does not exist and a reference test or imperfect gold

standard must be used instead. Although statistical methods and techniques are well established for

assessing the accuracy of a new diagnostic test when a perfect gold standard exists, such methods are

lacking for settings where a gold standard is not available. In this paper we will review some existing

approaches to this problem and propose an alternative approach.

To fix ideas we consider a specific example. Chlamydia trachomatis is the most common sexually

transmitted bacterial pathogen. In women Chlamydia trachomatis can result in pelvic inflammatory disease

(PID) which can lead to infertility, chronic pelvic pain, and life-threatening ectopic pregnancy. Diagnostic

tests for Chlamydia trachomatis, among other infections, must be evaluated using specimens from persons

whose true infection status cannot be known with certainty. Lacking a perfect GS, cell culture has been

used as a reference test. It is generally accepted that culture is nearly 100% specific, but less than 100%

sensitive (Black, 1997, Schachter, 1985). The fact that cell culture is not perfect in identifying those

with infections causes misclassification of some truly infected subjects as uninfected. Furthermore, this

misclassification biases estimates of the accuracy of a new test. If the sensitivity and specificity of culture

were known or could be estimated, then existing methods for estimating the accuracy of the new test could

be used (Gart & Buck, 1966, Greenberg & Jekel, 1969, Staquet et al., 1981, Baker, 1991). Unfortunately,

however, this is not the case.

As technologic advances have been made, more sensitive diagnostic tests for chlamydia have been

developed. Tests that use DNA-amplification methods such as ligase chain reaction (LCR) and polymerase

chain reaction (PCR) and antigen detection methods such as EIA (enzyme immunoassay) and DFA (direct

immunofluorescence) are some of the tests that are thought to be more sensitive than culture. When these

tests are compared to cell culture, many of the so-called “false-positive” non-culture test results are in

fact true positives or “culture misses”. Rather than using culture alone as a reference for evaluating new

diagnostic tests, it may be possible to use these more sensitive tests in conjunction with culture as a

reference.

Discrepant resolution is one method for assessing the accuracy of new diagnostic tests when a perfect

gold standard does not exist but several different imperfect reference tests are available. It has increas-
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ingly gained popularity, particularly in the detection of infectious diseases. This method will be defined

and demonstrated in Section 2 using data from a study in which specimens were tested for Chlamydia

trachomatis. Recently, concerns with this method have been raised. Some of these will be pointed out in

Section 2.3. As an alternative to using discrepant resolution or to using an imperfect gold standard we

propose the use of a composite reference standard. This idea shares some appealing features in common

with discrepant resolution while avoiding its key problems relating to bias and interpretation. It will be

motivated and demonstrated in Section 3. Section 4 will compare analytic expressions for estimates of

prevalence and accuracy which are obtained with an imperfect reference test (culture), discrepant resolu-

tion, and the composite reference standard. Some cost efficient study designs for evaluating accuracy using

the composite reference are considered in Section 5. A method called latent class analysis is becoming

popular for the evaluation of clinical diagnostic tests when no gold standard exists and it has recently been

suggested as an alternative to discrepant resolution. Its basic approach is very different from the other

three methods considered in this paper. Some remarks concerning this technique are given in Section 6.

We close with a discussion in Section 7.

2 Discrepant Resolution

2.1 Definition

The goal of discrepant resolution (DR), also known as discrepant analysis, is to obtain accuracy estimates

for a new test when the reference test is not a gold standard. Specifically, it uses additional “resolver” tests

to resolve the discrepant results between the new diagnostic test and the imperfect reference test. For the

purpose of discussion the imperfect reference will be referred to as a culture test in this paper. In addition

to its use with tests for detecting Chlamydia trachomatis (Polaneczky et al., 1998, Crotchfelt et al., 1998,

Gaydos et al., 1998), discrepant resolution has been used to study the performance of tests for Neisseria

gonorrhoeae (Ciemins et al., 1997, Young et al., 1997, Ching et al., 1995), Closttridium difficile (Schue

et al., 1994, DeGirolami et al., 1992), Mycobacterium tuberculosis (Bergmann & Woods, 1997, Gamboa

et al., 1997, Smith et al., 1997), Toxoplasma gondii (Crouch, 1995), Helicobacter pylori (Graham et al.,

1996, Pronovost et al., 1994), pnuemocystis carinii (Mathis et al., 1997), hepatitis C virus (Kessler et al.,

1997, Morris et al., 1996), cytomegalovirus (Roseff & Campos, 1993, Zweygberg et al., 1990), and herpes

simplex virus (Cullen et al., 1997, Dascal et al., 1989).

There are two stages to the discrepant resolution algorithm. In the first stage all n specimens are
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tested with the new test and with culture. The results of the testing in stage 1 can be summarized in a

contingency table (stage 1 of Table 1). The number in a specific cell of the contingency table represents

the number of specimens with that specific combination of test results. The first and second subscripts

denote results of the new test and culture, respectively. For example, n+− is the number of specimens

which are considered new test positive and culture negative.

Culture based estimates of the accuracy of the new test can be calculated using the information obtained

in stage 1 of Table 1. The prevalence of infection, sensitivity, specificity, positive predicted value (PPV),

and negative predicted value (NPV) of the new test when culture is used as the standard can be estimated

as follows:

prevalenceC =
n++ + n−+

n
(1)

sensitivityC =
n++

n++ + n−+
(2)

specificityC =
n−−

n−− + n+−
(3)

PPVC =
n++

n++ + n+−
(4)

NPVC =
n−−

n−− + n−+
(5)

Since culture is known to be an imperfect reference test, DR attempts to improve the reference by re-

testing those specimens for which the two tests disagree (n+− and n−+) in the first stage using a resolver

test. Results from the resolver test are used to update the contingency table formed from stage 1 testing

and result in a new contingency table (stage 2 of Table 1). Only specimens which were re-tested with the

resolver have a third subscript indicating the resolver test result. For example, specimens that are new

test positive/culture negative and positive by the resolver are considered positive by discrepant resolution

and are denoted n+−+. When the discrepant resolution algorithm is used, the following estimates of

prevalence, sensitivity, specificity, PPV, and NPV are obtained:

prevalenceDR =
n++ + n+−+ + n−++

n
(6)

sensitivityDR =
n++ + n+−+

n++ + n+−+ + n−++
(7)

specificityDR =
n−− + n−+−

n−− + n−+− + n+−−
(8)

PPVDR =
n++ + n+−+

n++ + n+−+ + n+−−
(9)

NPVDR =
n−− + n−+−

n−− + n−+− + n−++
(10)
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2.2 Example

Wu et al. (1991) conducted a study in which specimens from 324 men and women attending two STD

clinics in China and Taiwan were tested for Chlamydia trachomatis using cell culture, PCR, and EIA.

In this study the researchers wanted to assess the accuracy of EIA. The results from cell culture and

EIA are summarized in stage 1 of Table 2. If culture is considered the reference, then using equation

(1) suggests the prevalence of Chlamydia trachomatis is 23/324=0.071. Furthermore, based on equations

(2)-(5), when culture is used as the standard the estimated sensitivity of EIA is 20/23=0.870, estimated

specificity is 294/301=0.977, estimated PPV is 20/27=0.741, and estimated NPV is 294/297=0.990. In

stage 2 of discrepant resolution, the 7 specimens which were positive by EIA and negative by culture and

the 3 culture positive/EIA negative specimens are re-tested with the resolver, PCR. Four of the 7 EIA

positive/culture negative specimens were considered positive by PCR and 1 of the 3 EIA negative/culture

positives was PCR negative. The results after resolving the discrepancies are summarized in stage 2 of Table

2. Applying equations (6)-(10) suggest the prevalence of infection is 26/324=0.080, sensitivity of EIA is

(20+4)/(20+4+3-1)=24/26=0.923 and specificity is (294+1)/(294+1+7-4)=295/298=0.990. Furthermore,

the PPV and NPV of EIA are estimated to be 24/27=0.889 and 295/297=0.993, respectively.

2.3 Concerns with DR

Although DR has been in use since at least 1984, the first concerns about it were raised only recently

(Hadgu, 1996). A key problem with DR has to do with the ambiguous interpretation of the sensitivity and

specificity estimates obtained. The standard, relative to which accuracy is measured, depends intrinsically

on the results of the new test, as can be seen by noting that the denominators of (7) and (8) involve the

result of the new test. When evaluating accuracy of a new test, it is clearly imperative that it be compared

to a standard which is independent of the new test itself. DR violates this principle.

Biases in DR estimates of accuracy have been described. Miller (1998), Hadgu (1997), and Lipman &

Astles (1998) algebraically and numerically demonstrated the bias in sensitivity and specificity estimates

in the ideal setting where the resolver test is a perfect gold standard. They showed that sensitivity and

specificity estimates obtained from DR are biased upwards, so that the new test appears to be more

accurate than it really is. Green et al. (1998) showed that when the resolver test is not a perfect gold

standard even larger biases are possible and in some situations biases in DR estimates are smaller than

the biases resulting from culture (an imperfect reference test). Of particular concern is the setting where
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errors made by the resolver are similar in nature to those made by the new test.

3 Composite Reference Standards

3.1 Definition

We propose that the results of several imperfect reference tests can be used in combination to define a

standard against which a new test can be compared. The tests in the combination cannot, of course,

include the new test itself. We call the resultant standard a composite reference standard (CRS). In the

chlamydia setting, for example, one might consider that any specimen that is culture positive or resolver

test positive is CRS positive and any specimen that is culture negative and resolver negative is CRS

negative independent of the results of the new test. In this setting, both the culture and resolver tests are

likely to be highly specific so that the CRS should also be highly specific while more sensitive than either

test alone. Other combinations of culture and resolver test results could be used to define a CRS that may

be relevant in other settings. The resolver could even be a repeat application of culture testing.

The use of a CRS shares some of the appealing features of the discrepant resolution approach while

avoiding its most problematic disadvantages. Like discrepant resolution, the CRS approach allows one,

(i) to use several sources of information in order to assess if an infection is present; and (ii) to ascertain

the reference test information in a sequential fashion which avoids the need for redundant testing. In the

chlamydia setting with the aforementioned CRS, specimens that test positive with culture at the first stage

would not need to be tested with a resolver at the second stage, since they are already known to be CRS

positive by definition. In contrast to discrepant resolution however, the CRS reference does not depend

on the results of the new test under investigation. One drawback of the CRS is that it requires testing

the typically large number of specimens negative by both culture and the new test. However, a solution

to this problem is proposed in Section 5.

The particular CRS which we will pursue in detail here is the aforementioned CRS which is defined

as being positive if either reference test, culture or a resolver, is positive and negative otherwise. This

definition was used by Jang et al. (1992) for the chlamydia setting. To assess the performance of the new

test using CRS, there are two stages to testing (Table 3). As with DR, in the first stage all specimens are

tested by the new test and culture. At the second stage only those specimens which are culture negative

at the first stage are tested with the resolver since by definition all culture positives are CRS positive.

Notation for the results of both stages of testing is displayed in Table 3. For example, n+−+ is the number
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of new test positive/culture negative/resolver positive specimens. The results from both stages of testing

are combined to get valid estimates of the performance of the new test using CRS.

It can be shown that based on these data the maximum likelihood estimator of sensitivity is

sensitivityCRS =
n++ + n+−+

n++ + n+−+ + n−+ + n−−+
(11)

and the maximum likelihood estimate of the specificity of the new test using the CRS is

specificityCRS =
n−−−

n−−− + n+−−
(12)

Similarly

prevalenceCRS =
n++ + n+−+ + n−+ + n−−+

n
(13)

PPVCRS =
n++ + n+−+

n++ + n+−+ + n+−−
(14)

NPVCRS =
n−−−

n−−− + n−+ + n−−+
(15)

3.2 Example

Again consider the data from the study done by Wu et al. (1991). Contingency tables summarizing the

two stages of CRS for these data are given in Table 4. The first stage in assessing the performance of

EIA using the CRS is the same as that in the DR algorithm. In the second stage the 301 culture negative

specimens are tested with PCR. Two of the 294 EIA negative/culture negative specimens were positive

by PCR, and as noted above 4 of the 7 EIA positive/culture negatives were PCR positive. Therefore,

an additional 6 specimens are considered to be infected when the CRS is used as the standard. Us-

ing equations (11)-(15), the maximum likelihood estimate of prevalence is 29/324=0.090, of sensitivity

is (20+4)/(20+4+3+2)=24/29=0.828, of specificity is (294-2)/(294-2+7-4)=292/295=0.990, of PPV is

24/27=0.889, and of NPV is 292/297=0.983.

3.3 Infection Missed by Culture and the New Test

In typical studies of low prevalence cohorts, a majority of the specimens will be negative at the first stage

according to both culture and the new test. A major problem with the DR algorithm is that it does not

test the large number of new test negative/culture negative specimens with the resolver. The CRS method,

on the other hand, does test this group of specimens. In Section 5.2 we will examine, in the general setting,

the importance of testing these specimens with the resolver test. To gain some insight into this question
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in a real study, we determined (Figure 1) the effects of varying values of n−−+ on the CRS estimates of

sensitivity and specificity in the context of the data from Wu et al. (1991).

Figure 1(a) suggests the estimated sensitivity decreases sharply as n−−+ increases. If none of the

culture negative/new test negative specimens tested positive with PCR, the resolver, then the sensitivity

would be 0.889. However, if for example, 9 (3.06%) tested positive with the resolver, the estimate of

sensitivity drops substantially to 0.667. Thus the sensitivity estimate depends heavily on the results of

resolver testing of the new test negative/culture negative specimens. The specificity estimate on the other

hand does not as can be seen from Figure 1(b). Estimated specificity decreases slowly with n−−+. If none

of the new test negative/culture negative specimens test positive with PCR, the specificity is 0.99, while

the specificity only drops to 0.98 when 147 (50%) of these specimens test positive with PCR. In practice

such a high percentage of positives would be extremely unlikely.

4 Comparison of Accuracy Parameters

Thus far we have described three reference standards for assessing the performance of a new diagnostic

test, an imperfect gold standard (culture), discrepant resolution, and a composite reference standard.

Equations for estimating prevalence of infection, sensitivity, specificity, PPV, and NPV of the new test

using each of the three methods have been presented. Therefore, analytic comparisons of the estimates

obtained from each method can be made. The results of such comparisons are summarized in Table 5.

Comparing equations (1) and (6) suggests that the prevalence of infection when the DR algorithm is

used can be lower or higher than the prevalence estimated using culture as the standard with equality when

n−+− equals n+−+. On the other hand, the sensitivity, specificity, PPV, and NPV of the new test when

DR is used is always larger than or equal to the estimates obtained using culture alone as the standard.

This is not surprising since resolving discrepant results can only increase the number of specimens in the

diagonal cells of the contingency table.

The CRS was defined so that not only culture positive specimens, but also resolver positive specimens

were considered to be infected. Therefore, it is not surprising that prevalence of infection when the CRS

is used is always the same or higher than the prevalence when culture alone is used as the standard.

Furthermore, since the prevalence estimated using the CRS is always greater than or equal to the culture

based estimate of prevalence, it makes sense that the PPV estimated using the CRS is larger than or equal

to the culture based estimate of PPV, and the NPV estimated using the CRS is less than or equal to the

9

Hosted by The Berkeley Electronic Press



culture based estimate of NPV. Comparisons of sensitivity and specificity are not as straightforward.

The estimate of sensitivity when CRS is used is a weighted average of the culture based estimate of

sensitivity and n+−+/(n+−+ + n−−+). The latter is the proportion of the resolver positive/culture neg-

ative specimens that were new test positive, i.e., the sensitivity of the new test to samples testing positive

only to the resolver and not to culture. Since the CRS based estimate of the sensitivity of the new test is

a weighted average, the following statement is true.

A. sensitivityC ≥ sensitivityCRS , if and only if sensitivityC ≥ n+−+
n+−+ + n−−+

.

A similar statement can be made in regards to specificity comparisons upon noting that the estimate

of the specificity of the new test using the CRS is a weighted average of the culture based estimate of

specificity and n−−+/(n+−+ + n−−+).

B. specificityC ≤ specificityCRS , if and only if specificityC ≥ n−−+
n+−+ + n−−+

.

Observe that in statements A and B equality on the left implies and is implied by equality on the right.

General comparisons of the estimates obtained using the CRS and the DR algorithm can also be made.

The prevalence of infection when infection is defined using the CRS is always greater than or equal to

the prevalence when DR is used. On the other hand, comparing the equations for CRS and DR we

see that sensitivity, specificity, and NPV estimates resulting from the CRS are less than or equal to the

corresponding DR estimates. Interestingly, equations (9) and (14) are the same, so that the PPV estimates

resulting from the two methods are the same.

In Table 6, using data from Wu et al. (1991), estimated accuracy and prevalence parameters calculated

using culture, DR, and CRS are displayed. The inequalities in Table 5 are borne out with the real data. The

estimate of sensitivity using CRS appears to be less than the culture based estimate, whereas specificity

appears to be better when the CRS is used. Of the 6 specimens testing negative with culture and positive

with the resolver only 4 test positive with the new test. Thus the right hand side of statements A and B

held, implying the left hand side inequalities.
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5 CRS with Modified Sampling

One drawback to using the CRS in practice is that typically there are a large number of new test nega-

tive/culture negative specimens and testing all of these with the resolver test can become expensive and

time consuming. Indeed a motivation for the DR approach is that none of these need to be re-tested with

the resolver. A strategy to reduce cost and time, while employing the CRS is to select subsets of the

new test negative/culture negative specimens and of the new test positive/culture negative specimens for

testing with the resolver. We now show how estimates of accuracy parameters associated with the new

test using the CRS can be calculated based on data from such a study design.

5.1 Modified Accuracy Estimates

Let m−− be the number of new test negative/culture negative specimens selected from the n−− available,

that are to be tested with the resolver. Then m−−/n−− is the fraction of the new test negative/culture

negative specimens selected. Let m−−+ and m−−− denote the number of these specimens that are resolver

positive and resolver negative, respectively. Similarly, m+−+ denotes the number of specimens from the

subset of size m+− that are resolver positive while m+−− corresponds to the number of such specimens

that are resolver negative. The multinomially based likelihood for these data is:

c0 p
n++

++ p
n−+

−+ p
(n+−−m+−)

+− p
(n−−−m−−)

−− p
m+−+

+−+ p
m+−−

+−− p
m−−+

−−+ p
m−−−

−−−

where c0 is a normalizing constant and cell probabilities are denoted by p with analogous subscript notation

for the outcomes of the new test, culture and resolver tests.

Solving the likelihood equations yields the following estimates:

p̂++ =
n++

n
; p̂−+ =

n−+

n

p̂+−+ =
m+−+(n+−/m+−)

n
; p̂+−− =

m+−−(n+−/m+−)
n

p̂−−+ =
m−−+(n−−/m−−)

n
; p̂−−− =

m−−−(n−−/m−−)
n

Since m+−/n+− and m−−/n−− are the sampling fractions for the second stage, the estimated cell

frequencies associated with the resolver test results if all specimens were re-tested (i.e. the numerators of

p̂+−+, p̂+−−, p̂−−+ and p̂−−−) are the observed cell frequencies multiplied by the inverse of the sampling

fraction. Inserting these estimates into expressions for prevalence and accuracy yields the following:

prevalenceCRS =
n++ + m+−+(n+−/m+−) + n−+ + m−−+(n−−/m−−)

n
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sensitivityCRS =
n++ + m+−+(n+−/m+−)

n++ + m+−+(n+−/m+− + n−+ + m−−+(n−−/m−−))

specificityCRS =
m−−−(n−−/m−−)

m−−−(n−−/m−−) + m+−−(n+−/m+−)

PPVCRS =
n++ + m+−+(n+−/m+−)

n++ + m+−+(n+−/m+−) + m+−−(n+−/m+−)

NPVCRS =
m−−−(n−−/m−−)

m−−−(n−−/m−−) + n−+ + m−−+(n−−/m−−)

5.2 Choice of Sampling Fractions

Expressions for the variances of the modified estimates of sensitivity and specificity are provided in the

Appendix. Standard errors can be calculated by substituting estimates for the unknown components

as described there. Sample sizes and desirable sampling fractions can be based on these expressions.

Confidence intervals for sensitivity and specificity can also be based on these standard errors in large

samples. A better strategy for confidence intervals is perhaps to use a logit transformation of the estimators

and the delta method for the standard error of the logit transform in order to calculate confidence limits

for the logit transform. Confidence limits for parameters then are calculated as logistic functions of these

limits. Newcombe (1998) compares different methods for calculating confidence intervals for a proportion

including using a logit transformation.

The variances of the parameter estimates depend on the proportions of specimens chosen for testing in

the second stage. To understand how these sampling fractions influence variability in the specificity and

sensitivity estimates we calculated asymptotic variance expressions with various sampling fractions using

the cell probabilities from Wu’s data. Figure 2 presents the ratio of the variance when all n−− specimens

testing negative with culture and EIA are tested with resolver, to the variance when a fraction m−−/n−−

are tested with resolver, i.e. the asymptotic relative efficiency (ARE). In these plots the sampling fraction,

m+−/n+−, is set to 1, i.e., all specimens testing positive with EIA and negative with the culture are

tested with the PCR resolver. It appears that the sampling fraction in the (-,-) cell has little effect on the

precision with which the specificity is estimated. Additional numerical work (not shown) suggests that

this will be the case in most practical settings. However, the fraction of EIA negative/culture negative

specimens tested with the resolver does have a substantial effect on the precision of the sensitivity estimate.

For example, with Wu’s data the standard error of the sensitivity estimate is 15% larger when 50% of the

culture negative/EIA negative specimens are re-tested than when all n−− specimens are re-tested with
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the resolver.

Figure 3 shows how the asymptotic relative efficiencies of the estimates vary with the sampling fraction

m+−/n+−; i.e., when a fraction of the culture negative/EIA positive specimens are selected for stage

2 testing. The precision of the sensitivity estimate is unaffected but that of the specificity is strongly

influenced by m+−/n+−. In practice however one will most likely test all of the culture negative/new test

positive specimens because there will be relatively few of them and because they will be of scientific or

clinical interest.

6 Latent Class Analysis

6.1 Definition and Concerns

A statistical solution to the imperfect gold standard problem put forth by Walter & Irwig (1988) amongst

others is latent class analysis. The basic idea of latent class analysis is to assume that there exists some

unobservable infection status and to relate the observed diagnostic test results to it with a statistical

model. It requires that a minimum of three (imperfect) diagnostic tests be measured on every specimen,

in contrast to DR or to the modified sampling CRS approach. Maximum likelihood techniques then yield

estimates of infection prevalence and of test accuracy for each of the tests.

There are at least three problems with this approach. First, infection is not an explicitly defined entity

in this approach. It is the intangible which links the results of the observed diagnostic tests. We prefer

the CRS approach over the latent class approach in part because the composite reference is well-defined

in the CRS method. A second problem with latent class analysis is that it relies on a statistical model

which cannot be fully tested. With three diagnostic tests for example, the critical assumption is that test

results are statistically independent given infection status. It is impossible to examine the validity of this

assumption when only three diagnostic tests have been applied. More complex models can be applied

when more tests are available but unverifiable assumptions about dependence are still required. Finally,

the estimates calculated using this approach are not simple explicit functions of the data. For the clinician,

the estimates are output from a “black-box” statistical algorithm. For the statistician, it is hard to get an

intuitive understanding for how the data affect the estimates. In the next section we derive some analytic

expressions which may be helpful in this regard.
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Hosted by The Berkeley Electronic Press



6.2 Parameter Estimates

Let p denote infection prevalence, φk denote the sensitivity of the kth test and θk its specificity. We suppose

that there are three diagnostic tests and hence that the conditional independence statistical model is used.

With Yjk denoting the result of the kth test on the jth specimen, the likelihood for the three test results

from the jth specimen under the conditional independence model is

Lj = p
∏

k

φ
Yjk

k (1− φk)1−Yjk + (1− p)
∏

k

θ
1−Yjk

k (1− θk)Yjk

Differentiating the log-likelihood,
∑

j log(Lj), with respect to p, φk and θk k = 1, 2, 3 and setting the

derivatives to zero yields the following equations:

p =
∑

wj/n (16)

φk =
∑

wjYjk/
∑

wj (17)

θk =
∑

(1− wj)(1− Yjk)/
∑

(1− wj) (18)

where wj = aj/(aj + bj), aj = p
∏

k φ
Yjk

k (1− φk)1−Yjk and bj = (1− p)
∏

k θ
1−Yjk

k (1− θk)Yjk . The weights,

wj , can be interpreted as conditional probabilities calculated under the conditional independence model

wj = P (Dj = 1|Yj1, Yj2, Yj3).

Note that (16)–(18) do not give explicit expressions for the parameter estimates as functions of the

data since the weights are themselves functions of the parameters. Rather, at the maximum likelihood

solutions for the parameters {p, (φk, θk) k = 1, 2, 3}, the result is that these equations are satisfied. Thus

the prevalence estimate is an average of the estimated probabilities, p̂ =
∑

P̂ (Dj = 1|Yj1, Yj2, Yj3)/n. The

sensitivity (1-specificity) estimate for the kth test is a weighted average of the kth test results weighted by

the estimated probability of that observation being from a specimen with (without) an infection.

6.3 Conditional Dependence

The above formulation now allows us to address the question of how violation of the conditional indepen-

dence assumption can affect parameter estimation. Observe that if the weights wj were calculated under

the true model, then (16)–(18) should be satisfied asymptotically. Comparing weights calculated under

correct and incorrect models can give insight into biases which can result under violation of the conditional

independence assumption.
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Consider for example that the three diagnostic tests for infection are 100% specific but only 80%

sensitive and that the true prevalence of infection is 50%, say. For the sake of illustration suppose that

the tests are highly dependent with P (Y2 = 1, Y3 = 1|Y1 = 1, D = 1) = 1 and P (Y2 = 0, Y3 = 0|Y1 =

0, D = 1) = 1. That is, tests 2 and 3 identify the same specimens as having an infection as does

test 1 and hence are conditionally dependent. Only two types of triples (Y1, Y2, Y3) occur in the data,

(1,1,1) and (0,0,0), with frequencies of 40% and 60%, respectively. Observe that the true conditional

probabilities are: P (D = 1|(0, 0, 0)) = P ((0, 0, 0)|D = 1)P (D = 1)/P (0, 0, 0) = 0.2 × 0.5/0.6 = 0.167 and

P (D = 1|(1, 1, 1)) = 1. Under the conditional independence model P (D = 1|(1, 1, 1)) remains at 1 but

P (D = 1|(0, 0, 0)) is reduced substantially to P (D = 1|(0, 0, 0)) = 0.0079 from its true value of 0.167.

From equation (16) we see that the latent class analysis which assumes conditional independence

therefore yields a prevalence estimate below the true prevalence. In equation (17) the sensitivity estimate

gives very little weight to negative test results yielding a sensitivity estimate which is biased too high.

Similarly, the specificity estimate will overweight negative test results yielding a high estimate of specificity.

These considerations suggest that when test results are positively correlated for infected and/or uninfected

specimens, latent class analysis will yield accuracy estimates which are too high. This result is corroborated

by simulation results of Torrance-Rynard & Walter (1997).

6.4 Example

The latent class method was applied to data from Wu et al. (1991). This method estimated the prevalence

of Chlamydia to be 0.081 and yielded the estimates of sensitivity and specificity shown in Table 7 for each

of the three tests, EIA, culture, and PCR. Comparing these results to those given in Table 6 suggests that

the prevalence estimate given by latent class analysis is in between the estimates obtained when culture

is considered the reference and when the CRS is used. The estimate of sensitivity for EIA resulting from

latent class analysis is higher than that obtained using culture or the CRS as the reference but not as high

as that using DR. All of the approaches including latent class analysis indicate that EIA is highly specific.

Latent class analysis suggests that culture and PCR also have near perfect specificities, 0.997 and 0.995

respectively.

Latent class analysis assumes that the three tests are conditionally independent. Since the three tests

are based on different clinical methods, antigen detection, cell culture, and DNA-amplification, the tests

are less likely to make the same type of errors than if, for example, two of the three tests were DNA-

amplification tests. However, conditional dependence may still exist. For example, it is possible that the
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tests misclassify more specimens from persons with a borderline case of chlamydia than those specimens

from persons with a severe case of chlamydia. In this case the conditional independence assumption would

be violated.

7 Discussion

In this paper we have reviewed several approaches for assessing the performance of a new diagnostic test

when a gold standard does not exist. Deficiencies associated with use of the imperfect reference, discrepant

resolution, and latent class analysis were identified. We have proposed that in some settings an alternative

approach, called the CRS, may be employed. It combines the results of several imperfect reference tests

to define a better standard against which a new test can be compared. Some of the advantages of this

method are that it allows one to use several sources of information in order to assess if an infection is

present, and to ascertain the reference test information in a sequential fashion which avoids the need for

redundant testing. Most importantly, it is well-defined based on observable quantities, and the reference

test is not affected by results of the new test under investigation. Thus, the results and standard against

which the new test is compared are easy to interpret.

Despite the fact that concerns with DR have been raised and substantial biases have been quantified,

this algorithm is still in use because some researchers believe accepting the problems with DR is better

than the alternative of using culture which is known to be an imperfect GS. The CRS is likely more

palatable than culture alone and thus is a viable alternative to DR. As it turns out, several different CRS

have already been used to study the performance of new tests to detect Chlamydia trachomatis along with

other diseases such as Bordetella pertussis. Some researchers have used a CRS defined just as we have

(Jang et al., 1992, McNicol et al., 1995, Sellors et al., 1991). Others have defined the CRS as a combination

of results from multiple resolver tests so that specimens positive by culture or at least one of the resolvers

are considered to be CRS positive (Chernesky et al., 1990). A contribution of this paper is to formalize

the notion of a CRS and to suggest how accuracy can be estimated statistically relative to a CRS using

sequential sampling. We propose this as a valid alternative to discrepant resolution, as a constructive step

in response to criticism of the discrepant resolution approach.

An attribute of the CRS method is that it does not require that all specimens be tested with the resolver

reference test. With the specific CRS we have studied in this paper only culture negative specimens require

re-testing and of them only fractions of the culture negative/new test negative and culture negative/new
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test positive specimens need be re-tested. The key specimens are the new test negative/culture negative

ones since there are likely to be many of these and they do not need re-testing with the DR approach.

Green et al. (1998) have shown that discrepant resolution estimates specificity reasonably well but does not

estimate sensitivity well. Our results also show that inference about sensitivity but not specificity depends

on re-testing of these specimens with a resolver. By using the CRS method, we provide a well-defined

(in contrast to latent class analysis) and valid (in contrast to DR) estimate of sensitivity. However, the

precision of the sensitivity estimate we obtain is reduced by omitting some of the new test negative/culture

negative tests from re-testing.

Although the estimates obtained using the discrepant resolution algorithm usually overestimate the

sensitivity and NPV calculated using the CRS, the DR estimate of PPV is identical to that obtained

using the CRS and the DR estimate of specificity is reasonably close to the CRS estimate. Therefore, if

the sole purpose of a study is to determine the PPV or specificity of a new diagnostic test, then the DR

algorithm which re-tests a much smaller number of specimens with the resolver than the CRS method

could be used. However, if the DR algorithm is used to obtain these estimates, then care must be taken

when interpretating the results.

As technologic advances are made, new diagnostic tests for viral and bacterial infections will be de-

veloped. Advances in the statistical methods available to assess the accuracy of these tests must also be

made, but not at the expense of interpretation or ease of implementation. We propose the composite

reference standard as one such method when a gold standard reference test does not exist. In this paper

we have assumed that test results from the new test are binary. We are currently developing methods that

allow one to assess the accuracy of new tests that yield continuous results.
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APPENDIX

Variances for Estimates using the CRS with Modified Sampling

Large sample variances and covariances for the probabilities of each combination of test results, e.g.

p+−+, were obtained from the inverse of the expected Fisher information matrix. The delta method

was then used to obtain variance estimates for sensitivity and specificity. Expressions for these variance

estimates are given below.

Let α+− = m+−/n+− and α−− = m−−/n−− denote the sampling fractions; i.e. α+− is the fraction

of new test positive and culture negative specimens that are tested with the resolver. A sampling fraction

equal to one is equivalent to all specimens being tested with the resolver. As expected, both variance

expressions given below reduce to the usual binomial variance when both sampling fractions equal one.

The asymptotic variance of the sensitivity estimate is:

γ

nδ3

{
−2p−−+p−−−(1 + α−−p−−+ − α−− + α−−p−−−)

α−−(p−−+ + p−−−)
− 2p−+p+−− − 2p−+p−−− − 2p+−−p−−+

+
δ

γ

[
−p−−+(−α−−p−−+ − p−−− + α−−p−−+p−−− + α−−p2

−−+)

α−−(p−−+ + p−−−)
− p−+(p−+ − 1)− 2p−+p−−+

]

+
γ

δ

[
−p−−−(−p−−+ + α−−p−−+p−−− + α−−p2

−−− − α−−p−−−)

α−−(p−−+ + p−−−)
− 2p+−−p−−−

−p+−−(−p+−+ − α+−p+−− + α+−p+−+p+−− + α+−p2
+−−)

α+−(p+−+ + p+−−)

]}

where γ = p−+ + p−−+ and δ = 1 − p+−− − p−−−. The probability of each combination of test results

can be estimated using the expressions given in Section 5.1.

The asymptotic variance of the specificity estimate is:

p+−−p−−−
n(p+−− + p−−−)4

{
p−−−(p+−+ + α+−p+−− − α+−p+−+p+−− − α+−p2

+−−)

α+−(p+−+ + p+−−)
+ 2p+−−p−−−

+
p+−−(p−−+ + α−−p−−− − α−−p−−+p−−− − α−−p2

−−−)

α−−(p−−+ + p−−−)

}
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Table 1. Contingency tables for summarizing the two stages of discrepant resolution. The

number of specimens with each combination of test results is denoted nijk where i, j, k are

the results (+ or −) of the new test, culture, and the resolver, respectively.

Stage 1 Stage 2

Culture Discrepant Resolution

+ − + −

New Test + n++ n+− n++ + n+−+ n+−−

− n−+ n−− n−++ n−− + n−+−
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Table 2. Contingency tables summarizing discrepant resolution for the Chlamydia data.

EIA is the new test under evaluation, the reference test is cell culture, and the resolver is

PCR.

Stage 1 Stage 2

Culture Resolved using PCR

+ − + −

EIA + 20 7 20 + 4 7 - 4

− 3 294 3 - 1 294 + 1
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Table 3. Contingency tables summarizing the two stages of the composite reference

standard. Only culture (C) negative specimens are tested with the resolver (R) in stage 2.

Stage 1 Stage 2

Culture Composite Reference

+ −
+ − C+ C−, R+ C−, R−

New Test + n++ n+− n++ n+−+ n+−−

− n−+ n−− n−+ n−−+ n−−−
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Table 4. Contingency tables summarizing the composite reference for the Chlamydia data.

Stage 1 Stage 2

Culture Composite Reference

+ − + −

EIA + 20 7 20 + 4 7 - 4

− 3 294 3 + 2 294 - 2
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Table 5. Comparison of accuracy parameters obtained when three different reference

standards are used. The three standards are discrepant resolution (DR), culture, and

composite reference (CRS).

Comparison Prevalence Sensitivity Specificity PPV NPV

DR vs. Culture ? ≥ ≥ ≥ ≥

CRS vs. Culture ≥ ? ? ≥ ≤

CRS vs. DR ≥ ≤ ≤ = ≤
? No general statements possible
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Table 6. Accuracy of EIA using three standards and Chlamydia data. Standard errors are

included in parentheses.

Standard Prevalence Sensitivity Specificity PPV NPV

Culture 0.071 0.870 0.977 0.741 0.990

(0.014) (0.070) (0.009) (0.084) (0.006)

Discrepant Resolution 0.080 0.923 0.990 0.889 0.993

(0.015) (0.053) (0.006) (0.060) (0.005)

Composite Reference 0.090 0.828 0.990 0.889 0.983

(0.016) (0.070) (0.006) (0.060) (0.007)
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Table 7. Latent class analysis of Chlamydia data. Standard errors are included in

parentheses.

Test Sensitivity Specificity

EIA 0.909 (0.061) 0.990 (0.006)

Culture 0.834 (0.076) 0.997 (0.003)

PCR 1.000 (0.005) 0.995 (0.005)
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(a) Estimated sensitivity of EIA. (b) Estimated specificity of EIA.

Figure 1: Effect of varying n−−+ on the estimated (a) sensitivity and (b) specificity of EIA when a CRS

of culture and PCR is used. The observed estimates are denoted by an asterisk.
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(a) ARE of sensitivity estimate. (b) ARE of specificity estimate.

Figure 2: Asymptotic relative efficiency (ARE) of (a) sensitivity and (b) specificity when testing only a

fraction of the EIA negative/culture negative specimens with PCR to testing all these specimens with

PCR.
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(a) ARE of sensitivity estimate. (b) ARE of specificity estimate.

Figure 3: Asymptotic relative efficiency (ARE) of (a) sensitivity and (b) specificity when testing only

a fraction of the EIA positive/culture negative specimens with PCR to testing all these specimens with

PCR.
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