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1 Introduction

In many epidemiological studies, key objectives are (i) to estimate the distribution

function (d.f.) of the time, T , to a particular event of interest, (ii) to test whether

the d.f.s. of two groups are equal, and (iii) to measure the association of the failure

time with a set of factors via a regression model. However, there are scenarios

where T is not observed; instead one only observes whether or not T exceeds a

random (or fixed by design) monitoring time Y . Data with this type of structure

are known as current status data or type I interval-censored data.

Current status data arise in a variety of situations. For example, Diamond et al.

(1986) studied the distribution of the age at weaning by evaluating whether or not

an infant had been weaned at a single time after birth. Jewell and Shiboski (1990)

described a study of HIV discordant couples where the HIV uninfected partner

is tested at a single point in time to measure the incidence of HIV acquisition.

Ferreira et al. (1996) estimated the distribution of duration of breastfeeding among

Brazilian babies, using a single interview per mother, during routine pediatric

consultations.

Groeneboom and Wellner (1992) characterized the nonparametric maximum

likelihood estimator (NPMLE) of the d.f. of T , denoted by F , and some of its

statistical properties for current status data. Van der Laan et al. (1997) studied

a regularized NPMLE and proved that smooth functionals of this estimator are

statistically efficient. Banerjee and Wellner (2005) proposed several methods to

compute pointwise confidence intervals for the NPMLE of F such as: (a) using

the asymptotic distribution of the NPMLE of F , (b) m out of n bootstrap and (c)

inverting the likelihood ratio test of the hypothesis H0 : F (t0) = τ0 with τ0 ∈ (0, 1).

Similarly, several methods has been proposed for the two sample hypothesis testing

problem: log rank type test (Sun, 1996; Sun and Kalbfleish, 1993, 1996; Sun,

1999), difference in survival means (Andersen and Ronn, 1995) and likelihood
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ratio or score test based on specific types of alternative hypotheses (Kulikov, 2002).

Huang (1996) studied the Cox proportional hazard model for current status data.

Other regression models such as the proportional odds (Rossini and Tsiatis, 1996),

acelerated failure time (Tian and Cai, 2006), linear (Shen, 2000), additive hazard

(Lin et al., 1998) have also being studied.

An additional complication arises if the outcome of interest is measured im-

perfectly. For example, a test for disease may be insensitive and/or nonspecific;

self report of weaning may be inaccurate due to social desirability bias; biopsies

may miss a tumor; etc. In these cases, the methodology described above does

not apply directly and one needs to account for the outcome misclassification in

order to obtain a valid estimation of F . In the context of repeat testing, Bal-

asubramanian and Lagakos (2001) estimated the risk of vertical transmission of

HIV-1 assuming perfect specificity and time-dependent sensitivity. The same au-

thors extended their ideas to the situation in which there could be different periods

of exposure (see Balasubramanian and Lagakos, 2003). Richardson and Hughes

(2000) implemented an EM algorithm to estimate the cumulative probability of

disease in a discrete time context. Meier et al. (2003) extended their ideas using a

Cox proportional model in a discrete-time context. Recently, McKeown and Jewell

(2010) discussed adjusting for outcome misclassification under current status data.

In particular, they described the NPMLE of F for the one sample problem, under

misclassification, and extended their idea to a parametric regression setting.

A study conducted in Seattle, WA from 1998 to 2003 motivated our interest

in this problem (Golden et al., 2005). The primary objective of the study was

prevention of recurrent gonorrhea or chlamydial infection in patients 3 to 19 weeks

after treatment and randomization to standard or expedited partner therapy. Pa-

tients in the expedited-treatment group were offered medication to give to their

sex partners, of if they preferred, study staff members could contact their partners
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and provided them with medication without a clinical examination. In this study,

participants were observed only once during followup and their time of observa-

tion varied considerably. The test used to measure the outcome had low sensitivity

(0.90) and good specificity (1.0).

McKeown and Jewell (2010) derive the NPLME for the distribution function

of failure times but their regression modeling relied on parametric assumptions.

In this article, we study more robust nonparametric and semiparametric methods.

In section 2, we introduce needed notations and formulate the statistical problem.

We then proceed to present inference results for the one sample problem, two

sample hypothesis testing and semiparametric regression analysis. In section 3,

we present simulation results and in section 4, an example using data from the

aforementioned Partners Notification Study (Golden et al., 2005) is described. We

conclude with a discussion and future directions of research.

2 Description of Data and Likelihood Function

2.1 Data structure

Assume that the failure time T is a random variable on R+ with d.f. F and Y is a

random observation time on R+ with d.f. G. We observe only an indicator variable

∆ that tells us whether the outcome has occurred (∆ = 1) or not (∆ = 0) at the

observation time Y (i.e. ∆ = 1[T≤Y ]). In addition, under outcome misclassification,

we do not measure ∆ directly; instead we observe an indicator variable ∆̃ that is

subject to misclassification. Denote the sensitivity and specificity of ∆̃ by φ and

ψ, respectively. More generally in a random sample the observation from the

ith participant will be given by the vector (Yi, ∆̃i, φi, ψi) where φi and ψi may

vary among individuals. Finally, let Y(i) be the ith ordered value of Y1, . . . , Yn

and (∆̃(i), φ(i), ψ(i)) are the indicator variable, sensitivity and specificity associated
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with Y(i). There are two main assumptions that will hold throughout the paper

(unless specified otherwise): (1) T is independent of Y and (2) φ and ψ are fixed

and known with φ+ ψ > 1.

As noted in McKeown and Jewell (2010), Bayes’s rule can be used to calculate the

probability of observing a positive result (∆̃ = 1) at the observation time Y as a

function of φ, ψ and the true failure status at Y .

P (∆̃ = 1 | Y ) = φP (∆ = 1 | Y ) + (1−ψ)P (∆ = 0 | Y ) = 1−ψ+ (ψ+φ− 1)F (Y )

(1)

More generally, sensitivity and specificity might vary at the subgroup or the in-

dividual level. In this context, we assume that all the values of sensitivity and

specificity {φi, ψi}ni=1 are known. Then, by condition (i) g does not have informa-

tion about T , so the likelihood function for F , up to a constant, is given by

Ln(F ) =
n∏
i=1

{1− ψi + (ψi + φi − 1)F (Yi)]}∆̃i {ψi − (ψi + φi − 1)F (Yi)}1−∆̃i

=
n∏
i=1

{
1− ψ(i) + (ψ(i) + φ(i) − 1)F (Y(i))]

}∆̃(i) ×

n∏
i=1

{
ψ(i) − (ψ(i) + φ(i) − 1)F (Y(i))]

}1−∆̃(i) (2)

We wish to maximize the log likelihood function ln(F ) (ln(.) = log (Ln(.)) over the

space F defined as the space of right continuous increasing step functions, bounded

by [0, 1], with jumps at Y(1), . . . , Y(n). Note that if the tests have perfect sensitivity

and specificity, then ∆̃ = ∆ and Groeneboom and Wellner (1992) provide an

extensive study of this problem. We will denote the NPMLE of F as F̂n, and the

naive estimator of the misclassified data assuming no misclassification as F̃n.

Remark 1. If ∆̃(1) = 0 then the value of the NPMLE F̂n at Y(1) can be set equal

to zero without imposing additional constraints on the maximization problem. A
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similar argument can be made if ∆̃(n) = 1 but in this case F̂n(Y(n)) will be equal

to one. Thus, without loss of generality we assume for the rest of the paper that

∆̃(1) = 1 and ∆̃(n) = 0.

2.2 Inferences

When all observations have the same sensitivity and specificity, the NPMLE of F0

is given by the following proposition.

Proposition 1. (McKeown and Jewell, 2010) The NPMLE of F at Y(i) is

F̂n(Y(i)) =

{[
F̃n(Y(i)) ∨ (1− ψ)

]
∧ φ
}

+ ψ − 1

φ+ ψ − 1
(3)

where a ∨ b = max(a, b), a ∧ b = min(a, b), and F̃n is

F̃n(Y(m)) = max
i≤m

min
k≥m

∑k
j=i ∆̃(j)

k − i+ 1
, m ∈ {1, . . . , n} (4)

This proposition can be proven using similar arguments to those in the proof of

Proposition 1.2 of Groeneboom and Wellner (1992) and a formal proof was re-

cently presented by McKeown and Jewell (2010). Some statistical properties of

this estimator are presented in the Web appendix.

In reality, sensitivity and specificity may vary across individuals or group of in-

dividuals. For instance, one may want to combine observations that were tested

with different laboratory tests; due to budget considerations, a small proportion

of the cohort may be tested with a more accurate test (possibly perfect sensitivity

and specificity) and the remaining participants with a less accurate test. In these

scenarios, it is not possible to express F̂n explicitly as in (3) but it can still be

characterized using the following proposition.

Proposition 2. A point x̂ = (F̂n(Y(1)), . . . , F̂n(Y(n))) is the NPMLE over the set
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{x = (x1, . . . , xn) ∈ (0, 1)n : x1 ≤ · · · ≤ xn} if and only if x̂ is the left deriva-

tive of the convex minorant of the cumulative sum diagram of P0 = (0, 0) and

Pj = (Gj(x̂), Vj(x̂)) for j = 1, . . . , n where

Gj(x) =

j∑
i=1

−∂
2ln
∂x2

i

(xi)

=

j∑
i=1

[
∆̃(i)(φ(i) + ψ(i) − 1)2

[1− ψ(i) + (ψ(i) + φ(i) − 1)xi]2
+

(1− ∆̃(i))(φ(i) + ψ(i) − 1)2

[ψ(i) − (ψ(i) + φ(i) − 1)xi]2

]
(5)

and

Vj(x) =

j∑
i=1

−

[
xi −

(
∂2ln
∂x2

i

(xi)

)−1
∂ln
∂xi

(xi)

]
∂2ln
∂x2

i

(xi)

=

j∑
i=1

xi

[
∆̃(i)(φ(i) + ψ(i) − 1)2

[1− ψ(i) + (ψ(i) + φ(i) − 1)xi]2
+

(1− ∆̃(i))(φi + ψ(i) − 1)2

[ψ(i) − (ψ(i) + φ(i) − 1)xi]2

]

+

j∑
i=1

[
∆̃(i)(ψ(i) + φ(i) − 1)

1− ψ(i) + (ψ(i) + φ(i) − 1)xi
−

(1− ∆̃(i))(ψ(i) + φ(i) − 1)

ψ(i) − (ψ(i) + φ(i) − 1)xi

]
(6)

A proof of Proposition 2 is based on the discussion on Banerjee (2007, pp 9-10).

Proposition 2 does not provide an explicit formula to compute F̂n; however, it

suggests an iterative algorithm that is summarized as follows:

Algorithm 0.

(a) Set as an initial guess x̂(0) (e.g x̂
(0)
i = i/(n+ 1) for i = 1, . . . , n).

(b) At stage k, compute the left derivative, x̂(k), of the convex minorant of the cu-

mulative sum diagram formed by P0 = (0, 0) and Pj =
(
Gj(x̂

(k−1)), Vj(x̂
(k−1))

)
,

for j = 1, . . . , n , according to

x̂(k)
m = max

i≤m
min
l≥m

Vl(x̂
(k−1))− Vi(x̂(k−1))

Gl(x̂(k−1))−Gi(x̂(k−1))
, m = 1, . . . , n (7)
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(c) Repeat step (b) until convergence e.g.

|〈∇ln(x̂(k)), x̂(k)〉| < ε , max

{
s∑
i=k

∂

∂xi
ln(x̂(k)) : k = 1, 2, . . . , s

}
< ε

(8)

then F̂n = x̂(∞).

Jongbloed (1998) noted that this algorithm may not always converge and proposed

a modified version, called the modified iterative convex minorant (MICM) algo-

rithm, that guarantees global convergence. The MICM algorithm can be used in

any maximization procedure where the log likelihood function is concave with re-

spect to the parameters of interest and where those parameters have monotonicity

constraints.

To make inferences, we compute a likelihood ratio based confidence interval by

applying Theorem 2.2 in Banerjee (2007). The idea is to invert the complement

of the rejection region for the hypothesis testing problem H0 : F (t0) = τ0 where

τ0 ∈ (0, 1) and t0 ∈ (0,∞). A likelihood ratio statistic for testing H0 and its

asymptotic distribution is described below.

Proposition 3. Suppose that F and G are continuously differentiable in a neigh-

borhood of t0 with f(t0) > 0 and g(t0) > 0, and assume that φi = φ and ψi = ψ

for all observations. Denote the likelihood ratio statistic λn by

λn(τ0) =
Ln(F̂n)

Ln(F̂ 0
n)

(9)

where F̂ 0
n is the NPMLE under H0. Then the limiting distribution of the likelihood

ratio statistic for testing H0 is

2 log λn(τ0) = 2[ln(F̂n)− ln(F̂ 0
n)]→d D (10)

7
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D is a random variable that does not depend on F,G, φ, ψ or t0 and a tabulation of

the quantiles of this random variable is presented by Banerjee and Wellner (2001).

Thus

Cn,α = {τ ∈ (0, 1) : 2 log λn(τ) < dα} (11)

forms a 100(1 − α)% confidence interval, where dα is the 100(1 − α)th percentile

of D. In practice, we present the following algorithm to compute F̂ 0
n .

Algorithm 1. (Same sensitivity and specificity for all observations)

(a) Find m such that Y(m) ≤ t0 ≤ Y(m+1)

(b) For
{
Y(1), . . . , Y(m)

}
, compute the left derivative of the cumulative sum dia-

gram (see eq 4) formed by P0 = (0, 0) and
{
Pi =

(
i,
∑i

j=1 ∆̃(i)

)}m
i=1

, denoted

by η = (η1, . . . , ηm). Then

F̂ 0
n(Y(i)) =

[
ηi + ψ − 1

φ+ ψ − 1
∨ 0

]
∧ τ0 (12)

for i = 1, . . . ,m.

(c) For
{
Y(m+1), . . . , Y(n)

}
, compute the left derivative of the cumulative sum

diagram (see eq 4) formed by P0 = (0, 0) and
{
Pi =

(
i,
∑i

j=1 ∆̃(m+j)

)}n−m
i=1

,

denoted by ξ = (ξm+1, . . . , ξn). Then

F̂ 0
n(Y(i)) =

[
ξi + ψ − 1

φ+ ψ − 1
∨ τ0

]
∧ 1 (13)

for i = m+ 1, . . . , n.

Algorithm 2.(Varying sensitivity and specificity)

(a) Find m such that Y(m) ≤ t0 ≤ Y(m+1)

8
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(b) For
{
Y(1), . . . , Y(m)

}
, compute η that maximizes

m∑
i=1

{
∆̃(i) log [1− ψ(i) + (ψ(i) + φ(i) − 1)xi] + (1− ∆̃(i)) log [ψ(i) − (ψ(i) + φ(i) − 1)xi]

}

over {x ∈ (0, 1)m : x1 ≤ x2 ≤ · · · ≤ xm} using the MICM algorithm; then

F̂ 0
n(Y(i)) = ηi ∧ τ0 , i = 1, . . . ,m (14)

(c) For
{
Y(m+1), . . . , Y(n)

}
, compute ξ that maximizes

n∑
i=m+1

{
∆̃(i) log [1− ψ(i) + (ψ(i) + φ(i) − 1)xi] + (1− ∆̃(i)) log [ψ(i) − (ψ(i) + φ(i) − 1)xi]

}

over {x ∈ (0, 1)n−m : xm+1 ≤ xm+2 ≤ · · · ≤ xn} using the MICM algorithm;

then

F̂ 0
n(Y(i)) = ξi ∨ τ0 , i = m+ 1, . . . , n (15)

Remark 2. Our approach to compute pointwise confidence intervals is compu-

tationally faster than the m out of n bootstrap idea proposed by McKeown and

Jewell (2010). Moreover, as described above, it can be applied when sensitivity

and specificity varies at the individual level and we study this with simulations.

2.3 Two Sample Hypothesis Testing

Consider a binary variable Z that denotes whether the person is in the “interven-

tion”group (Z = 1) or the “control”group (Z = 0), and where the probability of

being in the intervention group is denoted by p. Let F0 and F1 denote the d.f.s

of the intervention and control groups respectively, and assume the observations

times for both groups follow a d.f. G. Moreover, assume the sensitivity (φ) and

9
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specificity (ψ) are the same for all observations. The following result suggests a

natural statistic for testing H0 : F0 = F1.

Proposition 4. Suppose that

(i) The support of F is a bounded interval I = [0,M ] with G � F , F �

G, G has density g with respect to the Lebesgue measure, and h is a fixed

measurable function.

(ii) F0, g and h satisfy

I−1(F, g, h) =

∫ M

0

[1− ψ + (ψ + φ− 1)F (y)][ψ − (ψ + φ− 1)F (y)]

(ψ + φ− 1)2g(y)
h2(y)dy <∞

(16)

(iii) (h/g) ◦ F−1 is bounded and is a Lipschitz function on [0, 1].

Then the functional ν(F ) =

∫
I

(1− F (t))h(t)dt satisfies

√
n[ν(F̂n)− ν(F )]→d N(0, I−1(F, g, h)) (17)

Based on Proposition 4, we propose the following test statistic for H0

Un =

√
n1n0

n

∫ M

0

[F̂n1(t)− F̂n0(t)]dĜn (18)

where Ĝn is the empirical d.f. of the observation times of the combined sample

(n = n1 + n0), and F̂n1, F̂n0 are the NPMLE of F1 and F0 respectively. The limit

distribution of the proposed statistic, under the null, is presented below.

Proposition 5. Assuming the conditions of Lemma 3 hold and that n1/n→ a ∈

(0, 1) as n→∞. Then, under H0

Un →d N(0, I−1(FH0 , g, g)) (19)
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where FH0 is the common d.f under H0.

Under the null hypothesis Ûn/
√
În can be approximated by a standard normal

distribution, where

Ûn =

√
n1n0

n3

n∑
i=1

[
F̂n1(Y(i))− F̂n0(Y(i))

]
(20)

And

Î−1
n =

1

n

n∑
i=1

{
[1− ψ + (ψ + φ− 1)F̂ 0

n(Y(i))][ψ − (ψ + φ− 1)F̂ 0
n(Y(i))]

(φ+ ψ − 1)2

}
(21)

Remark 3. Under the null hypothesis, as the sample size n increases the con-

straints on the naive estimator will become irrelevant (i.e. P (F̃ 0
n(t) < 1− ψ) and

P (F̃ 0
n(t) > φ) tend to zero as n → ∞ if t is an interior point of the domain of

FH0). Therefore, as n grows

F̂ 0
n ≈

F̃ 0
n + ψ − 1

φ+ ψ − 1

and
Ũn√
Ĩ−1
n

≈ (φ+ ψ − 1)Ûn

(φ+ ψ − 1)
√
I−1
n

=
Ûn√
Î−1
n

where Ũn and Ĩ−1
n are naive estimators that assume no misclassification. Thus,

when φ and ψ are constant across all individuals, misclassification can be ignored

for testing H0 : F0 = F1, as n goes to infinity. The behavior for finite sample sizes

will be studied in section 7.

Remark 4. The asymptotic result presented above assumes constant sensitivity

and specificity across all individuals; however equations, (20) and (21) suggest that

the idea could be extended to individual level misclassification (which could not

be ignored). We explore this potential with some simulations.
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2.4 Semiparametric regression by the Cox proportional

hazards model

The proportional hazard model is given by

Λ(Y |Z) = Λ0(Y )e(Z′θ) (22)

where Λ is the cumulative hazard at Y , and the covariate vector Z = (Z1, . . . , Zr)

is assumed to act additively on log (Λ(Y |Z)), Λ0 is the baseline cumulative hazard

independent of the covariates, and θ=(θ1, . . . , θr) is the vector of log hazard ratios

linking Z. Since F = 1−e−Λ, we may combine (2) and (22), and the observed like-

lihood function, for an i.i.d sample of observations (Y1, ∆̃1,Z1), . . . , (Yn, ∆̃n,Zn),

is proportional to

Ln(θ,Λ) =
n∏
i=1

{
φi − (φi + ψi − 1)e−Λ(Yi)e

Z′
iθ
}∆̃i

×
n∏
i=1

{
1− φi + (φi + ψi − 1)e−Λ(Yi)e

Z′
iθ
}1−∆̃i

(23)

where θ ∈ Θ ⊂ Rr and Λ ∈ G where G is the set of nonnegative right-continuous

increasing step functions (but bounded over the support of the observation time)

with jump points at Y(1), . . . , Y(n). In what follows, we denote the true underlying

values of the parameters (θ,Λ) by (θ0,Λ0) and denote the maximum likelihood

estimator by (θ̂n, Λ̂n).

Consider the problem of testing H0 : θ = θ0 and define the likelihood ratio statistic

λn(θ0) =
Ln(θ̂n, Λ̂n)

Ln(θ0, Λ̂
θ0
n )

(24)

12
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where Λ̂θ0
n is the NPMLE of Λ0 under H0. The following proposition establishes

the asymptotic distribution of θ̂n and 2 log (λn) when φi = φ and ψi = ψ for all

i = 1, . . . , n. The proof follows as an application of Theorem 3.1 in Banerjee et al.

(2009).

Proposition 6. Suppose that conditions (A.1)-(A.6) of Banerjee et al. (2009)

hold and φ+ψ > 1, then θ̂n is asymptotically linear in the efficient score function

l̃, and has the representation

√
n(θ̂n − θ0) =

1√
n
I−1

0

n∑
i=1

l̃(Yi, ∆̃i,Zi) + oP (1)→d N(0, I−1
0 ) (25)

Moreover

2 log (λn) = n(θ̂n − θ0)T I0(θ̂n − θ0) + oP (1)→d χ
2
r (26)

Proposition 6 can be used to develop likelihood ratio based confidence intervals

for the regression coefficient. For example, consider the hypothesis H0 : θp = β,

the likelihood ratio statistic is

2 log λn(β) = 2 logLn(θ̂n, Λ̂n)− 2 logLn(θ̂−pn , Λ̂−pn )

= 2ln(θ̂n, Λ̂n)− 2ln(θ̂−pn , Λ̂−pn ) (27)

where (θ̂−pn , Λ̂−pn ) is the NPMLE of the likelihood function (23) assuming θp = β.

Then, by Proposition 6, 2 log λn(β) has approximately a χ2
1 distribution under H0.

As a consequence, {β : 2 log λn(β) ≤ q1−α} forms a 100(1− α)% confidence inter-

val, where q1−α is the 100(1−α)th percentile of the Chi-squared distribution with

one degree of freedom.

One could also, in principal, consider using (25) to compute confidence intervals for

the regression coefficients. However, that would involve estimation of additional

nuisance parameters.

13
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Remark 5. We do not specify the limit distribution of the estimated cumulative

hazard function (Λ̂n). In most of the literature on semiparametric models with or-

der restrictions on the nuisance parameter, the likelihood function is concave with

respect to the nuisance paremeter. In those scenarios, finding the asymptotic be-

havior of Λ̂n is possible using techniques from isotonic regression (Robertson et al.,

1998) and convex optimization (Rockafellar, 1970). When current status data is

subject to outcome misclassification, that concavity property does not always hold

and depends on the value of the sensitivity (but not specificity). Therefore, the

asymptotic behavior of the cumulative hazard function remains to be found. How-

ever, the main objective of this paper is to adjust for the baseline hazard to obtain

an accurate estimation of the regression coefficient, therefore we postpone this

problem for future research.

We now propose an algorithm to compute (θ̂n, Λ̂n). To avoid excessive notation

we will consider the case of a single covariate (r = 1).

Algorithm 3. Estimation of the Regression Parameters

If the true disease status ∆ is observed, then one estimate θ using the profile

approach proposed by Huang (1996) or the joint maximization idea proposed by

Pan (1999). If, instead, one observes ∆̃ then we propose estimating θ using an

EM algorithm (Dempster et al., 1977). Let (θ̂
(k)
n , Λ̂

(k)
n ) be the current estimates of

(θ,Λ0) at iteration k. Then the EM algorithm is:

(a) Expectation step:

Q
[
(θ,Λ) | θ̂(k)

n , Λ̂(k)
n

]
= E

θ̂
(k)
n ,Λ̂

(k)
n

[
lCn (∆i, Yi, Zi) | (∆̃i, Yi, Zi)

]
= E(k)

[
lCn (∆i, Yi, Zi) | (∆̃i, Yi, Zi)

]
= lCn (E(k)[∆i | ∆̃i, Yi, Zi], Yi, Zi) (28)

where lCn is the log likelihood function for complete data (assuming that one
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observes the true disease status ∆)

lCn (θ,Λ) =
n∑
i=1

{
∆i log

[
1− e−Λ(Yi)e

Ziθ
]
− (1−∆i)Λ(Yi)e

Ziθ
}

(29)

and

E(k)

[
∆ | ∆̃, Y, Z

]
=



P (k)[∆ = 1 | Y, Z]φ

P (k)[∆ = 1 | Z, Y ]φ+ P (k)[∆ = 0 | Z, Y ](1− ψ)
, ∆̃ = 1

P (k)[∆ = 1 | Z, Y ](1− φ)

P (k)[∆ = 1 | Z, Y ](1− φ) + P (k)[∆ = 0 | Z, Y )]ψ
, ∆̃ = 0

(30)

where

P (k)[∆ = 1 | Y, Z] = 1− exp
[
−Λ̂(k)

n (Y ) exp (Zθ̂(k)
n )
]

(31)

(b) Maximization step: Update the parameters according to

(θ̂(k+1)
n , Λ̂(k+1)

n ) = arg max
θ∈Θ ,Λ∈G

Q
[
(θ,Λ) | θ̂(k)

n , Λ̂(k)
n

]
= arg max

θ∈Θ ,Λ∈G
lCn (E(k)[∆i | ∆̃i, Yi, Zi], Yi, Zi) (32)

We alternative between the E and M steps until the following stopping criteria

holds ∣∣∣∣∣ ln(θ̂
(k+1)
n , Λ̂

(k+1)
n )− ln(θ̂

(k)
n , Λ̂

(k)
n )

ln(θ̂
(k)
n , Λ̂

(k)
n )

∣∣∣∣∣ ≤ ε (33)

where ε is the tolerance level set in advance.

3 Simulation Studies

We conduct simulation studies to: (1) to assess the bias and misinterpretation of

inference results when one ignores outcome misclassification and (2) to assess the
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behavior of the proposed estimators for small sample sizes. These two objectives

will be studied for different outcome prevalence, levels of misclassification and

observation time distributions.

3.1 Simulations for the one sample problem

For the observation times, we consider the following distributions: continuous

uniform, and exponential. For the distribution of failure time, we use a standard

exponential distribution. We consider sample sizes of 500 and 1000 with 1000

simulations per scenario. We denote by p the expected proportion of observed

failures and adjust the distribution of the observation times to achieve a fixed

value of p (p = P (T ≤ Y )). For t0 = G−1(0.5), we compute the asymptotic

percent bias (b̂n), defined as

b̂n =
1

R

R∑
r=1

[
F̂

(r)
n (t0)− F0(t0)

F0(t0)

]
(34)

and the nominal coverage of the 95% likelihood ratio-base confidence interval (γ̂n).

Table 1 provides percent bias and coverage of selected estimators when the ex-

pected number of failures is 10%.

The coverage of the proposed confidence interval is very good and the average

length of the confidence interval is shorter when 10% of the sample have been

tested with a gold standard test (i.e. φ = ψ = 1 for a random 10% of the observa-

tions). The bias of the naive estimator is affected the most by the specificity (as

expected for low prevalence outcomes). Bias of the adjusted estimator is small and

decreases as n increases while the unadjusted estimator remains biased regardless

of n. Overall, the adjusted estimators have little bias and good coverage.
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3.2 Simulations for two sample hypothesis testing

We assume that the failure time distribution in the control group is exponential

with hazard rate equal to one (λ0 = 1). The observation times follow a continuous

uniform distribution for both groups, and p0, p1 are the expected proportion of

observed failures for the control and intervention group, respectively. We compute

the observed proportion of rejections under the null and proportional hazard alter-

antive hypothesis for situations of nondifferential and differential misclasification.

Our simulations suggest (table 2) that for nondifferential misclassification, the ad-

justed test is more conservative than the unadjusted test statistic. However, as

predicted by the asymptotic theory, as the sample sizes increases, this difference

is diminished. Still, the unadjusted test behaves better in most of the studied

scenarios when misclassification is not differential. The adjusted test is most con-

servative for low levels of specificity.

This behavior can be understood by noticing that, for low prevalence diseases

and low specificity, equation 3 says that naive estimations lower than one minus

specificity will be consider equal to zero by the NPMLE. That will mean that the

variance estimator În (see equation 21) relays less on the data and more on the

assume values of φ and ψ. That will induce the adjusted estimator to be more

conservative in situations with low prevalence and low levels of specificity.

On the other hand, under differential misclassification, the adjusted test statistic

preserves the correct type I error rate under the null hypothesis (table 3). In

comparison, the unadjusted estimator is highly anticonservative due to the differ-

ential misclassification. As a consequence, when misclassification is not differential

we recommend ignoring misclassification and computing a test statistics for the

two sample test based on the unadjusted data. However, if misclassification is

differential, then using the adjusted test is recommended.
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3.3 Simulations for regression models

For our regression simulations, we assume that the baseline distribution function

is a standard exponential (λ0 = 1). We consider one or two binary covariates, each

with probability of success equal to 0.5 and fix the sample size at 500 observations.

We generate the observation times from a uniform distribution such that the ex-

pected number of left censored observations in the baseline group (for more than

one covariate this group is defined by assigning all covariates equal to zero) was

10%. The number of replications was 1000 in all scenarios. Under those settings,

we consider three models

(a) Model 1: Λ(t) = t exp (−0.695Z1) with Z1 ∼ Bernoulli(0.5).

(b) Model 2: Λ(t) = t exp (0.405Z2) with Z2 ∼ Bernoulli(0.5).

(c) Model 3: Λ(t) = t exp (−0.695Z1 + 0.405Z2) with Z1, Z2 independent and

Z1, Z2 ∼ Bernoulli(0.5).

Table 4 shows that ignoring outcome misclassification induces attenuation of the

association between the covariates and the failure time toward zero. Moreover,

the higher the misclassification the stronger this attenuation is. For diseases with

low prevalences (e.g HIV), we observed that the regression coefficients of the naive

estimator are more affected by low levels of specificity than sensitivity.

Unexpectedly, the NPMLE of the regression coefficients (adjusting for misclassifi-

cation) is biased upwards (based on the mean of the NPMLE across simulations).

However, the median is closer to true value. In each of the study simulations, we

observed that up to 5% of the generated datasets produced a regression coefficient

that was far away from the true value. There was no evidence that these outlying

estimates were driven by low number of events, the choice of the starting point

or lack of convergence. Pan (1999) mentioned that the extended ICM, for Cox

18

http://biostats.bepress.com/uwbiostat/paper364



regression in interval censored data (without misclassification), was slightly biased

upwards (see Pan, 1999, page 116). The study of different algorithms and scenarios

is a future area of research.

4 Application

The Partner Notification Study was conducted in King County Seattle, WA from

September 1998 to March 2003 and enrolled heterosexual men and women who

received a diagnosis of gonorrhea or genital chlamydia (Golden et al., 2005). Re-

searchers contacted clinicians who diagnosed the infections to seek permission to

contact their participants and to minimize the likelihood of reinfection after treat-

ment but before randomization, patients who could not be contacted within 14 days

after treatment were not eligible for the study. Each participant was randomized to

expedited partner treatment (intervention) or standard partner referral (control).

The primary outcome was persistent or recurrent gonorrhea and/or chlamydial

infection (we will consider a composite outcome only) in the original participant

at 90 days after enrollment although actual follow up times varied considerably

due to difficulty contacting participants and scheduling followup visits. Of the

1864 participants, 931 were randomized to the intervention and 933 to the control

group. A high proportion of participant were women (80%), the median age was

21 years and a large number of participants who were treated for chlamydia were

enrolled in the study (see table 5); however, all these characteristics were balanced

in each arm. The sensitivity and specificity of the test used to diagnose gonorrhea

and/or chlamydia were approximately 0.9 and 1 respectively. In order to avoid

missing an infection that could happened between enrollment and the observa-

tion time, participants were asked whether they repeated their treatment using

medication intended for a partner; only one person acknowledge doing so. The
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observation times was similar in both groups with median 87 days (IQR: 77-103)

for the control group and 87 days (IQR: 76-104) for the intervention group.

We compute the NPMLE separately for the control and intervention group. This

is presented in Figure 1. The application of the proposed two sample hypothesis

test gave a p-value of 0.024. In a univariate analysis, participants in the inter-

vention group were 26% less likely of reinfection than participants in the control

group (HR=0.744 [95%CI: 0.580-0.956], p-value = 0.031). In a multivariate analy-

sis, adjusting for gender and the interaction of gender and intervention, there was

no evidence that the effect of the intervention was different for men and women

(p-value of the iteraction = 0.331). In conclusion, participants in the control group

have significant higher risk of recurrence of gonorrhea and/or chlamydial infection.

5 Discussion and Future Research

Most laboratory tests that are used to diagnose diseases have sensitivity and speci-

ficity less than one (e.g culture for gonorrhea, sputum-smear test for TB). On av-

erage, if the observed disease prevalence during the study followup is low (high)

and specificity (sensitivity) is less than 1 then the use of the standard methodol-

ogy that does not account for outcome misclassification, results in overestimation

(underestimation) of the cumulative probability of failure.

We develop methodology for hypothesis testing and semiparametric regression that

account for outcome misclassification in current status data by extending existing

models that assume no misclassification. For the regression problem, we choose

the Cox proportional hazard model because of its popularity. However, the same

ideas can be used to extend other regression models (see Banerjee et al., 2009).

In some situations (e.g predicting survival), one would like to make inference on
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the cumulative hazard function when considering a regression model. Finding the

correct limit distribution of the cumulative hazard function remains an open prob-

lem.

There is an important limitation in the analysis of our application example. A

number of participants reported symptoms at their follow up visit (n=408, 22.3%)

but this percentage did not differ meaningfully between the groups (21.1 % in the

placebo group vs. 23.5% in the treatment group). This feature of the data may

suggest a violation of the assumption of independence of the failure and observa-

tion times. However, we also analyzed the data after deleting the symptomatic

cases and the results were qualitatively similar (data not shown). Estimation and

inference in this setting (adding information on symptoms) is under investigation.

In the hypothesis testing problem, we only consider situations when one can as-

sume that the observation times are not different between groups. It is reasonable

to assume that with some work our methods can also be extended to that situation

where the observation times differ between groups.

The methodology presented in this paper assumes perfect knowledge of the val-

ues of φ and φ, and, in most cases, that they are the same for all observations.

However, our simulations suggest that many of our results can be extended to situ-

ations were sensitivity and specificity vary across individuals or subgroups. It is of

interest to further study from the theoretical perspective whether the two sample

hypothesis testing and regression ideas can in all cases be extended to situations

where the sensitivity and specificity vary. Another important potential extension

is to incorporate uncertainty about φ and ψ. Finally, more efficient algorithms to

speed up the computational time, especially for the regression analysis, need to be

studied.
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6 Appendix

For all the proofs considered in this web appendix, we will assume that all obser-

vations were subject to the same test with sensitivity (φ) and specificity (ψ) unless

specified otherwise.

6.1 One sample problem

Proof of Proposition 2. The proof of this proposition can be adapted from page

8 and 9 in Banerjee (2007) or following the arguments to prove Theorem 4.3. in

Wellner and Zhan (1997).

Definition 1 (Schick and Yu, 2000). We say that t0 is a regular point if G(t0 +

ε)−G(t0) > 0 and G(t0)−G(t0 − ε) > 0 for every ε > 0.

Proposition A.1. Let G be the distribution of the observation then

I. The NPMLE F̂n satisfies

∫
| F̂n − F | dG→a.s 0 (35)

II. Define

ΩG =

{
ω :

∫
| F̂n − F | dG→ 0

}
If t0 is a regular continuity point of F0 then for each ω ∈ ΩG,

F̂n(t0, ω)→ F (t0) (36)

III. Suppose that F is continuous and that for all a < b, 0 < F (a) < F (b) < 1

implies 0 < G(a) < G(b) then

sup
t∈[0,∞)

| F̂n(t)− F (t) |→a.s 0 (37)
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Proof of Proposition A.1.

Part I. Define µ = #×G where # is the counting measure on {0, 1}. Then, the

density of (∆̃, Y ) with respect to µ is given by

pF (∆̃, Y ) = [1− ψ + (φ+ ψ − 1)F (Y )]∆̃[ψ − (φ+ ψ − 1)F (Y )]1−∆̃

One can see that the envelope function q of F = {pF : F d.f on R+} is bounded

by φ.

q = sup
pF∈F

pF ≤ φ ≤ 1

and one can apply Lemma 3.8 in Van de Geer (2000) to show that the δ-entropy

with bracketing of F is bounded: HB(δ,F , µ) ≤ Aδ−1 for some constant A and all

δ > 0 (see Van de Geer, 2000, for definition of entropy). Therefore, by Lemma 4.4

in Van de Geer (2000) one has

h2(p̂n, pF )→a.s 0

where h2 is the Hellinger metric. Also, since the total variation distance is domi-

nated by the Hellinger metric, one has that

dTV (pF , pF̂n) = 2 | φ+ ψ − 1 |
∫
|F − F̂n|dG→a.s 0 (38)

Part II and III. The proofs of II and III are consequences of I and Propositions

1 and 4 respectively from Schick and Yu (2000).

The following Proposition, that includes Proposition 3 in the paper, is a conse-

quence of applying Theorems 2.1 and 2.1 in Banerjee (2007).

Proposition A.2 For any t such that F and G are continuous and differentiable,

with densities f and g respectively, in a neighborhood of t with g(t) > 0, f(t) > 0,
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and F (t) ∈ (0, 1) then

n1/3[F̂n(t)− F (t)]→d CZ (39)

where Z = arg min{W(t) + t2} and W is a two-sided Brownian motion starting

from 0 and

C =

{
4[1− ψ + (ψ + φ− 1)F (t)][ψ − (ψ + φ− 1)F (t)]f(t)

(φ+ ψ − 1)2g(t)

}1/3

Moreover

2 log λn → D when H0 is true

Proof of Proposition A.2. The functional of interest is θ = F (Y ) with density

pθ(∆̃, Y ) = [1− ψ + (ψ + φ− 1)θ]∆̃[ψ − (ψ + φ− 1)θ](1−∆̃)g(Y ) (40)

and

I(θ) = −Eθ
[
∂2 log (pθ)

∂θ2

]
=

(ψ + φ− 1)2

[1− ψ + (ψ + φ− 1)θ][ψ − (ψ + φ− 1)θ]
(41)

Then the result follows from Theorem 2.1 in Banerjee (2007) with

a =

{
(ψ + φ− 1)2g(t)

[1− ψ + (ψ + φ− 1)F (t)][ψ − (ψ + φ− 1)F (t)]

}−1/2

(42)

and b = 1
2
f(t).
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6.2 Hypothesis testing

Proof of Proposition 4. Notice that

ν(F ) =

∫
I

[1− F (y)]h(y)dy = EY

{
[1− F (Y )]h(Y )

g(Y )

}
= EY


[
1− E[∆̃|Y ]+ψ−1

φ+ψ−1

]
h(Y )

g(Y )


= E

[
φ− ∆̃

(φ+ ψ − 1)

h(Y )

g(Y )

]
=

∫ [
φ− ∆̃

(φ+ ψ − 1)

h(y)

g(y)

]
dP (t, y) (43)

Then

√
n[ν(F̂n)− ν(F )] =

√
n

∫
I

{
1− F̂n(y)− φ− ∆̃

(φ+ ψ − 1)

}
h(y)

g(y)
dP (t, y)

=
√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F̂n(y)]

(φ+ ψ − 1)

}
h(y)

g(y)
dP (t, y)

Moreover

√
n[ν(F̂n)− ν(F )] =

√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F̂n(y)]

(φ+ ψ − 1)

}
h(F−1(F̂n(y)))

g(F−1(F̂n(y)))
dP (t, y) +

√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F̂n(y)]

(φ+ ψ − 1)

}
h(y)

g(y)
dP (t, y)

−
√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F̂n(y)]

(φ+ ψ − 1)

}
h(F−1(F̂n(y)))

g(F−1(F̂n(y)))
dP (t, y)

=
√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F̂n(y)]

(φ+ ψ − 1)

}
h(F−1(F̂n(y)))

g(F−1(F̂n(y)))
dP (t, y) +

√
n

∫
I

[F (y)− F̂n(y)]

{
h(y)

g(y)
− h(F−1(F̂n(y)))

g(F−1(F̂n(y)))

}
dG(y)

= −I1 + I2 (44)

Let F−1(u) = inf{t : F (t) ≥ u}. Then, one can define η = (h/g) ◦ F−1. Then,

following the ideas describe in page 43 (in particular equations 1.19 and 1.20) in
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Groeneboom and Wellner (1992), or page 160 (see equations 3 and 4) in Huang

and Wellner (1995), one has

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F̂n(y)]

(φ+ ψ − 1)

}
η(F̂n(y))dPn(t, y) = 0 (45)

Thus

−I1 =
√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F̂n(y)]

(φ+ ψ − 1)

}
η(F̂n(y))d(Pn − P )(t, y)

=
√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F (y)]

(φ+ ψ − 1)

}
η(F̂ (y))d(Pn − P )(t, y)

−
√
n

∫
I

[F̂n(y)− F (y)]η(F̂ (y))d(Pn − P )(t, y)

=
√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F (y)]

(φ+ ψ − 1)

}
η(F (y))d(Pn − P )(t, y) +

√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F (y)]

(φ+ ψ − 1)

}{
η(F̂n(y))− η(F (y))

}
d(Pn − P )(t, y)

−
√
n

∫
I

[F̂n(y)− F (y)]η(F̂ (y))d(Pn − P )(t, y)

= I11 + I12 + I13 (46)

I12 and I13 are op(1) by arguments presented in Huang and Wellner (1995). More-

over

I11 =
√
n

∫
I

{
∆̃− [1− ψ + (ψ + φ− 1)F (y)]

(φ+ ψ − 1)

}
h(y)

g(y)
d(Pn − P )(t, y)

= −
√
n(Pn − P )(l̃) (47)

where

l̃(y, ∆̃) = − 1

φ+ ψ − 1

{
∆̃− [1− ψ + (ψ + φ− 1)F (y)]

} h(y)

g(y)
1[y>0] (48)
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is the efficiency influence function for the population mean. Therefore

√
n[ν(F̂n)− ν(F )] =

√
n(Pn − P )(l̃) + oP (1)→d N(0, I−1(F, g, h)) (49)

and

I−1(F, g, h) = E[l̃2(Y, ∆̃)] = E


{

∆̃− [1− ψ + (ψ + φ− 1)F (Y )]
}2

h2(Y )

(φ+ ψ − 1)2g2(Y )


=

∫ M

0

{
[1− ψ + (ψ + φ− 1)F (y)][ψ − (ψ + φ− 1)F (y)]h2(y)

(φ+ ψ − 1)2g(y)

}
dy

Proof of Proposition 5. Notice that

Un =

√
n1n0

n

∫ M

0

[F̂n1(y)− F̂n0(y)]dĜn(y)

=

√
n1n0

n

∫ M

0

[F̂n1(y)− FH0(y)]dĜn(y) +

√
n1n0

n

∫ M

0

[F̂n1(y)− FH0(y)]dĜn(y)

→d

√
a N(0, I−1(FH0 , g, g)) +

√
1− a N(0, I−1(FH0 , g, g)) =d N(0, I−1(FH0 , g, g))

6.3 Regression Model

The following are the main conditions needed to prove Proposition 6. These are

the same conditions specified by Banerjee et al. (2009). We modify our notation

and consider Y the random variable and y an observation of that r.v.

Main assumptions for Proposition 6.

(A1) θ0 is an interior point of Θ ⊂ Rk, where Θ is a bounded subset.

(A2) The covariate Z has bounded support which means that exist z0 such that

P (|Z| ≤ z0) = 1. Also E{V ar(X|Y )} is positive definite with probability

one.

(A3) Λ0(0) = 0 and let κΛ0 = inf{y : Λ0(y) =∞}. Then, the support of Y is an
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interval S[Y ] = [κY , ζY ] with 0 < κY ≤ ζY < κΛ0 .

(A4) 0 < Λ0(κ−) < Λ0(ζ) < M where M is some large constant. Also Λ0 is

continuously differentiable on S[Y ] with derivative λ0 bounded away from 0

and ∞.

(A5) The marginal density of Y , denoted by gY is continuous and positive on S[Y ].

(A6) The function a∗ defined below has a version which is differentiable compo-

nentwise with each component having a bounded derivative on S[Y ].

(A7) Sensitivity and specificity satisfy φ+ ψ > 1.

Proof of Proposition 6. We will present the calculation of the efficient score

function for the regression coefficient and as a consequence the information matrix

for a real value covariate (The multivariate case follows easily from there). The

rest of the proof follows from Banerjee et al. (2009).

The score function for θ is

l̇θ = (φ+ ψ − 1)zΛ(y|z)S(y|z)Q(y, ∆̃, z) (50)

On the other hand, let F0 = {Fη : |η| < 1} is a regular parametric subfamily of

F = {F : F � µ} where µ is the Lebesgue measure and

a(y) =
∂

∂η
log fη(y) |η=0

where f0 is the density of F and fη is a one dimensional smooth curve through f .

By definition a ∈ L0
2(F ) where

L2
0(F ) = {a :

∫
adF = 0 ,

∫
a2dF <∞}
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Note that

∂

∂η
Sη(y)

∣∣∣∣
η=0

=
∂

∂η

∫ ∞
y

dFη(y)

∣∣∣∣
η=0

=

∫ ∞
y

∂

∂η
dFη(y)

∣∣∣∣
η=0

=

∫ ∞
y

∂

∂η
log fη(y)

∣∣∣∣
η=0

dF =

∫ ∞
y

adF (51)

then the score operator for f is

l̇f (a) =
∂

∂η
l(θ, Sη)

∣∣∣∣
η=0

=
∆̃(φ+ ψ − 1) ∂

∂η
Fη(y|z)

∣∣∣
η=0

1− ψ + (ψ + φ− 1)F (Y |Z)
−

(1− ∆̃)(φ+ ψ − 1) ∂
∂η
Fη(y|z)

∣∣∣
η=0

ψ − (ψ + φ− 1)F (y|z)

where

∂

∂η
Fη(y|z)

∣∣∣∣
η=0

= − ∂

∂η
Sη(y|z)

∣∣∣∣
η=0

= − ∂

∂η
Sη(y)exp(θz)

∣∣∣∣
η=0

= −exp(θz)S(y|z)

S(y)

∫ ∞
y

adF (52)

then the score operator for f is

l̇f (a) = −(φ+ ψ − 1)
exp(θz)S(y|z)

S(y)

∫ ∞
y

adF ×[
∆̃

1− ψ + (ψ + φ− 1)F (Y |Z)
− (1− ∆̃)

ψ − (ψ + φ− 1)F (y|z)

]

= −(φ+ ψ − 1)
exp(θz)S(y|z)Q(y, ∆̃, z)

S(y)

∫ ∞
y

adF (53)

In order to determine the efficient score l∗θ for θ, one needs to find a∗ such that

E
{

[l̇θ − l̇fa∗]l̇fa
}

= 0 , ∀ a ∈ L0
2(F )
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then

−
E
{

[l̇θ − l̇fa∗]l̇fa
}

(φ+ ψ − 1)2
= E

{
exp(2θZ)S(Y |Z)2Q(Y, ∆̃, Z)2

[
ZΛ +

∫∞
Y
a∗dF

S(Y )

] ∫∞
Y
adF

S(Y )

}
= E

{∫∞
Y
adF

S(Y )
E

[
exp(2θZ)S(Y |Z)2Q(Y, ∆̃, Z)2

[
ZΛ +

∫∞
Y
a∗dF

S(Y )

]
| Y
]}

= E

{∫∞
Y
adF

S(Y )
E

[
exp(2θZ)O(Y |Z)

[
ZΛ +

∫∞
Y
a∗dF

S(Y )

]
| Y
]}

then

Λ(Y )E [exp(2θZ)O(Y |Z)Z | Y ] = −
∫∞
Y
a∗dF

S(Y )
E {exp(2θZ)O(Y |Z) | Y }

and that implies that

∫ ∞
Y

a∗dF = −Λ(Y )S(Y )E [exp(2θZ)O(Y |Z)Z | Y ]

E [exp(2θZ)O(Y |Z) | Y ]

Thus the efficient score function for θ is

l̇∗θ = l̇θ − l̇fa∗

= (φ+ ψ − 1)Λ(Y ) exp(θZ)S(Y | Z)Q(Y, ∆̃, Z)

[
Z − E [Z exp(2θZ)O(Y |Z) | Y ]

E [exp(2θZ)O(Y |Z) | Y ]

]

and the information matrix is

I(θ) = E {l∗θ}
2 = (φ+ ψ − 1)2E

{
Λ2(Y |Z)O(Y |Z)

[
Z − E [Z exp(2θZ)O(Y |Z) | Y ]

E [exp(2θZ)O(Y |Z) | Y ]

]2
}
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Table 1: Percent bias and coverage to estimate F (t0), where t0 = G−1(0.5) is
the median of the observation times distribution. Sample sizes of 500 and 1000
observations, with 10% expected failures, were considered. Results are based on
1000 simulations

(n = 500) (n = 1000)

(φ, ψ) b̂1
n b̂2

n b̂3
n γ2

n γ3
n E2,3 b̂1

n b̂2
n b̂3

n γ2
n γ3

n E2,3

A. Uniform observation times

(1, 0.8) 175.6 -1.2 -2.1 0.944 0.948 93.0 177.2 0.8 0.1 0.947 0.945 92.2
(1, 0.7) 264.3 -0.6 -5.4 0.944 0.935 90.0 263.6 -1.8 -3.7 0.950 0.944 88.5
(0.8, 1) -24.5 -5.7 -5.4 0.946 0.951 99.0 -23.5 -4.3 -4.2 0.950 0.942 98.8
(0.7, 1) 34.9 -7.0 -6.9 0.947 0.940 99.1 -33.1 -4.4 -4.2 0.949 0.945 98.8
(0.8, 0.9) 67.4 -1.3 -3.6 0.946 0.947 92.9 66.7 -2.3 -3.3 0.963 0.941 92.7
(0.7, 0.8) 56.4 -3.1 -4.1 0.941 0.945 91.4 56.6 -2.8 -4.2 0.948 0.941 90.1

B. Exponential observation times

(1, 0.8) 252.8 4.4 -1.3 0.952 0.942 92.1 252.0 2.7 -0.5 0.954 0.947 91.2
(1, 0.7) 381.8 11.4 1.5 0.948 0.943 89.2 378.4 5.4 -2.4 0.949 0.940 86.9
(0.8, 1) -24.4 -5.5 -5.4 0.942 0.944 99.0 -22.6 -3.3 -3.3 0.948 0.952 98.7
(0.7, 1) -34.1 -5.8 -5.6 0.939 0.935 99.0 -32.3 -3.3 -3.4 0.950 0.952 98.7
(0.8, 0.9) 104.7 0.1 -2.6 0.944 0.933 93.2 104.7 -0.2 -2.4 0.948 0.949 91.8
(0.7, 0.8) 95.9 2.3 -3.7 0.944 0.942 90.4 94.7 -0.2 -2.6 0.946 0.938 89.8

n = sample size, φ = sensitivity, and ψ = specificity

b̂n: Percent bias, γ̂n : Nominal coverage
E3,2= Average c.i length 3 / Average c.i length 2

1 Assuming φ = ψ = 1 (i.e. naive estimator)
2 Assuming true value (φ, ψ)
3 Assuming true value (φ, ψ) and in addition 10% of cohort measured with gold standard
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Table 2: Size and power of the proposed test with various samples sizes (200,
500, and 1000), 10 and 20% expected failures, based on 1000 simulations. Naive
estimator assumes perfect sensitivity (φ = 1) and perfect specificity (ψ = 1).
Adjusted estimator assumes the correct sensitivity and specificity

(φ, ψ) p0 p1 n0 = n1 = 100 n0 = n1 = 250 n0 = n1 = 500
Naive Adjusted Naive Adjusted Naive Adjusted

A: Non differential misclassification

A.1: Under H0

(1,0.8) 0.1 0.1 0.052 0.022 0.045 0.030 0.056 0.040
(1,0.7) 0.055 0.021 0.061 0.023 0.050 0.030
(0.8,1) 0.062 0.058 0.054 0.030 0.048 0.038
(0.7,0.9) 0.062 0.026 0.050 0.040 0.048 0.042
(1,0.8) 0.2 0.2 0.056 0.038 0.052 0.040 0.044 0.042
(1,0.7) 0.064 0.042 0.052 0.036 0.048 0.034
(0.8,1) 0.063 0.060 0.062 0.062 0.046 0.042
(0.7,0.8) 0.056 0.040 0.045 0.032 0.047 0.038

A.2: Proportional hazard alternative (Hazard ratio =0.5)
(1,0.8) 0.1 0.05 0.104 0.048 0.168 0.116 0.276 0.247
(1,0.7) 0.096 0.031 0.132 0.078 0.194 0.148
(0.8,1) 0.222 0.220 0.458 0.456 0.748 0.748
(0.7,0.8) 0.094 0.036 0.162 0.106 0.248 0.216
(1,0.8) 0.2 0.11 0.208 0.157 0.445 0.410 0.717 0.720
(1,0.7) 0.177 0.120 0.334 0.287 0.570 0.549
(0.8,1) 0.385 0.379 0.726 0.723 0.962 0.962
(0.7,0.9) 0.186 0.142 0.357 0.327 0.609 0.588
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Table 3: (Continuation) Size and power of the proposed test with various samples
sizes (200, 500, and 1000), 10 and 20% expected failures, based on 1000 simulations.
Naive estimator assumes perfect sensitivity (φ = 1) and perfect specificity (ψ = 1).
Adjusted estimator assumes the correct sensitivity and specificity

(φ, ψ) p0 p1 n0 = n1 = 100 n0 = n1 = 250 n0 = n1 = 500
Naive Adjusted Naive Adjusted Naive Adjusted

B: Differential misclassification

B.1: Under H0

(0.9,1) & (0.7,1) 0.1 0.1 0.086 0.052 0.156 0.049 0.224 0.051
(1,0.9) & (1,0.7) 0.820 0.032 0.995 0.034 1.000 0.031
(0.9,0.9) & (0.7,0.7) 0.724 0.024 0.978 0.032 1.000 0.044

B.2: Proportional hazard alternative (Hazard ratio =0.5)
(0.9,1) & (0.7,1) 0.354 0.191 0.704 0.415 0.948 0.749
(1,0.9) & (1,0.7) 0.1 0.05 0.666 0.021 0.964 0.059 1.000 0.178
(0.9,0.9) & (0.7,0.7) 0.647 0.019 0.954 0.004 1.000 0.022

B.3: Proportional hazard alternative (Hazard ratio =2)
(0.9,1) & (0.7,1) 0.157 0.352 0.350 0.719 0.575 0.937
(1,0.9) & (1,0.7) 0.1 0.05 0.968 0.204 1.000 0.403 1.000 0.736
(0.9,0.9) & (0.7,0.7) 0.884 0.125 1.000 0.238 1.000 0.401
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Table 4: Cox regression coefficients and size of the likelihood ratio test, with
samples of 500 observations, 10% expected failures and 1000 simulations

Model 1: Λ(t) = t exp(−0.695Z1) Model 2: Λ(t) = t exp(0.405Z2)

(φ, ψ) θ̂n θ̂Mean
a θ̂Median

a η θ̂n θ̂Mean
a θ̂Median

a η

(0.9,0.99) -0.618 -0.727 -0.700 0.061 0.382 0.421 0.419 0.059
(0.80,0.99) -0.606 -0.756 -0.687 0.061 0.368 0.417 0.415 0.069
(0.9,0.95) -0.406 -0.814 -0.738 0.068 0.288 0.424 0.394 0.056
(0.8,0.95) -0.365 -0.794 -0.701 0.053 0.275 0.434 0.412 0.063

Model 3: Λ(t) = t exp(−0.695Z1 + 0.405Z2)

(φ, ψ) θ̂n1 θ̂n2 θ̂Mean
1a θ̂Median

1a θ̂Mean
2a θ̂Median

2a

(0.9,0.99) -0.646 0.379 -0.738 -0.704 0.431 0.416
(0.80,0.99) -0.634 0.385 -0.750 -0.738 0.451 0.439
(0.9,0.95) -0.451 0.257 -0.787 -0.729 0.430 0.432
(0.8,0.95) -0.394 0.248 -0.768 -0.707 0.456 0.430

Z1, Z2 are independent Bernoulli(0.5) random variables

θ̂n = Naive estimate (assuming ψ = φ = 1)

θ̂a = Adjusted estimate (assuming true values of φ and ψ)
η = size of the likelihood ratio test for testing H0 : θ = θ0
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Table 5: Descriptive statistics

Control (N=933) Intervention (N=931) Total (N=1864)

Female∗ 731 (78.3) 736 (78.5) 1467 (78.7)
Age (years) + 21 [19-25] 22 [19-26] 21 [19-25]
Initial diagnoses
Gonorrhea 133 (14.3) 132 (14.2) 265 (14.2)
Genital chlamydia 752 (80.6) 752 (80.8) 1504 (80.7)
Both 48 (5.1) 47 (5.0) 95 (5.1)

Events∗ 122 (13.1) 92 (9.9) 214 (11.5)
Observation time (days) + 87 [77-103] 87 [76-104] 87 [77-103]

Regression Analysis

Factors Univariate Analysis Multivariate Analysis
HR [95 %CI], P-value HR (P-value)

Intervention 0.744 [0.580,0.956], 0.031 0.565
Gender 1.283 [0.950,1.914], 0.121 1.189
Gender × Intervention - 1.400 (0.305)
∗ N(%), + Median [IQR], and HR= Hazard ratio
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Figure 1: Estimated cumulative probability of reinfection for participants in the
placebo (solid line) and intervention (dashed line) arm.
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