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Abstract

Interval- and set-valued decisions are an essential part of statistical inference.

Despite this, the justification behind them is often unclear, leading in practice to

a great deal of confusion about exactly what is being presented. In this paper we

review and attempt to unify several competing methods of interval-construction,

within a formal decision-theoretic framework. The result is a new emphasis on

interval-estimation as a distinct goal, and not as an afterthought to point esti-

mation. We also see that representing intervals as trade-offs between measures

of precision and bias unifies many existing approaches – as well as suggesting

interpretable criteria to calibrate this trade-off. The novel statistical arguments

produced allow many extensions, and we apply these to resolve several outstand-

ing areas of disagreement between Bayesians and frequentists.

AMS 1991 subject classifications: 62C25, 62J05

Key words: Bayesian inference, interval construction, model-robustness

1

Hosted by The Berkeley Electronic Press



1 Introduction

Interval-valued decisions are fundamental in broad areas of applied statistical inference.

However, while experienced statisticians will be familiar with, say, 95% confidence state-

ments as a default approach, teachers of introductory statistics courses will also be aware

that the logic behind their use is extremely subtle (Christensen, 2005). More fundamen-

tal concerns also exist, for example Savage’s criticism (Savage, 1954) of the informal (but

still ubiquitous) justification that intervals ‘express the uncertainty’ about a central point

esimate. Savage (pg 398) makes it clear that, as a logical process, this development is

unsatisfactory; “taking the doctrine literally, it evidently leads to endless regression, for

an estimate of the accuracy of an estimate should presumably be accompanied by an

estimate of its own accuracy, and so on forever”.

In this paper, we review and extend decision-theoretic approaches to interval-valued

inference. Section 2 reviews the previous literature on the justification of intervals as

a primary goal in inference. Section 3 presents several existing approaches, with the

over-arching theme of making interval decisions by trading the competing penalties of

imprecision and bias. Motivated in this way, in Section 4 we present several extensions

of this work, all of which are reasonably simple, but which reveal novel ties between

Bayesian approaches and some existing frequentist approaches. As a whole, the paper

aims to produce a formal framework for estimation under uncertainty, based directly on

interval statements – and thus, in spirit, closely follows the exhortation of Casella and

Berger (1987) to ‘set up the interval and be done with it!’. Section 5 concludes with a

discussion of how specific intervals differ in connecting statistical methods to the science

at hand. While the arguments presented draw on frequentist ideas such as hypothetical

replications and asymptotic approximations, and also the Bayesian incorporation of

prior knowledge, we will argue that a major attraction of decision theory, as a route

to understanding inference, is that the role of these abstract and subtle concepts is

minimized.
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2 Review

Decision theory can be applied to a broad range of inference: for a thorough book-length

review, see Robert (2001). Decision-theoretic arguments for simple point-estimation and

testing feature in most introductory courses on Bayesian inference, although their use

is not restricted to this paradigm (Brown, 2000). The calculus is straightforward; for

parameter θ and data Y , the modeling assumptions stated by the prior and likelihood

allow construction of a posterior distribution π(θ|Y ). We aim to make a decision d,

which is a function of the observed data Y . In point estimation, d is real-valued, but we

can view hypothesis-testing in the same framework by only considering decisions where

d ∈ {0, 1}. A loss function L(θ, d) specifies the penalty we pay for making decision

d when the truth is θ. If d is multivariate, the same calculus applies, although we

note that here the loss functions map multi-dimensional decisions to one-dimensional

costs. A decision is a ‘Bayes rule’ if it minimizes the expectation of loss under both

prior and sampling uncertainty. Construction of Bayes rules is automatic; we simply

minimize (with respect to d) the expected posterior loss for each set of observations

Y . Straightforward examples of this calculus can be found in many introductory texts,

for example (Young and Smith, 2005). Among other results, these texts show that the

posterior mean of θ is the Bayes rule under squared-error loss, and that the posterior

median is the Bayes rule under absolute loss.

Bayes rules enjoy several optimality properties, principally that Bayesian inference is

coherent (Robins and Wasserman, 2000) – conditional on having the same prior knowl-

edge, same data, and same loss function, then only Bayes rule cannot be ‘outplayed’ as

decisions. Unique Bayes rules are admissible, and Bayes rules which have constant risk

under some prior are additionally minimax. Also of note is the guaranteed existence of

non-randomized Bayes rules, thus avoiding the use of (rhetorically weak) randomized

tests. A full, formal, description of the optimality of Bayes rules is given by DeGroot

(2004). Informally, for the precise ‘question’ asked by loss function L and the stated

modeling assumptions, one can think of the Bayes rules as providing the ‘best’ answer,

automatically.
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We turn now to decision theory specifically for interval-valued decisions. The decision-

theoretic calculus applies; we make a multivariate decision d calibrated by a loss function

L. However, unlike point estimation, where the dimension of d and θ are identical, for

interval decisions more than one component of d informs us about each element of θ:

for example, the lower and upper end of an interval for a single parameter. Compared

to point estimation, this many-to-one relationship between decisions and parameters

means interval-decisions must consider a wider range of loss functions. Several authors

have discussed loss functions for intervals; For loss functions based on considering the

end-points of an interval as over- and under-estimates of univariate parameter θ, Winkler

(1972) considered the intervals which are obtained as the relevant Bayes rules. For loss

functions where non-coverage of the true parameter yields a step-function penalty, Cohen

and Strawdermann (1973) discuss admissibility of interval-valued decisions. In relation

to their earlier work on hypothesis testing (Duncan, 1975), Dixon and Duncan (1975)

pursue loss-function based intervals for multiple parameters, basing their inference on

t-intervals. Dixon (1976) later extended this to three-decision intervals, where deviations

of the true parameter above, below or not importantly different to a null value are all

treated separately. Of the more recent developments in this line of argument, the most

extensive discussion is found in the papers by Casella et al (1993, 1994), who investigate

loss functions consisting of a penalty for volume plus a step function for non-inclusion

of the true parameter value. While the Bayes rule for set estimation under this loss can

be calculated, it has unfortunate, ‘paradoxical’ operating characteristics. As noted by

Berger, this behavior may be attributed to the unbounded volume component dominat-

ing the bounded step function contribution. Casella et al (1993) consider ‘rational’ loss

functions where this scaling problem has been addressed, using transformations of the

set volume which map it to the (0,1) range of the step function.

Robert (1994, 2001), devotes a chapter to this topic. Primarily the author discusses non-

admissibility of confidence intervals, and the Stein paradox. While eschewing confidence

regions whose construction “has been done in a rather off-handed manner, with no

decision-theoretic justification,” connections between Highest Posterior Density (HPD)

intervals and classical confidence intervals are noted. The synthesis of volume, coverage
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and confidence into a single loss is also considered by Robert, who notes that “this

direction has not yet been treated in the literature”.

2.1 Scale estimators lack Bayesian motivation

Looking ahead to Sections 3 and 4, we will supply various decision-theoretic inferences,

where the fundamental goal is provision of an interval. Importantly, we will not view

these intervals as secondary, ‘add-ons’ to point-estimation. This stance is unusual; typ-

ical frequentist approaches build intervals around chosen point-estimates θ̂, informally

arguing that intervals ‘express the uncertainty in θ̂’, while Bayesians similarly consider

that intervals ‘express the posterior uncertainty in θ’. To see why this unusual stance is

taken, it is helpful to consider a preliminary lemma;

Lemma 1 Suppose we have parameters θ ∈ Rp, and wish to make a real matrix-valued,

positive-definite decision R. Without restrictions on the likelihood , it holds that for

any loss function L(R, θ) under which the posterior covariance is a Bayes rule for R,

reporting R ≡ 0 is also a Bayes rule.

To prove the lemma, first consider two point mass posteriors, with support at A and B

respectively. Both posteriors have covariance equal to zero, and so for any given decision

Ξ 6= 0, we can write

LA = LA(Ξ, θ) ≥ LA(0, θ) = lA

LB = LB(Ξ, θ) ≥ LB(0, θ) = lB.

Now, for the discrete mixture posterior with point mass α on A and 1 − α on B, it

follows that

L(Ξ, θ) = αLA + (1− α)LB ≥ αlA + (1− α)lB = L(0, θ).

Hence, whenever the posterior covariance is a Bayes rule, the rule which reports R ≡ 0 is

also a Bayes rule. We note that it is possible to construct losses for which the posterior

covariance is a Bayes rule (one trivial example is a common loss for all decisions), but

5
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the lemma above strongly suggests that commonly-used measures of spread can not be

justified from loss functions which include decisions about only spread.

Of course, Lemma 1 does not prevent the posterior variance appearing embedded in

larger decisions. Secondary inference of this sort, similar in spirit to ‘expressing the

uncertainty’ is permitted in decision theory by use of loss estimation, where point-

estimation losses are expanded in some way to add on a secondary decision; see e.g.

Robert and Casella (1994) . However, this approach does not resolve the fundamental

criticism of Savage; arguing for this added layer of inference leads, logically, to a ‘Russian

doll’ of uncertainty statements which are increasingly abstract. As with specification of

priors in hierarchical models, the difficulty of chooising the loss functions at each level

increases with its level of abstraction.

Treating the interval as the primary goal resolves this issue; precision, as interval-width,

can be reflected in our utility statement, together with measures expressing the desire to

have an interval near to or containing θ. No further discussion of posterior uncertainty is

required, as it is reflected in the interval-width. We see that treating interval-estimation

as the primary inference therefore retains the clarity and coherence provided by a single-

stage decision-theoretic argument.

3 Loss functions for intervals: precision and bias

3.1 Absolute discrepancy

In the setting of a parametric model, with real-valued parameter θ, suppose we make

an interval-valued decision [a, b], where a ≤ b without loss of generality. The ’radius’ of

the interval, r = (b− a)/2 is a natural measure of precision. One similarly-natural bias

term is the distance from θ to the nearest end of the interval, which we shall denote as

D (θ, [a, b]) = (a− θ)+ + (θ − b)+,

and note that this distance is zero whenever θ ∈ [a, b]. In this way, precision and bias are

measured on the same scale, in the same units, and can therefore reasonably be added.
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In terms of utility, if one unit of precision has α times more utility than one unit of bias,

a natural loss function is

Lα = αr +D (θ, [a, b]) .

An equivalent determination is that our utility is unchanged if we trade one unit of

precision for α units of bias. The assumption that units of r are ‘bad’ imposes setting

known constant α > 0, and the common assumption that bias is more important than

precision similarly imposes α < 1. Assuming only mild regularity conditions, the Bayes

rule for [a, b] is to report the α/2 and 1 − α2 quantiles of the (marginal) posterior for

θ. (See, for example, Schervish (1995), pg 328). These intervals are widely used, al-

though their justification is usually heuristic. Very attractively, quantile-based intervals

automatically respect transformations of the parameter, leaving inference unaffected.

Intervals of this form have direct connections to frequentist parametric inference. By

Bernstein-Von Mises Theorem (Freedman, 1999), in parametric models there is asymp-

totic agreement between confidence and credible intervals, and with a large sample the

two will be close. (Informally, any prior information is swamped, and the asymptotically-

Normal posterior matches the asymptotic frequentist distribution of the implicit point

estimator at the center of the interval.)

3.2 Squared discrepancy

In the same setting as Section 3.1, keeping radius r as the measure of precision, consider

trading it against a quadratic measure of bias, the squared discrepancy from θ to the

center of the decision (i.e. d = (a + b)/2). To keep the units of precision and bias

comparable, we also normalize this quadratic measure by radius r. As in Section 3.1

this allows us to calibrate the trade-off by a known constant γ > 0, and we are motivated

to use loss

Lγ = γr + (θ − d)2/r.

7
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Assuming that the posterior mean and variance are well-defined, the Bayes rule is simple;

we report intervals of the form [a, b] = [d− s, d + s], where

(dγ, sγ) = (Eθ|Y, γ−1/2StdDevθ|Y ).

(The proof minimizes a simple quadratic and is omitted). The minimized expected

loss is 2γ1/2StdDevθ|Y . Unlike the quantile-based intervals of Section 3.1, moment-

based intervals do not respect transformations of the θ. While dramatic differences in

inference due to transformations are unusual, we note that this moment-based interval

is optimal only for the chosen scale of θ.

Naturally, this moment-based interval will be familiar to Bayesians - althought the

derivation, and its explicit notion of optimality are novel. As in Section 3.1 familiar

frequentist connections also exist. As the likelihood is approximately Normal (asymp-

totically) we find that setting α such that Φ−1(1 − α/2) = γ−1/2, confidence intervals

based on Normality co-incide asymptotically with the Bayes rules of Section 3.1. Once

again, the Bayesian decision-theoretic justification for these intervals requires no asymp-

totics, and (as we shall exploit in Section 4.4) gives a direct measure of the utility actually

realized by the experiment at hand.

3.3 Step function losses

In Sections 3.1 and 3.2, we considered distances from interval-decisions to the true value,

θ, where highly discrepant intervals were penalized most heavily. In situations where

the parameter of interest can be measured in ‘real-world’ units (such as lengths, times,

and weights) then these utility statements seem appropriate and natural. By contrast,

where the parameter of interest has only discrete values intervals do not seem a helpful

approach. However, we are careful to distinguish this from settings with a continuous

parameter where the utility is discrete, in which (as we see below) intervals can be

formed.

If our concern lies solely in making the ‘right’ binary decision, with no regard to the

available precision, then a natural utility is an indicator function that we report the
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correct statement. For point-valued decisions, a natural loss function is an indicator

(formally, a Kronecker-δ function) that decision d reports the true θ, exactly. Under

such a loss, the Bayes rule is to report the posterior mode. Where this decision is a set,

we are ‘right’ when the decision set and truth are concordant, e.g. reporting decision

D = R+ is ‘right’ if and only if θ > 0. This motivates the utility

L(D, θ) = |D|+ c1θ/∈D,

where |D| denotes the size of D with regard to Lebesgue measure on the θ-space – i.e.

not with regard to the posterior. Writing the posterior density as f(θ|Y ), the Bayes

rule in this case report the set of points for which f(θ|Y ) > c−1 (Schervish 1995, pg

329). This is a Highest Posterior Density (HPD) interval, motivated as an extreme case

of trading precision (size of D) for bias (getting the ‘right’ answer, or not). Unlike the

quantile- and moment-based intervals above, HPD intervals can be disjoint, when the

posterior is multimodal. However, as HPD intervals follow moment-based intervals in

not respecting transformations of θ, their optimality holds only if the scale of θ is made

explicit.

As a trade-off between precision and bias, the step loss function above has unattractive

features. First, for continuous θ, the uniform penalty for all incorrect values of θ seems

implausible in scientific inference – where knowing the actual value of θ would usually

be the ultimate goal, and getting any degree closer is helpful. (This is distinct from

other fields, such as drug-licensing and legal judgements, where after a terminal binary

decision, the ‘truth’ becomes irrelevant.) A second, general, concern is the choice of c;

this has units which are the reciprocal of posterior density, and is therefore not easily

interpreted; for example, its meaning changes with sample size. Moreover, the frequen-

tist performance of decisions based on losses have unfortunate, ‘paradoxical’ operating

characteristics, as noted by Casella et al (1993) and Berger (1993). This may be at-

tributed to the unbounded precision component dominating the bounded step function,

penalizing for bias. Casella et al (1993) consider ‘rational’ loss functions where this

scaling problem has been addressed, using transformations of the set volume which map

it to the (0,1) range of the step function, but these have not been generally adopted.

9
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The decision-theoretic approach given here is not the usual Bayesian motivation of HPD

intervals, where one reports the smallest set providing a particular percentage of pos-

terior support – almost always 95% percent, in practice. This is not a trade-off of

bias versus precision; it fixes the precision and proceeds to minimize the bias. While

this minimization does have a decision-theoretic justification, its imposition of say, 95%

credibility is a purely statistical step, with no direct link to scientifically-measurable

quantities. Of course, for unimodal posteriors, the HPD intervals will typically be close

to moment- and quantile-based intervals, and, more generally, asymptotic Normality

of the posterior provides the same links to frequentist behavior as seen in Sections 3.1

and 3.2.

4 Precision and bias: extensions

4.1 Reconciling Bayesian and frequentist testing, and Lindley’s

paradox

We now generalize the loss functions of Section 3.1 to include testing. Suppose, in

addition to interval (a, b), we were additionally interested in making a binary decision

h. Just as we have penalized both precision and bias above, we can penalize discordance

between binary and interval decisions. Specifically, if there exists some ‘null’ parameter

value θ0, reporting h = 1 for θ0 ∈ [a, b] is discordant, and similarly h = 0 for θ0 /∈ [a, b].

The distance of θ0 from [a, b] measures this discrepancy on the same scale as the precision

and bias, motivating the following loss function;

Lα = αr +D (θ, [a, b]) + hD (θ0, [a, b]) + (1− h)D
(
θ0, [a, b]C

)
,

where the final term denotes the minimum of the distances from θ0 to the end points of

[a, b]. The Bayes rule is a simple extension of Section 3.1; both discordancy measures

are minimized, to zero, when we report the usual quantile-based interval for [a, b] and

a simple indicator function that θ0 /∈ [a, b] for h. (Although not pursued here, the

addition of a binary decision extends the moment-based intervals of Section 3.2 in an
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exactly similar manner.)

The loss here merely formalizes the argument of Wald , whose desideratum was that tests

and intervals should agree. It is therefore unsurprising that we derive a Wald-type test,

but the consequences are not trivial. Appealing to Bernstein-Von Mises’ large-sample

agreement between confidence and credible intervals in parametric models, it follows

that, to a good approximation, this Bayes rule returns h = 1 whenever θ0 is excluded

from default confidence intervals. Re-arranging this property, we can define

p∗ = min{α|θ0 /∈ [aα, bα]}

and note that we declare h = 1 — ‘rejecting the null’ — if and only if p∗ < α. Strictly

speaking, the p∗-value is not a Bayes rule, but it is a sufficient summary of the posterior

to allow computation of the (binary) Bayes rule. In this way it is a natural analog

to the two-sided p-value in the Neyman-Pearson framework; p is not itself a decision,

but is a sufficient summary of the data to permit calculating the binary, hypothesis-

testing decision. Consequently, decision-theoretic Bayesians can accept inference based

on classical two-sided p-values, at least as an approximate ‘answer’ to the ‘question’

posed by Lα above. Of course, this appears to be at odds with Berger and Sellke’s

famous result (Berger and Sellke, 1987), that two-sided p-values and Bayesian measures

of evidence are “irreconcilable”, but the Berger and Sellke framework restricts attention

to a single binary parameter. Like the step-function losses of Section 3.3, this binary

parameter permits only the trading-off of costs for Type I and Type II errors, and

disregards precision, bias, and their combined discordance with the null value.

Having shown that there are at least two distinct Bayesian ways to summarize the data

for testing, it seems appropriate to point out the frequentist equivalent. While the clas-

sical Wald-style frequentist approach uses p-values, more recently frequentists have used

two-part models for testing. For example, Efron’s ‘local false discovery rate’ (Efron,

2008) makes testing decisions by estimating the long-run frequency of erroneous de-

cisions, conditional on future data looking like current observations. Bayesians will

recognize this as the posterior probability of the null, one part of the data-dependent

term in the Bayes Factor.

11
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These different ways of testing are laid out here to demystify Lindley’s famous para-

dox (Lindley, 1957), where default Bayesian and frequentist tests lead to dramatically

different conclusions — a situation described recently as “most troubling for statistics

and science” (Berger, 2003). Our argument suggests that, while the distinction is real, it

is essentially one of interval versus binary decisions, and is not fundamentally Bayesian

versus frequentist.

4.2 Bayesian Bonferroni correction

Consider the generalization of Section 3.1 to a multivariate parametric problem, where

the interest lies in making m interval-valued decisions. For interval decisions [a1, b1],[a2, b2], ..., [am, bm],

a näıve extension of the quantile-based intervals is obtained by using loss

m∑
j=1

α
bj − aj

2
+

m∑
j=1

D(θj, [aj, bj]). (1)

The Bayes rule is established by minimizing each summand with respect to its con-

stituent [aj, bj], after taking the expectation with respect to the posterior, and therefore

to report the set of (α/2, 1 − α/2) quantiles, for each θ1, θ2, ...θm respectively. The

derivation is simple, but is made explicit here to contradict the prevalent misconception

that ‘Bayesians automatically adjust for multiple comparisons’ (Mueller et al., 2007).

While this statement has some justification for Bayesian posterior probabilities, where

the goal is model selection (Moreno and Girón, 2006), such statements are invalid for

interval-based inference, and therefore invalid in general. Without any ambiguity, we see

that adjustment for multiplicities is not an automatic consequence of basing inference

on the posterior distribution. However, in interval-based inference, Bayesians can allow

for multiplicities through their choice of utility, as we now explore.

We can consider (1) in terms of its precision-bias trade-offs; the sum of ‘precisions’ is

traded, at rate α against the sum of ‘biases’. However, in a multiple-parameter setting,

a more natural trade-off may be between the sum of the bias terms, which increases if

m increases, against the average precision, which should remain roughly constant. This
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motivates using loss

L♦
α =

α

m

m∑
j=1

bj − aj

2
+

m∑
j=1

D(θj, [aj, bj]).

By a substitution in the result above, we see that the Bayes rule is to report the set of

(α/2m, 1 − α/2m) quantile intervals for each θj. Appending the binary decisions as in

Section 4.1, each ‘corrected’ p∗j -value is m times larger than the näıve approach would

give.

This result will be familiar as Bonferroni correction, to either intervals or Wald-style

p∗-values. Up to the agreement of credible and confidence intervals, it is seen to be

an optimal and natural Bayesian procedure. Usually, Bonferroni correction is seen as

a crude way to control the (frequentist) probabilitiy of making any Type I error; the

Family-Wise Error Rate (FWER). As such, it is commonly refered to as ‘conservative’.

In fact two distinct types of conservatism are at play; first, the FWER is a conservative

basis for decision-making, worrying about making any Type I errors, regardless of m.

The Bayesian analog is no less conservative, although the chosen utility at least makes

it explicit how precision and bias are being weighted. Secondly, Bonferroni’s control

of realized FWER is ‘conservative’, in that the actual level is below the nominal α.

For correlated test statistics, and large m, Bonferroni’s frequentist conservatism can be

substantial (see e.g. Bland (2000)). By contrast, for any m the Bayesian analog is

exactly optimal for the loss L♦
α , whatever the correlation between the different θj in the

posterior, as only the quantiles of the marginal distribution of each θj are reported.

4.3 Bayesian FDR correction

In Section 4.2, we noted that a trade-off is made between average precision and total bias.

A minor modification to this is to trade-off average precision and positive-average bias,

that is, the average of all biases which are strictly positive. For multivariate parametric

inference, we therefore consider the utility

L4
α =

α

m

m∑
j=1

bj − aj

2
+

1

N ∨ 1

m∑
j=1

D(θj, [aj, bj]),

13
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where N = #{D(θj, [aj, bj]) > 0}. As in Section 4.2, we can find Bayes rule intervals

minimizing the expected loss, although they may not be available in a closed form. Nev-

ertheless, following section 4.1, we can also append binary decisions, denoting whether

the null values θ0j are within these intervals. Given the similarity of loss above to sec-

tion (1), it seems natural that the p∗j generated for ‘näıve’ decisions will be a useful

numerical first step for deciding if the appended decisions here are 0 or 1.

In Appendix 1, we show that for posteriors under which each θj is independent, just such

a short-cut exists. Formally, if we order the p∗-values, so p∗[1] ≤ p∗[2] ≤ ... ≤ p∗[m], then an

optimal way to find ‘rejected’ null values, is to search for the maximum p∗j , below Simes’

line, i.e.

max {j : p∗[j] ≤ αj/m}.

This is the well-known Benjamini-Hochberg (BH) algorithm (Benjamini and Hochberg,

1995), applied to p∗-values. Analogously to the discussion of p∗-values, we make no

claims that the BH algorithm is making optimal Bayesian decisions. Indeed, it is known

that BH’s decisions can have unfortunate operating characteristics, albeit in rather spe-

cialized circumstances. (For some simple and compelling examples, see Fearn (2007)).

However, the explosion in FDR and related work since the seminal BH paper suggests,

empirically, that these approximate Bayesian decisions are extremely useful in practice;

investigating utilities similar to L4
α therefore provides substantial scope for refining and

improving the existing methods.

4.4 Reconciling Bayesian and Frequentist sample size calcula-

tions

In both Sections 3.1 and 3.2, the minimized expected losses combine precision and bias

in a measure of overall utility. As sample size increases, we would expect both precision

and bias to improve, and so the realized utility should also improve. Choosing n large

enough so that the expected loss is below a preset threshold therefore defines a sample-

size calculation. Moreover, this sample-size calculation is naturally concordant with our
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inference, based on exactly the same loss function.

As noted in Section 3.2, moment-based intervals are derived from a loss with an op-

timized expected value directly proportional to the posterior standard deviation. For

very general models, this quantity is proportional to
√

n, and so linear changes to the

required utility threshold will equate to quadratic changes in required sample size. As

a specific illustration, consider use of Lγ from Section 3.2 with independent identically

distributed Yi ∼ N(θ, σ2), for 1 ≤ i ≤ n and where σ2 is known. We assume the standard

conjugate prior, with θ ∼ N(m, v), parameterized with v = σ2/k, so k can be informally

interpreted as ‘prior sample size’. The posterior for θ is thus N(Ȳ n
k+n

+ m k
n+k

, σ2 1
n+k

).

Scaling Lγ by a constant, we can express the loss as

Z1−α/2

Z1−α/2 + Z1−β

2

(
a− θ

2σ
+

b− θ

2σ

)2
2σ

b− a
+ Z−1

1−α/2

Z1−α/2 + Z1−β

2

b− a

2σ
.

The ‘basic’ cost-per unit of loss is the average of fixed constants Z1−α/2 and Z1−β, but

to reflect conservatism about bias, the cost of precision down-weighted by a factor of

Z−1
1−α/2, while the bias term’s cost is upweighted by the same factor. Using the Bayes

rule decision, the expected posterior loss is

EL†(dγ, θ)|Y = 2
√

γσ/
√

n + k.

If our threshold for this quantity is ∆, we should therefore insist on a sample size of

n + k ≥ σ2

∆2
(Z1−α/2 + Z1−β)2.

Taking the ‘non-informative’ limit k → 0 then we recover the familiar frequentist sample

size calculation for the two sample problem (see e.g. van Belle et al (2004) pg 136);

n ≥ σ2

∆2
(Z1−α/2 + Z1−β)2,

for standard Normal quantiles Z1−α/2 and Z1−β, where α and β determine the Type I

and II error rates.

As in Section 4.1, our interval-based decision-theoretic derivation goes against a sub-

stantial Bayesian literature criticizing the default frequentist calculation. (A review,

and partial reconcilliation is provided by Inoue et al (2005), but this requires weighting
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of binary, hypothesis-testing decisions.) Typical Bayesian approaches are instead based

on the maximized expected utility (MEU) argument of Lindley (1997). Here, one ap-

pends a cost term (usually linear in n) to a loss function concerned with point-estimation

of θ, such as squared-error loss. Treating n as a decision, the Bayes rule then provides

the unique optimal trade-off between cost and a measure of bias. This trade-off between

bias and cost is awkward in two simple ways: First, one is forced to trade-off units on

totally different scales. Second, MEU forces the acceptence of a uniquely ‘best’ n, when

in practice if there was more funding available, to obtain better statistical accuracy,

everyone would prefer bigger samples.

4.5 Bayesian sandwich estimates

We now generalize the approach of Section 3.2 to the case of multivariate p × 1 vector

θ, in a non-parametric setting. Our goal is a decision ellipsoid, characterized by p × 1

vector d (center) and positive definite p× p matrix R2 (radii and eccentricity).

As a first step, we consider a parametric setting. Generalizing the loss of Section 3.2, we

can characterize ‘precision’ by the sum of the longest orthogonal axes of the ellipsoid,

and ‘bias’ by sum of squared distances from θ to the center of the ellipsoid, normalized

to maintain dimensional comparability. Trading off as in Section 3.2, our loss function

is

Lγ = γtr(R) + (θ − d)T R−1(θ − d).

As shown in Appendix 2, the Bayes rule is to report

d = Eθ|Y, R2 = γ−1Covθ|Y,

where we assume these first two moments are well-defined.

Before extending this result in a model-robust manner, we note that non-parametric

measures of precision and bias requires some care. The traditional Bayesian paradigm

has prima facie difficulties with non-parametric inference, because parametric likelihoods

are the link between prior and posterior. Typically, inference about parameters made

under specific model assumptions will not have an automatic interpretation under other
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model assumptions. However, if inference is instead made on quantities which can be

defined equivalently under broad classes of models, this difficulty does not arise.

Suppose we are in the setting of multivariate linear regression, with a fixed n× p design

matrix X, and a n × 1 vector of independent outcomes Y . Our goal remains a multi-

variate ellipsoid decision, centered at d and with radii/eccentricity matrix R. As in the

parametric framework, tr(R) is a natural measure of ellipsoid precision. A measure of

‘bias’ that is comparable across models is the expected squared error loss around Xd,

where the expectation is taken with respect to replications from the (as yet unspecified)

data-generating model. Now, this ‘bias’ around replicated data has n dimensions, not

p; by dimensional considerations, its trade-off against precision requires a projection of

the replicated data to Rp. A natural projection is a generalized inverse of X, such as

Π(X) = (XT X)−1XT .

Motivated in this way, consider the loss function

γtr(R) + EY ∗|θ(Y
∗ −Xd)T Π(X)T R−1Π(X)(Y ∗ −Xd), (2)

where EY ∗|θ denotes expectation with respect to the (as yet unspecified) data-generating

mechanism, using its parameters θ. The loss is a function of the decision and θ alone.

As shown in Appendix 3, the Bayes rule is to report

d = Π(X)(E)Y ∗

R2 = γ−1Π(X)E(Y ∗ − EY )(Y ∗ − EY )T Π(X)T ,

where E denotes expectation with respect to the posterior predictive distribution, i.e.

generating new datasets under the updated (but still unspecified) data-generating model.

When this model assumes that the elements of Y ∗ are independent, the Bayes rule for

R2 simplifies to

R2 = γ−1Π(X)diag{VarY ∗
i }Π(X)T .

These formulations parallel the popular ‘sandwich’ estimates of covariance, due to Huber,

Eicker, and White (Huber, 1967). The Bayes rules depends only on the first and second

moments of Π(X)Y ∗. In particular, we obtain the same inference for any and all models
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which are sufficiently flexible to reproduce first and second moments of Π(X)Y , so

gaining robustness to choice among this class of models. (In fact, the sandwich approach

may be viewed as an attempt to restrict frequentist inference to properties of only first

and second moments of Π(X)Y (White, 1980); in this light the Bayesian connection is

natural.)

Another derivation of sandwich intervals is via construction of θ as a straight line fit to

the posterior from a highly-flexible model, followed by use of Lγ above. The equivalence

of θ across broad classes of models is less explictit than that defined in (2), although

this approach is closer to existing ‘Non-parametric Bayes’ methods. Through specific

choices of θ, this construction can be used for fixed or random X (Szpiro et al., 2007).

Sandwich-based intervals are the default approach in modern frequentist analysis (Liang

and Zeger, 1986; Zeger and Liang, 1986; Zeger et al., 1985), and enjoy the considerable

benefit of asymptotically-correct coverage under only mild regularity conditions. A full

discussion of the consequent freedom from model-validity that this provides is given in

Section 5.2, but we note that establishing a Bayesian interpretation of this approach has

been an open problem for some time.

5 Discussion

5.1 Comparisons with existing frequentist and Bayesian meth-

ods

Our developments of intervals has primarily been within the Bayesian paradigm, al-

though strong connections have been made to frequentist ideas throughout Section 4.

While these results may bring Bayesian and frequentist agreement, we feel the in-built

optimality of our approach is more readily-accessible than current Bayesian and frequen-

tist practice.

The default frequentist method is to find intervals which, under hypothetical replica-

tions of the experiments, and appealing to asymptotic approximations, have acceptably
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accurate coverage of the true value. The ‘not too wide’ criterion is met, informally, by

using asymptotically efficient estimates, where these are known. If the calculated stan-

dard errors are good approximations to the true standard error of the efficient estimator,

then we obtain intervals with pre-specified coverage which are of minimal average width,

averaging over replications of the experiment. However, these intervals’ frequentist ‘op-

timality’ is somewhat removed from the actual data at hand (Christensen, 2005). In

many fields, this disconnect encourages näıve users to examine several different confi-

dence intervals, all of which may be valid in the frequentist sense. In an essentially ad

hoc step, the practitioner then reports whichever is deemed to ‘work best’. By compari-

son, the decision-theoretic approach encourages the user to consider, a priori, both what

is known and what we want to know. Optimal inference then follows directly.

Optimality is also remote from default Bayesian derivations of intervals. While HPD

intervals are derived from a length-optimizing argument, they are employed rarely, typ-

ically for multi-modal posteriors. In practice 95% quantile-based intervals are preferred.

These are commonly justified only as a ‘reasonable summary’ of the posterior, and the

rationale for preferring them to HPD intervals is not stated.

Where data-exploration is the goal, any frequentist or Bayesian method of interval-

construction may be appropriate. However, for formal inference on a pre-specified quan-

tity of interest, more rigor is demanded.

5.2 Model-checking versus utility-specification

The logic of the decision-theoretic approach is quite straightforward; we specify a ques-

tion of scientific interest, and construct an optimal answer based on the data. While this

approach may be familiar in point-estimation problems, in this paper we have shown

that the same approach generalizes to decisions which are intervals, or sets. We empha-

size that the approach is confirmatory, not exploratory; although the inference relies on

the data, no post hoc changes are made to the question being addressed.

Importantly, model-checking need play no part in this inferential process. In the Sec-
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tions on parametric work, we condition on belief in the postulated model – a typical

assumption in parametric approaches. However in Section 4.5, while this conditioning

occurs it is much less important, and we gain model-robustness in the same spirit as Hu-

ber, Eicker and White. Having shown that identical inference is obtained over a broad

class of assumptions, if we accept the validity of any one of these assumptions, logically

we can accept the consequent inference.

This approach diverges substantially from practices familiar from both Bayesian and fre-

quentist parametric inference. Here, to allay concerns over the strength of the assump-

tion that the parametric model is correct, informal algorithms exist to iteratively check

and enhance the ‘assumed’ model; see, for example, McCullagh and Nelder(McCullagh

and Nelder, 1999), pg 392. While this framework seems uncontroversial for ad hoc data

exploration, it is known to be unsatisfactory for formal, confirmatory analysis, and open

to substantial misuse. At a simple level, well-intentioned but näıve use of p-values un-

corrected for model-checking can result in aberrant Type I error rates (Caudill, 1988;

Forsberg and Kristiansson, 1999). More seriously, in clinical trials of new drugs, this

informality of this approach allows ample opportunity for deliberate obfuscation. Con-

sequently, FDA guidelines effectively rule out model-checking in such work (Senn, 2000).

Attempts have been made to formalize the cycle of exploration/confirmation, but these

are not yet generally accepted.

In contrast with common presentations of model-robustness as a ‘clever trick’, we feel

that its justification from a decision-theoretic point of view follows as a logical consquence

of simply asking a model-robust question. In particular, this development is distinct

from the justification that we are ‘robustifying the MLE,’ an argument comprehensively

denounced by Freedman (Freedman, 2006). If we ask a model-robust question, there

may be no need for model-checking, logically or practically. With a small sample, a

frequentist might be concerned about the accuracy of asymptotic approximations, while

a Bayesian might be concerned that their prior had not been swamped by information

from the data. However, in large samples, using well-understood models, these concerns

can quite reasonably be ignored.
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This divergence from received statistical wisdom is not intended to be taken lightly,

although we do note that ‘sandwich’ approaches, without model-checking, are already the

default in some applied fields, often via the Stata software. However, we are enthusiastic

that its decision-theoretic justification of model-robust approaches will allow statisticians

more generally to be comfortable using method which allows them to concentrate directly

on the science at hand. In the model-robust framework, the statistician’s challenge,

instead of formally modelling the ‘truth’, becomes simply to formalize the scientific

question of interest; in this way, statistical inference can follow the science, and not

vice versa, as can happen with other methods. Particularly in situations where no

parametric model offers a plausible ‘truth’ for the data, we feel the framework is not

only epistemologically appealing, but also offers a better practical use of statisticians’

talents than a quixotic search for ‘better model fit’.

6 Appendices

6.1 Appendix 1

The expected loss is

α

m

m∑
j=1

bj − aj

2
+ E

1

N ∨ 1

m∑
j=1

D(θj, [aj, bj]),

where the expectation is with respect to the posterior. Now, writing Ñj as the number

of positive bias terms except the jth, i.e. #{D(θk, [ak, bk]) > 0, k 6= j} , this is

α

m

m∑
j=1

bj − aj

2
+

m∑
j=1

E
D(θj, [aj, bj])

1 + Ñj

.

In the jth summand only θj appears only in the numerator; not θ terms appear in the

denominator. Hence for posteriors in which all parameters are independent, we can write

α

m

m∑
j=1

bj − aj

2
+

m∑
j=1

E

(
1

1 + Ñj

)
ED(θj, [aj, bj])

Interim to finding the Bayes rule, we take derivatives with respect to aj and bj. Writing

Fj as the marginal posterior distribution of θj, and fj as its density function, setting
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these derivatives to zero leads to

−α/2m + E

(
1

1 + Ñj

)
Fj(aj) + ED(θj, [aj, bj])

∑
k 6=j

fj(aj)E

(
1

2 + Ñjk

− 1

1 + Ñjk

)
= 0

α/2m− E

(
1

1 + Ñj

)
(1− Fj(bj))− ED(θj, [aj, bj])

∑
k 6=j

fj(bj)E

(
1

2 + Ñjk

− 1

1 + Ñjk

)
= 0,

where Ñjk extends the notation above, representing the number of positive bias terms

excluding the jth and kth. In both expressions the summand with j 6= k behaves as

Ñ−2
jk , and so for large numbers of positive bias terms, an approximation to the Bayes

rule can be found be setting this term to zero. (This simple approximation is utilized

below) Having made this approximation, trivial re-arrangement shows leads to setting

Fj(aj) = 1−Fj(bj), i.e. reporting quantile-based intervals, symmetric about the posterior

median for θj, exactly as for L♦
α . However, even with the approximation step, the

required quantiles Fj(aj) are not completely trivial to calculate, being defined as the

solution of the system of m related equations;

Fj(aj) =
α

2mE 1
1+Ñj

, 1 ≤ j ≤ m.

Minimizing the exact posterior loss, in order to compute the exact Bayes rule d4α appears

still more challenging.

This numerically challenging work may be excessive, however, if we follow the line of

argument in Section 4.1, and only require a summary of the {[a4α , b4α ]}, i.e. the set of

exact Bayes rules indexed by α. Given a vector of null values θ0,j, a natural extension

of the p∗-value is for a specified α, to ask whether θ0,j ∈ [a4α,j, b
4
α,j], i.e. whether the null

value lies within the exact Bayes rule interval. As we see below, this property may be

determined without calculating the exact Bayes rule.

Following (6.1) we can define the p∗-value for each parameter as

p∗j = Fj(θ0j)

Without loss of generality, we assume that all null values lie below their respective

posterior medians, so that Fj(θ0,j) ≤ 1/2. Now, let us assume for some j that θ0,j+1 ∈
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[a4α,j+1, b
4
α,j+1], and that pj ≥ jα/2m. Under the approximation specified above we get

Fj(a
4
α,j) =

α

2mE 1
1+Ñj

≤ α

2m
(1 + EÑj)

by Jensen’s inequality. Re-writing this we get

Fj(a
4
α,j) ≤ α

2m

(
1 +

∑
k 6=j

2Fj(a
4
α,k)

)

=
α

2m

(
1 +

∑
k<j

2Fj(a
4
α,k) +

∑
k>j

2Fk(a
4
α,k)

)

The two leftmost bracketed terms are jointly bounded above by j, hence

Fj(a
4
α,j) ≤

α

2m

(
2j + 2

∑
k>j

Fk(a
4
α,k)

)

But, by assumption, Fj(θ0j) ≥ jα/m and so

Fj(a
4
α,j)− Fj(θ0j) ≤

α

2m

(∑
k>j

2Fk(a
4
α,k)

)

The right hand side term is positive, hence Fj(a
4
j ) ≤ Fj(θ0j) and so θ0j must lie inside

the approximation to the Bayes rule.

Therefore, for all pj ≥ αj/2m, we can declare that θ0j ∈ [a4α,j, b
4
α,j]. With induction,

this defines a step-down procedure; modulo the stated approximation we can continue

declaring θ0j ∈ [a4α,j, b
4
α,j] until some j violates pj ≥ jα/2m, the well-known ‘Simes

line’ (Simes, 1986).

Maximizing the length of our ‘run’ of steps j + 1 to j is achieved by ordering the p∗-

values, so p∗[1] ≤ p∗[2] ≤ ... ≤ p∗[m]. The procedure defined in this way is therefore to search

for

max {j : p∗[j] ≤ jα/m}

This is the very well-known Benjamini-Hochberg (BH) algorithm (Benjamini and Hochberg,

1995), applied to p∗-values for the θj which are by assumption independent in the poste-

rior. Applied to p-values from independent test statistics, the BH algorithm control the
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expected FDR at a pre-specified level, where the expectation is in the frequentist sense

of infinite numbers of replications. In the decision-theoretic setting, BH represents an

attractively simple approximate step-down method to answer whether elements of θ0j

are included in the Bayes intervals [a4α,j, b
4
α,j].

6.2 Appendix 2

Taking the expectation with respect to the posterior, we find

ELγ = γtr(R) + tr
(
R−1E(θ − d)(θ − d)T

)
= γtr(R) + tr

(
R−1(θ̄ − d)(θ̄ − d)T + R−1E(θ − θ̄)(θ − θ̄)T

)
,

where θ̄ denotes the posterior mean of θ. Now, re-arranging the term in d as above, it is

easily seen to be non-negative, and is thus minimized (to zero) when d is the posterior

mean.

It remains to minimize the expected loss with respect to R. As a convenient shorthand,

we write V = E(θ − θ̄)(θ − θ̄)T , the posterior variance. Re-parameterizing the decision

problem as R = γ−1/2V 1/2A, where V 1/2 is the unique semi-definite square root of V

and A is positive definite, we must minimize

ELγ = γ1/2tr(V 1/2A) + γ1/2tr(A−1V 1/2)

= γ1/2tr
(
V 1/2(A + A−1)

)
By considering the inequality

tr
(
(A1/2 − A−1/2)V 1/2(A1/2 − A−1/2)

)
≥ 0

we observe that the expected loss must obey

γ1/2tr
(
V 1/2(A + A−1)

)
≥ γ1/22 tr

(
V 1/2

)
,

this minimum being attained when we choose A to be the identity matrix. Hence we

find that the Bayes rule simply sets

d = Eθ|Y,R2 = γ−1Covθ|Y.

24

http://biostats.bepress.com/uwbiostat/paper336



6.3 Appendix 3

The loss is

Lγ = γtr(R) + EY ∗|θ(Y
∗ −Xd)T Π(X)T R−1Π(X)(Y ∗ −Xd),

= γtr(R) + tr(R−1Π(X)
(
EY ∗|θ(Y

∗ −Xd)(Y ∗ −Xd)T
)
Π(X)T )

Taking the expectation of the loss, the terms in EY ∗|θ are replaced by posterior predictive

expectations. Minimizing the expected loss then proceeds in a similar way to Appendix

2. The expected loss can be decomposed;

ELγ = γtr(R) + tr(R−1Π(X)
(
E(Y ∗ −XΠ(X)Ȳ )(Y ∗ −XΠ(X)Ȳ )T

)
Π(X)T )

+tr(R−1Π(X)
(
E(XΠ(X)Ȳ −Xd)(XΠ(X)Ȳ −Xd)T

)
Π(X)T ),

where Ȳ denotes the mean of the posterior predictive. The term in d is minimized

to zero by setting d = Π(X)Ȳ . In the term involving Y ∗, the exterior Π(X) terms

may be brought inside the expectation terms. With the cancellation that follows, and

minimization with respect to R as before, we find that the Bayes rule sets

{d,R2} = {Π(X)Ȳ , Π(X)
(
E(Y ∗ − Ȳ )(Y ∗ − Ȳ )T

)
Π(X)T )}.

Now, under the assumption (in the predictive distribution) that the Y ∗
i are independent,

the Bayes rule for R2 can be written as

R2 = (XT X)−1Xdiag{VarY ∗
i }XT (XT X)−1.

This parallels the familiar ‘sandwich’ forms used in the Estimating Equations paradigm.

We note that, if the classical linear model is assumed as the data-generating mechanism,

with homoskedastic Normal error terms and non-informative priors, then the Bayes rule

for the intervals reduces to the standard likelihood-based confidence intervals. At the

other extreme, for sufficiently flexible models and non-informative priors, the Bayes rules

reproduce frequentist sandwich-based intervals (for fixed X), and conseqently intervals

will have asymptotically correct frequentist coverage.
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