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A SEMIPARAMETRIC APPROACH FOR

THE COVARIATE SPECIFIC ROC CURVE

WITH SURVIVAL OUTCOME

Xiao Song and Xiao-Hua Zhou

University of Georgia,

Department of Biostatistics, University of Washington,

and Northwest HSR&D Center of Excellence, VA Puget Sound Health Care System

Abstract: The receiver operating characteristic (ROC) curve has been extended to survival data

recently, including the nonparametric approach by Heagerty, Lumley and Pepe (2000) and the

semiparametric approach by Heagerty and Zheng (2005) using standard survival analysis tech-

niques based on two different time-dependent ROC curve definitions. However, both approaches

cannot adjust for the effect of covariates on the accuracy of the biomarker. To account for the co-

variate effect, we propose semiparametric models for covariate specific ROC curves corresponding

to the two time-dependent ROC curve definitions, respectively. We show that the estimators are

consistent and converge to Gaussian processes. In the case of no covariates, the estimators are

demonstrated to be more efficient than the Heagerty-Lumley-Pepe estimator and the Heagerty-

Zheng estimator via simulation studies. In addition, the estimators can be easily extended to

other survival models. We apply these estimators to an HIV dataset.

Key words and phrases: Location model, Proportional hazards model, Receiver operating characteristic

curve, Survival analysis.

1. Introduction

The receiver operating characteristic (ROC) curve is a popular tool to assess the effect of biomarkers

in screening and predicting disease. A biomarker can be a single variable or a composite score of several
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2 XIAO SONG AND XIAO-HUA ZHOU

variables. Exciting promises in identification of biomarkers using high dimensional microarray data have

been recently demonstrated (Pepe, Longton, Anderson and Schummer, 2003). The ROC curve can be

viewed as a plot of the true versus false positive rates among all possible thresholds for classifying disease

and nondisease patients. One appealing property of the ROC curve is that it provides a common scale

for comparing the accuracy of biomarkers, which may be measured in different units, in distinguishing two

states of a binary outcome. Various approaches have been proposed for estimating the ROC curve (Zhou,

Obuchowski and McClish, 2002, Chapters 4 and 5; Pepe, 2003, Chapter 5). When covariates have an impact

on the accuracy of a biomarker, it is important to account for the covariate effects in applying the ROC

curve (Zhou, Obuchowski and McClish, 2002, Chapter 8; Pepe, 2003, Chapter 6), which lead to the ROC

curve adjusted for specific covariate effects, namely the covariate-specific ROC curve.

Recently, the ROC curve has been extended to survival time to evaluate the accuracy of biomarkers

in classifying subjects based on time to an event, such as time to progression to a disease. Heagerty and

Zheng (2005) give a systematic review of such time-dependent ROC curves. The true positive rate (TPR)

and false positive rate (FTR) of a ROC curve can be extended in two different ways for survival time: the

TPR is generalized to incident TPR and cumulative TPR, and the FPR is generalized to dynamic FPR and

static FPR. Heagerty, Lumley and Pepe (2000) proposed a nonparametric approach for the time-dependent

ROC curve based on the incident TPR and the dynamic FPR, using the Kaplan-Meier estimator of the

survival distribution and the empirical distribution estimator of the biomarker. Heagerty and Zheng (2005)

took a semiparametric approach for the time-dependent ROC curve based on the cumulative TPR and

the dynamic FPR, using a proportional hazards model for a linear combination of several variables as the

biomarker. Both the Heagerty-Lumley-Pepe and Heagerty-Zheng approaches can be used to evaluate and

compare biomarkers in classifying subjects based on their survival times (Heagerty and Zheng, 2005); the

former is useful in distinguishing subjects failing by a given time and those failing after this time, and the

latter is useful in distinguishing subjects failing at a given time and those failing after this time. However,

these two approaches do not adjust for the effect of covariates on the accuracy of a biomarker; adjusting for

the covariate effect may be important in assessing the accuracy of a biomarker. An example is the HIVNET
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012, a randomized clinical trial to compare nevirapine (200mg at labor onset and 2mg/kg for babies within

72 hours of birth) and zidovudine (600mg at labor onset and 300mg every 3 hours until delivery, and 4mg/kg

orally twice daily for babies for 7 days) for prevention of mother-to-child transmission of HIV-1 (Jackson et

al., 1996). HIV-1 infected pregnant women in Kampala, Uganda, were recruited between November 1997

and April 1999, with 313 assigned nevirapine and 313 zidovudine. Two possible biomarkers, the maternal

HIV-1 RNA and CD4 count, were measured at baseline. It would be interesting to evaluate the capacities of

the biomarkers in classification of the babies based on their time to HIV infection or death, which may be

different for the two treatment groups. Thus it may be important to adjust for the treatment in constructing

the ROC curves.

In this paper, we consider two types of time-dependent ROC curves for survival data adjusted for

covariates. They correspond to the ROC curves used by Heagerty, Lumley and Pepe (2000) and Heagerty

and Zheng (2005), respectively, in the case of no covariates. We allow the biomaker to be composed of several

variables as considered by Heagerty and Zheng (2005). Moreover, covariates other than those variables

contained in the biomarker can be adjusted in constructing the ROC curves. We assume that the survival

time depends on the biomarker and covariates through a proportional hazards model and that the biomarker

depends on the covariates through a semiparametric location model. Semiparametric estimators are proposed

for the time-dependent ROC curves. We show that these estimators are consistent and converge to Gaussian

processes. This approach can be easily extended to other survival models as discussed in Section 7.

The paper is organized as follows. We define the covariate specific time-dependent ROC curves in

Section 2 and derive the estimators in Section 3. The asymptotic properties are given in Section 4. We

assess the finite sample performance of the estimators by simulation in Section 5 and apply the method to

the HIV data described above in Section 6. The paper concludes with discussions in Section 7.

2. Definition

Let Y be a biomarker, T be the survival time, C be the censoring time, and X be a vector of covariates

that may affect T . The observed survival data are V = min(T,C) and ∆ = I(T ≤ C), where I(·) is the

indicator function. Suppose that larger values of Y are associated with great hazards to events; otherwise,
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4 XIAO SONG AND XIAO-HUA ZHOU

Y can be recoded if necessary to achieve this. The ROC curve for survival time is defined based on TPR and

FPR by analogy to that for a binary outcome. To define the covariate specific time-dependent ROC curve,

we first define the conditional TPR and FPR given the covariate X. Specifically, for X = x, the cumulative

TPR, the incident TPR and the (dynamic) FPR at time t are defined, respectively, as

TPRC(y; t, x) = P (Y > y|T ≤ t,X = x),

TPRI(y; t, x) = P (Y > y|T = t,X = x),

and

FPR(y; t, x) = P (Y > y|T > t,X = x).

Then we define the cumulative ROC curve as

ROCC(v; t, x) = TPRC

{
FPR−1(v; t, x); t, x

}
,

and the incident ROC curve as

ROCI(v; t, x) = TPRI

{
FPR−1(v; t, x); t, x

}
.

Both the cumulative and the incident time-dependent ROC curves can be used to evaluate and compare

the accuracy of biomarkers in classifying subjects based on their survival times adjusting for covariates;

the former is useful in distinguishing subjects failing by a given time and those failing after this time,

while the latter is useful in distinguishing subjects failing at a given time and those failing after this time.

The Heagerty-Lumley-Pepe approach deals with the cumulative ROC curve without covariates, and the

Heagerty-Zheng approach estimates the incident ROC curve without covariates.

3. Estimation

With some simple algebra, TPRC , TPRI and FPR can be written as

TPRC(y; t; x) =

∫∞
y
{1− S(t|u, x)} dP (Y ≤ u|X = x)∫∞

−∞ {1− S(t|u, x)} dP (Y ≤ u|X = x)
, (3.1)

TPRI(y; t, x) =

∫∞
y

f(t|u, x)dP (Y ≤ u|X = x)∫∞
−∞ f(t|u, x)dP (Y ≤ u|X = x)

, (3.2)
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and

FPR(y; t; x) =

∫∞
y

S(t|u, x)dP (Y ≤ u|X = x)∫∞
−∞ S(t|u, x)dP (Y ≤ u|X = x)

, (3.3)

where S(t|y, x) = P (T ≥ t|Y = y, X = x) is the conditional survival distribution function given Y = y and

X = x, and f(t|y, x) = −dS(t|y, x)/dt is the corresponding conditional survival density.

To estimate these quantities, we assume a proportional hazard model for the survival time,

λ(t|Y, X) = λ0(t) exp
(
β0Y + γT

0 X
)
, (3.4)

and a semiparametric location model for the biomarker,

P (Y ≤ y|X) = H(y − αT
0 X), (3.5)

where λ0(·) is an unspecified baseline hazard function, and H(·) is an unspecified distribution function.

Suppose that the observed data {(Vi, ∆i, Yi, Xi) : i = 1, . . . , n} are independent and identically distributed

samples from (V, ∆, Y,X).

The estimator of α0, say α̂, can be obtained by solving

n∑

i=1

(Yi − αT Xi)Xi = 0, (3.6)

and H(y) can be estimated by

Ĥ(y, α̂) = n−1
n∑

i=1

I
(
Yi − α̂T Xi ≤ y

)
.

Under model (3.4), we can write the survival function S(t|y, x) = exp
{−Λ0(t) exp

(
βy + γT x

)}
, where

Λ0(t) =
∫ t

0
λ0(u)du is the cumulative baseline hazard function. Let Ni(u) = I(Vi ≤ u, ∆i = 1) be the

counting process and Ri(u) = I (Vi ≥ u) be the at risk process. An estimator of S(t|y, x) is

Ŝ(t|y, x) = exp
{
−Λ̂0(t) exp

(
β̂y + γ̂T x

)}
,

where (β̂, γ̂) is the maximum partial likelihood estimator of (β0, γ0), which solves the partial score equation

at time L,

n∑

i=1

∫ L

0

{
(Yi, X

T
i )T −

∑n
j=1 Ri(u)(Yi, X

T
i )T exp

{
βYi + γT Xi

}
∑n

j=1 Ri(u) exp {βYi + γT Xi}

}
dNi(u) = 0,
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6 XIAO SONG AND XIAO-HUA ZHOU

and Λ̂0(t) is the Breslow estimator of Λ0(t) given by

Λ̂0(t) =
n∑

i=1

∫ t

0

dNi(u)
∑n

j=1 Ri(u) exp
{

β̂Yi + γ̂T Xi

} .

The density f(t|y, x) can be estimated by f̂(t|y, x) = −∂Ŝ(t|y, x)/∂t. Substituting the estimators of S(t|u, x),

f(t|u, x) and P (Y ≤ u|X = x) into (3.1)–(3.3), we obtain estimators of TPRC , TPRI and FPR, which are

given by

T̂PRC(y; t, x) =

∫∞
y

{
1− Ŝ(t|u, x)

}
dĤ(u− α̂x, α̂)

∫∞
−∞

{
1− Ŝ(t|u, x)

}
dĤ(u− α̂x, α̂)

=

∑n
i=1

[
1− Ŝ {t|Yi − α̂(Xi − x), x}

]
I {Yi − α̂(Xi − x) ≥ y}

∑n
i=1

[
1− Ŝ {t|Yi − α̂(Xi − x), x}

] , (3.7)

T̂PRI(y; t, x) =

∫∞
y

f̂(t|u, x)Ŝ(t|u, x)dĤ(u− α̂x, α̂)
∫∞
−∞ f̂(t|u, x)Ŝ(t|u, x)dĤ(u− α̂x, α̂)

=

∑n
i=1 exp

{
β̂Yi − α̂(Xi − x)

}
Ŝ {t|Yi − α̂(Xi − x), x} I {Yi − α̂(Xi − x) ≥ y}

∑n
i=1 exp

{
β̂Yi − α̂(Xi − x)

}
Ŝ {t|Yi − α̂(Xi − x), x}

,

(3.8)

and

F̂PR(y; t; x) =

∫∞
y

Ŝ(t|u, x)dĤ(u− α̂x, α̂)
∫∞
−∞ Ŝ(t|u, x)dĤ(u− α̂x, α̂)

=
∑n

i=1 Ŝ {t|Yi − α̂(Xi − x), x} I {Yi − α̂(Xi − x) ≥ y}∑n
i=1 Ŝ {t|Yi − α̂(Xi − x), x} , (3.9)

respectively. Thus the estimators of ROCC(v; t) and ROCI(v; t) are

R̂OCC(v; t, x) = T̂PRC

{
F̂PR

−1
(v; t, x); t, x

}
,

and

R̂OCI(v; t, x) = T̂PRI

{
F̂PR

−1
(v; t, x); t, x

}
,

respectively. Note that both estimators can be used in the case of no covariate by setting α̂ in (3.7)–(3.9) to

be 0. For valid estimation, t should be less than the maximum follow-up time.

http://biostats.bepress.com/uwbiostat/paper295
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4. Asymptotic Properties

Let Y and X be the supports of Y and X, respectively. We derive the asymptotic properties of the

estimators under some regularity conditions given in Appendix A. We first show the following lemmas.

Lemma 1 Given x ∈ X , n1/2
{

Ĥ(y − α̂T x, α̂)−H(y − αT
0 x)

}
, as a process of y, converges to a mean zero

Gaussian process on Y with the covariance given in Appendix B.

Lemma 2 Given (x, t) ∈ X × [0, L], n1/2
{

Ŝ(t|·, x)− S(t|·, x)
}

converges to a mean zero Gaussian process

on Y with the covariance given in Appendix B.

The proofs are sketched in Appendix B.

Using these lemmas, we show in Appendix C the following theorem.

Theorem 1 Given (x, t) ∈ X × [0, L],

n1/2
{
F̂PR(.; t, x)− FPR(.; t, x)

}
,

n1/2
{
T̂PRC(.; t, x)− TPRC(.; t, x)

}
,

and

n1/2
{
T̂PRI(.; t, x)− TPRI(.; t, x)

}

converge to mean zero Gaussian processes on Y with the covariances given in Appendix C.

The asymptotic properties of the ROC curves then follow from Theorem 1 by the functional delta method

(van der Vaart and Wellner, 2000, Chapter 3.9).

Theorem 2 Given (x, t) ∈ X × [0, L],

n1/2
{
R̂OCC(.; t, x)− ROCC(.; t, x)

}

and

n1/2
{
R̂OCI(.; t, x)− ROCI(.; t, x)

}

converge to mean zero Gaussian processes on [p, q] with the covariances given in Appendix C, where p and q

are defined in condition H in Appendix C.
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8 XIAO SONG AND XIAO-HUA ZHOU

The covariance formulas for these processes contain density functions. Smoothing techniques are needed

to compute the standard errors based on these formulas. Alternatively, we may compute the standard errors

and confidence bands using the bootstrap method.

5. Simulation Studies

To assess the performance of the estimators, we conduct simulations under the following scenarios. We

first consider the simple case when there is no covariate. The hazard of failure depends on the biomarker only

through the proportional hazards model. The true regression coefficient is β0 = 1, and the baseline hazard

is a constant 0.1. The censoring distribution is the exponential distribution with mean 30 truncated at 20,

leading to a censoring rate of 34%. For estimation of the cumulative ROC curve, we compare the estimator

R̂OCC with the Heagerty-Lumley-Pepe estimator; for estimation of the incident ROC curve, we compare the

estimator R̂OCI with the Heagerty-Zheng estimator. The smoothing bandwidth for the Heagerty-Lumley-

Pepe approach is taken to be n−1/3/3. We consider the ROC curves at t = 5 with the true curves shown in

Figure 1(a). For the sample size n = 300 and 600, we generate 500 simulated data sets. The ROC curves

are estimated at v = 0.1, 0.3, 0.5, 0.7, 0.9. For all these estimators, the standard errors are computed by the

bootstrap method using 100 resampled data sets. The 95% Wald confidence intervals are constructed using

the bootstrap standard errors. The results are shown in Tables 1 and 2 for ROCC and for ROCI , respectively.

All estimators show negligible bias. The bootstrap standard errors track the empirical standard deviations

well, and the coverage probabilities are close to the nominal level for all the semiparametric estimators, but

may be a little below the nominal level for the nonparametric Heagerty-Lumley-Pepe estimator when v is close

to 0 or 1. The semiparametric estimator R̂OCC has smaller bias and is more efficient than the nonparametric

Heagerty-Lumley-Pepe estimator as we expected. Interestingly, R̂OCI also achieves smaller bias and better

efficiency than the Heagerty-Zheng estimator, although they are both semiparametric estimators.

Next we consider the case when the hazard of failure depends on the marker Y and a single covariate X

through the proportional hazards model. The true regression coefficients are β0 = 1 and γ0 = 0.5, and the

baseline hazard is a constant 0.1. The covariate X is generated from a normal distribution with mean 1 and

variance 1, and the marker Y is generated from a conditional normal distribution with mean X and variance

http://biostats.bepress.com/uwbiostat/paper295
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1. The censoring time is generated in the same way as described above with the censoring rate being 33%.

We estimate the ROC curves for X = 0, 1, 2 at t = 5 and v = 0.1, 0.3, 0.5, 0.7, 0.9 with the true curves shown

in Figure 1(b). The Heagerty-Lumley-Pepe estimator and Heagerty-Zheng estimator are not applicable in

this case. We use R̂OCC to estimate the cumulative ROC curve and R̂OCI to estimate the incident ROC

curve. The results are shown in Tables 3 and 4. Both estimators work well under this case.

6. Application

We apply these approaches to the HIVNET 012 data described in Section 1. It is thought that the

maternal HIV-1 RNA and CD4 count may contain information in predicting the time to HIV infection or

death of a child. The indicator for the treament, X = I(treatment = nevirapine), might have impact on the

capacity of the two biomarkers. Here the survival time is the time to HIV infection or death of a child. There

were 89 events in the nevirapine group, and 60 events in the zidovudine group. We estimate the cumulative

and incident ROC curves for the two biomarkers adjusted for the treatment using the proposed estimators.

To ensure the validity of these estimators, we check the proportional hazards assumption using the

method in Therneau and Grambsch (Chapter 6.2, 2000). We consider two proportional hazards model, one

including log transformed maternal HIV-1 RNA and X, and the other including log transformed CD4 count

and X; use of log transformations on HIV-1 RNA and CD4 count is standard in the medical literature.

There is no evidence against the proportional hazards assumption.

To compare the accuracy of the two biomarkers in distinguishing subjects failing by a given time t and

those failing after t, we estimate the cumulative ROC curves using the estimator R̂OCC for X = 0, 1 at

t = 0.5, 1, 1.5 and 2 years. The 95% Wald confidence intervals are computed by the bootstrap method using

100 resampled data sets. The results are shown in Figure 2. Considering the FPR to be less than 15%,

HIV-1 RNA seems to be a better biomarker than CD4 count for subjects taking nevirapine, but CD4 count

seems to be a better marker in the zidovudine group.

To compare the accuracy of the two biomarkers in distinguishing subjects failing at t and those failing

after t, we estimate the incident ROC curves using the estimator R̂OCI adjusting for X = 0, 1 with the

same choices of time t. The results are presented in Figure 3. In contrast to their effects of classification of
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10 XIAO SONG AND XIAO-HUA ZHOU

failures by or after these times, CD4 count seems to be a better biomarker than HIV-1 RNA for subjects

taking nevirapine, but HIV-1 RNA seems to be a better marker in the zidovudine group when the FPR is

less than 15%.

7. Discussion

We have proposed semiparametric estimators for the cumulative ROC curve and the incident ROC

curve for survival data that may adjust for covariate effects. The proposed estimators are consistent and

converge to Gaussian processes. These approaches work well in the case of moderate sample sizes. In the

case of no covariate, these estimators are more efficient than the Heagerty-Lumley-Pepe method and the

Heagerty-Zheng method, respectively.

Cai, Pepe, Lumley, Zheng and Jenny (2006) estimated the time-dependent ROC curve based on the

cumulative TPR and static FPR, assuming standard binary regression models for the cumulative TPR

and the static FPR and a proportional hazards model for the censored distribution. Loosely speaking,

Cai et al.’s approach assumes models for the conditional distributions P (Y |T, X) and P (T |X), while our

approach assumes models for the conditional distributions P (T |Y, X) and P (Y |X), where P (A|B) denotes

the conditional distribution of A given B. Our approach provides an alternative way to estimate the time-

dependent ROC curve adjusted for covariates. Compared to Cai et al.’s approach, our approach has the

advantage of simple computation; the estimating equations (3.4) and (3.6) are much easier to solve than the

estimating equations (3.3) and (3.4) in Cai, Pepe, Lumley, Zheng and Jenny (2006).

We assume a standard proportional hazards model for the hazard given the biomarker and covariates,

and a semiparametic location model for the conditional distribution of the biomarker given the covariates.

The consistency of the proposed estimators depend on the correct specification of these models. However, the

approach can be easily adapted to more flexible models. For example, we can replace other survival models,

such as the stratified proportional hazards model, the accelerated failure time model and transformation

models, as long as we can obtain consistent estimators for the survival distributions. It is well known that

the nonparametric transformation survival model is a flexible survival model, including the proportional

hazards model and the accelerated failure time model as special cases. The semiparametric location model

http://biostats.bepress.com/uwbiostat/paper295



COVARIATE SPECIFIC ROC CURVE 11

is used only for estimating the conditional distribution P (Y ≤ y|X = x). We can remove this assumption

and estimate P (Y ≤ y|X = x) by kernel smoothing method when the number of covariates is small and the

sample size is relatively large, since the kernel method may not work well otherwise.
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Appendix A: Regularity Conditions

Let η = (β, γT )T , η̂ = (β̂, γ̂T )T , z = (y, xT )T , Z = (Y, XT )T , W = (V, ∆, Z), and

Qbi (η;Wi, s) = Ri(s)Z⊗b
i exp

(
ηT Zi

)
, b = 0, 1, 2,

where a⊗b = 1, a, aaT for b = 0, 1, 2 respectively. Suppose η0 = (β0, γ
T
0 )T is an internal point in a compact

set and write N (η0) as a neighborhood of η0.

To derive the asymptotic properties, we assume the following regularity conditions.

A. T and C are independent given Z;

B. P (V ≥ L) > 0 for a constant L > 0;

C. E(ZT Z) < ∞, E
{

supη∈N (η0)
ZT Z exp

(
ηT Zi

)}
< ∞;

D. Σ (η0) =
∫ τ

0

{
EQ2(η0;Wi,s)
EQ0(η0;Wi,s)

− EQ2
1(η0;Wi,s)

EQ2
0(η0;Wi,s)

}
EdN(s) is positive definite;

E. For (y, x) ∈ Y × X , S(t|y, x) is an absolutely continuous function for t ∈ [0, L];

F. H(u) is bounded and has bounded first- and second-order derivatives H ′(u) and H ′′(u)for u ∈ (−∞, +∞);

G. Γ = E(XXT ) is positive definite;
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12 XIAO SONG AND XIAO-HUA ZHOU

H. The conditional densities

f1(y; t, x) = −dTPRC(y; t, x)
dy

=
{1− S(t|y, x)}H ′(y − αT

0 x)∫∞
−∞ {1− S(t|u, x)} dP (Y ≤ u|X = x)

,

f∗1 (y; t, x) = −dTPRI(y; t, x)
dy

=
{f(t|y, x)S(t|y, x)}H ′(y − αT

0 x)∫∞
−∞ f(t|u, x)S(t|u, x)dP (Y ≤ u|X = x)

,

and

f0(y; t, x) = −dFPR(y; t, x)
dy

=
S(t|y, x)H ′(y − αT

0 x)∫∞
−∞ S(t|u, x)dP (Y ≤ u|X = x)

exist, and f0(y; t, x) is positive for y ∈ [
F (−1)(p)− ε, F (−1)(q) + ε

]
for some constants p and q, 0 <

p < q < 1, and ε > 0.

Appendix B: Proofs of Lemma 1 and Lemma 2

Proof of Lemma 1. Note that the semiparametric location model is equivalent to

Y = αT
0 X + e,

where e has the distribution function H(·). Under Conditions C and F, the least square estimator α̂ is

consistent and asymptotically normal with

n1/2 (α̂− α0) = n−1/2
n∑

i=1

Γ−1
(
XiYi −XiX

T
i α0

)
+ op(1). (B.1)

Let N (α0) be a compact neighborhood of α0. Letting B(α) = EH
{
y + αT (X − x)− αT

0 X
}
, by the func-

tional central limit theorem,

n1/2
[
Ĥ(y − αT x, α)−B(α)

]

converges to a mean zero Gaussian process on (y,α) ∈ Y ×N (α0). It follows from the equicontinuity of the

foregoing process and the consistency of α̂ that

sup
y∈Y

∣∣∣n1/2
[
Ĥ(y − α̂T x, α̂)−B(α̂)

]
− n1/2

[
Ĥ(y − αT

0 x, α0)−H
{
y − αT

0 x
}]∣∣∣ = op(1).

This implies that

n1/2
{

Ĥ(y − α̂T x, α̂)−H(y − αT
0 x)

}
= n1/2

{
Ĥ(y − αT

0 x, α0)−H(y − αT
0 x)

}

+n1/2
{
B(α̂)−H(y − αT

0 x)
}

+ op(1) (B.2)

http://biostats.bepress.com/uwbiostat/paper295



COVARIATE SPECIFIC ROC CURVE 13

uniformly for y ∈ Y. Under condition F, the second term in (B.2) can be written by a Taylor series expansion

as

H ′(y − αT
0 x) {E(X)− x}T

n−1/2 (α̂− α0) + op(1)

uniformly for y ∈ Y. This, together with (B.1), implies that

n1/2
{

Ĥ(y − α̂T x, α̂)−H(y − αT
0 x)

}
= n−1/2

n∑

i=1

h(α0, y, x; Zi) + op(1),

where

h(α0, y, x; Zi) =
[{

I
(
Yi − αT

0 Xi ≤ y − αT
0 x

)−H(y − αT
0 x)

}

+H ′(y − αT
0 x) {E(X)− x}T Γ−1

(
XiYi −XiX

T
i α0

)]
.

Thus n1/2
{

Ĥ(y − α̂T x, α̂)−H(y − αT
0 x)

}
converges to a Gaussian process H(y; x) with covariance

cov {H(y1; x),H(y2; x)} = cov {h(α0, y1, x; Zi), h(α0, y2, x; Zi)} .

Proof of Lemma 2. Under Conditions A–E, n1/2(η̂−η) is normal, and n1/2{Λ̂0(t)−Λ0(t)} converges to

a Gaussian process (Andersen & Gill, 1982). Thus n−1/2{Ŝ(t|·, x)− S(t|·, x)}, as a functional differentiable

with respect to (η, Λ0), converges to a Gaussian process S(·; t, x) on Y by the functional delta method.

Specifically, by the functional Taylor expansion, with some algebra, we can show that

n1/2
{

Ŝ(t|y, x)− S(t|y, x)
}

= n−1/2
n∑

i=1

ξ(η0, t, y, x,Wi) + op(1),

where

ξ(η0, t, y, x, Wi) = S(t|y, x) exp
{
ηT
0 z

}
(

δ(t, η0,Wi)

−





∫ t

0

EQ1 (η0; Wi, s) EdN(s)
E2Q0 (η0; Wi, s)

− Λ0(t)




y

x








g(η0,Wi)


 ,

δ(t, η0,Wi) =
∫ t

0

dNi(s)EQ0 (η0;Wi, s)−Ri(s) exp
{
ηT
0 Zi

}
EdN(s)

E2Q0 (η0;Wi, s)
,

and

g(η; Wi) = Σ−1 (η0)
∫ L

0

{
Zi − EQ1 (η0;Wi, s)

EQ0 (η0;Wi, s)

}{
dNi(s)− Q0i (η0;Wi, s)

EQ0 (η0; Wi, s)
EdN(s)

}
.
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14 XIAO SONG AND XIAO-HUA ZHOU

Thus cov{S(y1; t, x),S(y2; t, x)} = cov{ξ(η0, t, y1, x,Wi), ξ(η0, t, y2, x,Wi)}.

Appendix C: Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Since FPR is differentiable as a composite functional of (η, Λ0,H, α), by the

functional delta method, n1/2
{

F̂PR(·; t, x)− FPR(·; t, x)
}

converges to a Gaussian process F(·; t, x) with

mean zero on Y. To derive the asymptotic covariance, using the functional Taylor expansion, we have

n1/2
{

F̂PR(y; t, x)− FPR(y; t, x)
}

= n1/2

[∫ ∞

−∞
S(t|u, x)dH(u− αT

0 x)
]−1

×
[∫ ∞

y

{
Ŝ(t|u, x)− S(t|u, x)

}
dH(u− αT

0 x)

+
∫ ∞

y

S(t|u, x)d
{

Ĥ(u− α̂T x, α̂)−H(u− αT x)
}]

−n1/2

[∫ ∞

−∞
S(t|u, x)dH(u− αT

0 x)
]−2 ∫ ∞

y

S(t|u, x)dH(u− αT
0 x)

×
[∫ ∞

−∞

{
Ŝ(t|u, x)− S(t|u, x)

}
dH(u− αT

0 x)

+
∫ ∞

−∞
S(t|u, x)d

{
Ĥ(u− α̂T x, α̂)−H(u− αT

0 x)
}]

+op(1)

= n−1/2
n∑

i=1

$i(y; t, x) + op(1),

where

$i(y; t, x) =
[∫ ∞

−∞
S(t|u, x)dH(u− αT

0 x)
]−1

×
[∫ ∞

y

ξ(η0, t, u, x, Zi)dH(u− αT
0 x) +

∫ ∞

y

S(t|u, x)dh(α0, u, x; Zi)
]

−
[∫ ∞

−∞
S(t|u, x)dH(u− αT

0 x)
]−2 ∫ ∞

y

S(t|u, x)dH(u− αT
0 x)

×
[∫ ∞

−∞
ξ(η0, t, u, x, Zi)dH(u− αT

0 x) +
∫ ∞

−∞
S(t|u, x)dh(α0, u, x; Zi)

]
.

Thus cov{F(y1; t, x),F(y2; t, x)} =cov{$i(y1; t, x), $i(y2; t, x)}.

Similarly, we can show that n1/2{T̂PRC(·; t, x)−TPRC(·; t, x)} and n1/2{T̂PRI(·; t, x)−TPRI(·; t, x)}

converge to Gaussian processes TC(·; t, x) and TI(·; t, x) on Y, respectively, with mean zero,

cov{TC(y1; t, x), TC(y2; t, x)} = cov {ζi(y1; t, x), ζi(y2; t, x)} ,
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and

cov{TI(y1; t, x), TI(y2; t, x)} = cov{ζ∗i (y1; t, x), ζ∗i (y2; t, x)},

where

ζi(y; t, x) =
[∫ ∞

−∞
{1− S(t|u, x)} dH(u− αT

0 x)
]−1

×
[∫ ∞

y

−ξ(η0, t, u, x, Zi)dH(u− αT
0 x) +

∫ ∞

y

{1− S(t|u, x)} dh(α0, u, x; Zi)
]

−
[∫ ∞

−∞
{1− S(t|u, x)} dH(u− αT

0 x)
]−2 ∫ ∞

y

{1− S(t|u, x)} dH(u− αT
0 x)

×
[
−

∫ ∞

−∞
ξ(η0, t, u, x, Zi)dH(u− αT

0 x) +
∫ ∞

−∞
{1− S(t|u, x)} dh(α0, u, x; Zi)

]
,

and

ζ∗i (y; t, x) =
[∫ ∞

−∞
S(t|u, x)dH(u− αT

0 x)
]−1

×
[∫ ∞

y

u exp (β0u)S(t|u, x)dH(u− αT
0 x)g(η; Zi) +

∫ ∞

y

ξ(η0, t, u, x, Zi)dH(u− αT
0 x)

+
∫ ∞

y

S(t|u, x)dh(α0, u, x; Zi)
]

−
[∫ ∞

−∞
S(t|u, x)dH(u− αT

0 x)
]−2 ∫ ∞

y

S(t|u, x)dH(y − αT
0 x)

×
[∫ ∞

−∞
u exp (β0u) S(t|u, x)dH(u− αT

0 x)g(η; Zi) +
∫ ∞

−∞
ξ(η0, t, u, x, Zi)dH(u− αT

0 x)

−
∫ ∞

−∞
S(t|u, x)dh(α0, u, x; Zi)

]
.

Proof of Theorem 2. Since ROCC(v; t, x) is a composite functional of S(t|y, x) and H(α̂, y− α̂x), under

Assumption H, by the functional delta method, n1/2{R̂OCC(·; t; x)−ROCC(·; t, x)} converges to a Gaussian

process GC(·; t, x) for on [p, q]. Specifically, using the functional Taylor expansion, we have

n1/2
{

R̂OCC(v; t, x)− ROCC(v; t, x)
}

= n1/2
n∑

i=1

ϕi(v; t, x) + op(1),

where

ϕi(v; t, x) = ζi

{
FPR−1(v; t, x)

}− f1

{
FPR−1(v; t, x); t, x

} $i

{
FPR−1(v; t, x); t, x

}

f0

{
FPR−1(v; t, x); t, x

} .

Thus cov{GC(v1; t, x),GC(v2; t, x)} = cov{ϕi(v1; t, x), ϕi(v2; t, x)}.
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16 XIAO SONG AND XIAO-HUA ZHOU

Similarly, we can show that n1/2
{

R̂OCI(·; t;x)− ROCI(·; t, x)
}

converges to a Gaussian process GI(·; t, x)

on [p, q] with mean zero and covariance cov{GI(v1; t, x),GI(v2; t, x)} = cov{ϕ∗i (v1; t, x), ϕ∗i (v2; t, x)}, where

ϕ∗i (v; t, x) = n1/2
n∑

i=1

ζ∗i
{
FPR−1(v; t, x)

}− f∗1
{
FPR−1(v; t, x); t, x

} $i

{
FPR−1(v; t, x); t, x

}

f0

{
FPR−1(v; t, x); t, x

} .
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Table 1. Simulation results for the cumulative ROC in the case of no covariate. HLP, Heagerty-Lumley-Pepe
estimator; B, bias; SD, empirical standard deviation across simulated data sets; SE, average of estimated
standard errors; CP, coverage probability of the 95% confidence interval.

n = 300 n = 600
v ROCC Method B SD SE CP B SD SE CP

0.1 0.4841 R̂OCC −0.0019 0.0397 0.0386 0.934 −0.0027 0.0254 0.0272 0.958
HLP −0.0362 0.0746 0.0753 0.904 −0.0385 0.0555 0.0536 0.864

0.3 0.7362 R̂OCC −0.0019 0.0292 0.0284 0.926 −0.0021 0.0190 0.0201 0.964
HLP −0.0219 0.0565 0.0584 0.920 −0.0222 0.0415 0.0408 0.928

0.5 0.8677 R̂OCC −0.0020 0.0186 0.0181 0.932 −0.0014 0.0121 0.0128 0.958
HLP −0.0122 0.0432 0.0416 0.938 −0.0122 0.0288 0.0293 0.940

0.7 0.9463 R̂OCC −0.0014 0.0094 0.0092 0.936 −0.0010 0.0061 0.0065 0.964
HLP −0.0058 0.0272 0.0260 0.916 −0.0052 0.0176 0.0182 0.960

0.9 0.9903 R̂OCC −0.0007 0.0024 0.0024 0.958 −0.0004 0.0016 0.0017 0.956
HLP −0.0020 0.0102 0.0097 0.880 −0.0021 0.0074 0.0071 0.924

Table 2. Simulation results for the incident ROC in the case of no covariate. HZ, Heagery-Zheng estimator;
B, bias; SD, empirical standard deviation across simulated data sets; SE, average of estimated standard
errors; CP, coverage probability of the 95% confidence interval.

n = 300 n = 600
v ROCI Method B SD SE CP B SD SE CP

0.1 0.3042 R̂OCI −0.0010 0.0200 0.0196 0.932 −0.0007 0.0133 0.0136 0.958
HZ −0.0082 0.0273 0.0275 0.932 −0.0045 0.0196 0.0193 0.936

0.3 0.6088 R̂OCI −0.0020 0.0240 0.0237 0.948 −0.0017 0.0162 0.0166 0.946
HZ −0.0050 0.0285 0.0284 0.934 −0.0034 0.0197 0.0199 0.956

0.5 0.7935 R̂OCI −0.0023 0.0192 0.0189 0.944 −0.0013 0.0130 0.0132 0.960
HZ −0.0027 0.0218 0.0212 0.932 −0.0016 0.0146 0.0149 0.950

0.7 0.9129 R̂OCI −0.0017 0.0114 0.0112 0.944 −0.0010 0.0076 0.0079 0.962
HZ −0.0024 0.0128 0.0123 0.934 −0.0013 0.0082 0.0086 0.970

0.9 0.9837 R̂OCI −0.0011 0.0034 0.0034 0.942 −0.0006 0.0023 0.0023 0.960
HZ −0.0013 0.0037 0.0036 0.944 −0.0007 0.0024 0.0025 0.960
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Table 3. Simulation results for the cumulative ROC in the case of a single covariate. B, bias; SD, empiri-
cal standard deviation across simulated data sets; SE, average of estimated standard errors; CP, coverage
probability of the 95% confidence interval.

n = 300 n = 600
X v ROCC B SD SE CP B SD SE CP
0 0.1 0.4217 −0.0026 0.0407 0.0398 0.936 −0.0014 0.0268 0.0280 0.954

0.3 0.7001 −0.0019 0.0325 0.0322 0.944 −0.0003 0.0219 0.0226 0.956
0.5 0.8494 −0.0012 0.0213 0.0211 0.944 −0.0002 0.0144 0.0148 0.952
0.7 0.9391 −0.0009 0.0108 0.0109 0.952 −0.0003 0.0074 0.0076 0.950
0.9 0.9890 −0.0005 0.0027 0.0027 0.954 −0.0001 0.0018 0.0019 0.950

1 0.1 0.5091 −0.0023 0.0395 0.0391 0.952 −0.0002 0.0269 0.0275 0.958
0.3 0.7509 −0.0016 0.0281 0.0279 0.948 −0.0001 0.0193 0.0196 0.956
0.5 0.8753 −0.0011 0.0174 0.0174 0.940 −0.0003 0.0119 0.0122 0.952
0.7 0.9494 −0.0010 0.0087 0.0088 0.958 −0.0003 0.0060 0.0061 0.946
0.9 0.9908 −0.0007 0.0023 0.0023 0.948 −0.0002 0.0015 0.0016 0.960

2 0.1 0.7030 −0.0005 0.0368 0.0372 0.952 0.0005 0.0270 0.0258 0.934
0.2 0.8594 −0.0014 0.0210 0.0215 0.952 −0.0005 0.0159 0.0149 0.936
0.3 0.9315 −0.0017 0.0120 0.0122 0.966 −0.0005 0.0090 0.0084 0.932
0.5 0.9724 −0.0014 0.0059 0.0059 0.960 −0.0004 0.0043 0.0040 0.924
0.9 0.9950 −0.009 0.0017 0.0016 0.902 −0.0004 0.0011 0.0011 0.924

Table 4. Simulation results for the incident ROC in the case of a single covariate. B, bias; SD, empiri-
cal standard deviation across simulated data sets; SE, average of estimated standard errors; CP, coverage
probability of the 95% confidence interval.

n = 300 n = 600
X v ROCI B SD SE CP B SD SE CP
0 0.1 0.3408 −0.0024 0.0269 0.0271 0.942 −0.0007 0.0189 0.0187 0.956

0.3 0.6440 −0.0019 0.0280 0.0284 0.956 −0.0002 0.0199 0.0196 0.938
0.5 0.8173 −0.0011 0.0205 0.0208 0.954 0.0000 0.0145 0.0143 0.944
0.7 0.9251 −0.0008 0.0113 0.0114 0.942 −0.0002 0.0079 0.0079 0.938
0.9 0.9863 −0.0005 0.0031 0.0031 0.958 −0.0001 0.0021 0.0021 0.948

1 0.1 0.2960 −0.0019 0.0181 0.0185 0.960 −0.0003 0.0129 0.0127 0.944
0.3 0.5991 −0.0013 0.0229 0.0232 0.956 −0.0001 0.0160 0.0160 0.952
0.5 0.7863 −0.0009 0.7854 0.0187 0.954 −0.0001 0.0128 0.0129 0.950
0.7 0.9093 −0.0013 0.0111 0.0113 0.954 −0.0005 0.0078 0.0079 0.942
0.9 0.9828 −0.0011 0.0036 0.0035 0.942 −0.0004 0.0024 0.0024 0.944

2 0.1 0.2545 −0.0013 0.0150 0.0154 0.944 −0.0007 0.0104 0.0106 0.964
0.2 0.5505 −0.0033 0.0218 0.0225 0.950 −0.0016 0.0156 0.0157 0.946
0.3 0.7492 −0.0047 0.0199 0.0206 0.936 −0.0019 0.0144 0.0144 0.948
0.5 0.8877 −0.0046 0.0143 0.0143 0.936 −0.0018 0.0101 0.0100 0.938
0.9 0.9772 −0.0039 0.0061 0.0057 0.848 −0.0017 0.0038 0.0038 0.926
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Figure 1. True ROC curves at t = 5 in simulation. Solid line, cumulative ROC; dashed line, incident ROC.
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Figure 2. Estimated the cumulative ROC curves adjusted for treatment for the HIVNET 012 data. The plots
from left to right are for t = 0.5, 1.0, 1.5 and 2, respectively. Left plots, zidovudine; Right plots, nevirapine;
ROC curves for the maternal HIV-1 RNA, solid lines; ROC curves for the maternal CD4 count, dashed line;
95% confidence bands are shown with the outer curves, 95% pointwise confidence intervals are shown with
the intermediate curves, the estimates themselves are shown with the center curves.

Hosted by The Berkeley Electronic Press



22 XIAO SONG AND XIAO-HUA ZHOU

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

zidovudine nevirapine

Figure 3. Estimated the incident ROC curves adjusted for treatment for the HIVNET 012 data. The plots
from top to bottom are for t = 0.5, 1.0, 1.5 and 2, respectively. Left plots, zidovudine; Right plots, nevirapine;
ROC curves for the maternal HIV-1 RNA, solid lines; ROC curves for the maternal CD4 count, dashed line;
95% confidence bands are shown with the outer curves, 95% pointwise confidence intervals are shown with
the intermediate curves, the estimates themselves are shown with the center curves.
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