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1. Introduction

Cost-effectiveness analyses are commonly used techniques in health services

research. In a cost-effectiveness analysis, two groups of subjects are often

compared; e.g., new intervention against existing intervention or treatment

A versus treatment B. As its name suggests, a cost-effectiveness analysis

considers both cost and effectiveness of the interventions. The two mea-

sures commonly used in a cost-effectiveness analysis are the incremental cost-

effectiveness ratio (ICER) and the net health benefit (NHB). Each measure

has its own advantages and disadvantages as we summarize in the list below.

In this paper, we do not recommend one approach over the other. For this

reason, we discuss statistical methods for both measures.

Formally, let the cost and effectiveness for subject j who receives treat-

ment i be Cij and Eij, respectively. Let us further assume that (Cij, Eij)

comes from a bivariate distribution with mean (µCi
, µEi

), variance (σ2
Ci

, σ2
Ei

)

and covariance σEiCi
. That is, for i = 1, 2,

(
Ci1

Ei1

)
,

(
Ci2

Ei2

)
, . . . ,

(
Cini

Eini

)
∼i.i.d

((
µCi

µEi

)
,

(
σ2

Ci
σCiEi

σCiEi
σ2

Ei

))
. (1)

If λ is the willingness-to-pay per unit of the effectiveness (Stinnett and

Mullahy, 1998), the ICER and the NHB are defined by

ICER =
µC1 − µC2

µE1 − µE2

, NHB = (µE1 − µE2)−
1

λ
(µC1 − µC2),

respectively.

Using sample data, these two quantities can be estimated as:

̂ICER =
C̄1 − C̄2

Ē1 − Ē2

, N̂HB = (Ē1 − Ē2)− 1

λ
(C̄1 − C̄2),

respectively, where C̄i = 1
ni

∑ni

j=1 Cij and Ēi = 1
ni

∑ni

j=1 Eij (i = 1, 2).
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• Arguments for the use of the ICER include:

- The ICER has a natural interpretation as a price-per-unit of product

(e.g., $15,000 per quality-adjusted life year saved).

- Analysis on the ICER is independent of the cut-off (willingness-to-pay)

λ value. This cut-off value will vary from context to context depending on

preferences and the available budgets (Briggs and Fenn, 1998).

- The ICER has an economic foundation based on utility theory. Maxi-

mizing expected utility leads to finding optimal incremental cost-effectiveness

ratio (Garber and Phelps, 1997).

• Arguments against the use of the ICER include:

- Interpretation of a negative ICER is problematic. First, the magnitude

of negative ICERs is meaningless. An intervention that is preferred may have

smaller (negative) ICER (Briggs and Fenn, 1998). Second, both quadrants

II and IV on the cost-effectiveness plane (Figure 1) generate negative ICERs;

however, decision-makings are exactly opposite (Stinnett and Mullahy, 1998).

- Confidence intervals for the ICER can include an undefined value. Fig-

ure 1 shows a cost-effectiveness plane with the confidence interval repre-

sented by the two broken lines. This interval includes the vertical axis where

µE1 − µE2 = 0 and an undefined value for the ICER (Willan, 2003).

[Figure 1 here]

- Statistically, ̂ICER is not a sufficient statistic and ̂ICER is biased for

ICER (Zethraeus et al., 2003).

• Arguments for the use of the NHB include:

- The NHB is properly ordered. Treatment with the largest NHB is the

most cost-effective (Willan, 2003).
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- Interpretation for the NHB is not ambiguous like the negative ICER.

- Since the NHB is linear in both costs and effects, N̂HB is unbiased for

NHB. Also, asymptotic results may apply at smaller sample sizes.

- The NHB can be extended easily to more than two treatments.

• Arguments against the use of the NHB include:

- The NHB incorporates λ into the analysis. This λ may vary from setting

to setting and the analyst’s λ may be different from the policy maker’s λ.

- The NHB does not have a natural interpretation as price per unit of

product like the ICER.

Nonparametric statistical methods have been developed for inferences on

the two measures. However, due to the skew nature of cost data, existing

methods have not adequately addressed the problems. In this paper, we are

interested in studying the theoretical performance of normal-based intervals

and constructing new confidence intervals for the ICER and the NHB.

1.1 Existing Methods

Confidence intervals for the ICER and the NHB have been constructed us-

ing several existing techniques. For the ICER, intervals based on the asymp-

totic theory, the Fieller’s (Fieller, 1954), and several versions of the bootstrap

have been adopted for inferences on the ICER. For reviews and evaluations

of these techniques, see Briggs et al. (1999) and Fan and Zhou (2005).

For the NHB, similar techniques have been proposed. They include the

normal interval based on large sample theory and the bootstrap intervals

(Stinnett and Mullahy, 1998; Willan, 2001).

4
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1.2 Limitations of Existing Methods

For the ICER, normal theory intervals and bootstrap intervals which

assume normal sampling distribution have poor coverages (Briggs et al., 1999;

Fan and Zhou, 2005). In term of coverage accuracy, Briggs et al. (1999) found

the Fieller’s interval was best while Fan and Zhou (2005) recommended the

bootstrap-t interval. However, Fieller’s interval requires finding roots of a

quadratic equation and these can be unreal. In addition, if this quadratic

equation has one root, the confidence interval will be half-open. In our

simulation study presented later, we also found the Fieller’s interval may not

give best coverage. The bootstrap-t interval gives good coverage but is often

too wide. When having such wide intervals, one has to consider the trade off

between the coverage accuracy and the precision of the estimate.

For the NHB, inferences based on large sample theory may not be appro-

priate for highly skewed data. Our simulation study indicates that coverage

of such normal theory intervals can differ significantly from the nominal value.

1.3 Proposed Approach

Beside the above methods, another approach is to modify the test statis-

tics to reduce the effect of skewness. The method is based on the Edgeworth

expansion (Hall, 1992a). We will follow this approach in this paper.

In Sections 2 and 3, we will develop the Edgeworth expansions for the

studentized t-statistics for the ICER and the NHB, respectively. We will use

the expansions to study the theoretical performance of existing normal theory

intervals and to derive new transformational intervals to improve coverage

accuracy. In Section 4, we will demonstrate the method via a simulation

study. In Section 5, we will apply our method to a real cost data set. In

5

http://biostats.bepress.com/uwbiostat/paper247



Section 6, we will summarize the methods and provide our recommendation.

2. Edgeworth expansion for the incremental cost-effectiveness ra-
tio (ICER)

Cost-effectiveness analyses are often hindered by skewed cost data. In this

section, we derive the Edgeworth expansion for the studentized t-statistic for

the ICER. The expansion will then be used to guide inferences. In addition,

we use the expansion to derive new transformational intervals for the ICER.

Assume our data is given as in equation (1). The ICER is defined by

θ1 ≡ ICER =
µC1

−µC2

µE1
−µE2

and is estimated by θ̂1 ≡ ̂ICER = C̄1−C̄2

Ē1−Ē2
. The

asymptotic variance of the ̂ICER can be estimated by

σ̂2
1 =

[
S2

C1

n1
+

S2
C2

n2

]

(Ē1 − Ē2)2
+

(C̄1 − C̄2)
2

[
S2

E1

n1
+

S2
E2

n2

]

(Ē1 − Ē2)4
−

2(C̄1 − C̄2)

[
SE1C1

n1
+

SE2C2

n2

]

(Ē1 − Ē2)3
(2)

where, for i = 1, 2, C̄i = 1
ni

∑ni

j=1 Cij, Ēi = 1
ni

∑ni

j=1 Eij, S2
Ci

= 1
ni

∑ni

j=1(Cij−
C̄i)

2, S2
Ei

= 1
ni

∑ni

j=1(Eij − Ēi)
2, and SCiEi

= 1
ni

∑ni

j=1(Cij − C̄i)(Eij − Ēi).

Theorem 1 Let νN = n1/(n1 + n2) = n1/N . Assume νN = ν + O(N−r)

for some r ≥ 0. Let T1 =
̂ICER−ICER

σ̂1
. Under regularity conditions (Hall,

1992a), the distribution of T1 has the following expansion,

P (T1 ≤ x) = Φ(x) + N−1/2q1(x)φ(x) + O(N−min(1,r+1/2)) (3)

where φ(·) and Φ(·) are the density and distribution functions, respectively,

of the standard normal variable, and, with E(·) is the expectation function,

q1(x) = A1

3
+ 2A1+3A2

3
x2,

A1 = 1

2∆6
1Q

3/2
1

[
P1

ν2 − P2

(1−ν)2

]
, A2 = (∆2Γ1−∆1Γ12)

∆3
1Q

1/2
1

,

P1 = E[∆1(C1j − µC1)−∆2(E1j − µE1)]
3,

P2 = E[∆1(C2j − µC2)−∆2(E2j − µE2)]
3,

6
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Q1 = Γ2

∆2
1

+
Γ1∆2

2

∆4
1
− 2∆2Γ12

∆3
1

, ∆1 = µE1 − µE2 , ∆2 = µC1 − µC2 ,

Γ1 =
σ2

E1

ν
+

σ2
E2

1−ν
, Γ2 =

σ2
C1

ν
+

σ2
C2

1−ν
, Γ12 =

σE1C1

ν
+

σE2C2

1−ν
.

For a proof, see Appendix A1.

From the expansion (3), we see that q1(x)/
√

N , in absoluate value, plays

an important role in the normal approximation of T1. When |q1(x)|/√N is

small, T1 can be approximated by a normal distribution accurately. On the

contrary, when |q1(x)|/√N is large, the second term in equation (3) is not

ignorable, thus the normal approximation won’t be as accurate. The term

q1(x) can be large when either A1 or A2, or both are large. The quantity

A1 relates directly to the skewness of the cost data, thus can be large when

the cost data is highly skewed. The term A2 relates to the variance and

covariance of the data, which can be large when the data is highly variable.

The expansion can be used to construct transformational confidence in-

tervals for the ICER. The intervals will correct for the term q1(x) in the

expansion (3). Following the similar ideas as in Hall (1992b) and Zhou and

Dinh (2005), with

g−1
1 (x) = (γ̂)−1[1 + 3γ̂(x + γ̂/N)]1/3 − (γ̂)−1,

g−1
2 (x) = (2N−1/2γ̂)−1log[2N−1/2γ̂(x + N−1γ̂) + 1],

g−1
3 (x) = [1 + 3(x + γ̂/N)]1/3 − 1,

we proposed three transformational intervals,

θ̂1 − σ̂1

[
ĉ1√
N

+
√

Ng−1
i

(
z1−α/2√

N

)]
≤ θ1 ≤ θ̂1 − σ̂1

[
ĉ1√
N

+
√

Ng−1
i

(
zα/2√

N

)]
(4)

where, i=1, 2, 3, zα = Φ(α), γ̂ = 2Â1+3Â2

3
, ĉ1 = −Â1 − Â2,

Â1 = 1

2∆̂6
1Q̂

3/2
1

[
P̂1

ν2
N
− P̂2

(1−νN )2

]
, Â2 = (∆̂2Γ̂1−∆̂1Γ̂12)

∆̂3
1Q̂

1/2
1

,

P̂1 = 1
n1

∑n1

j=1[∆̂1(C1j − C̄1)− ∆̂2(E1j − Ē1)]
3,

7
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P̂2 = 1
n2

∑n2

j=1[∆̂1(C2j − C̄2)− ∆̂2(E2j − Ē2)]
3,

Q̂1 = Γ̂2

∆̂2
1

+
Γ̂1∆̂2

2

∆̂4
1

− 2 ∆̂2Γ̂12

∆̂3
1

, ∆̂1 = Ē1 − Ē2, ∆̂2 = C̄1 − C̄2,

Γ̂1 =
S2

E1

νN
+

S2
E2

1−νN
, Γ̂2 =

S2
C1

νN
+

S2
C2

1−νN
, Γ̂12 =

SE1C1

νN
+

SE2C2

1−νN
.

For the derivation, see Appendix A2.

3. Edgeworth expansion for the net health benefit (NHB)

In this section, we present the Edgeworth expansion for the studentized t-

statistic for the NHB. The expansion provides a way to correct for the skew-

ness in cost data and to derive new confidence intervals for the NHB.

Let the data be given as in equation (1), the NHB is defined by θ2 ≡
NHB = (µE1 − µE2)− 1

λ
(µC1 − µC2) and can be estimated as θ̂2 ≡ N̂HB =

(Ē1− Ē2)− 1
λ
(C̄1− C̄2). The asymptotic variance of θ̂2 can be estimated by,

σ̂2
2 =

S2
E1

n1

+
S2

E2

n2

+
S2

C1

λ2n1

+
S2

C2

λ2n2

− 2SC1E1

λn1

− 2SC2E2

λn2

(5)

Theorem 2 Let νN = n1/(n1 + n2) = n1/N . Assume νN = ν + O(N−r)

for some r ≥ 0. Let T2 = N̂HB−NHB
σ̂2

. Under regularity conditions (Hall,

1992a), the distribution of T2 has the following expansion,

P (T2 ≤ x) = Φ(x) + N−1/2q2(x)φ(x) + O(N−min(1,r+1/2)) (6)

where φ(·) and Φ(·) are the density and distribution functions, respectively,

of the standard normal variable,

q2(x) = A
6
(2x2 + 1),

Q2 =
σ2

E1

ν
+

σ2
E2

(1−ν)
+

σ2
C1

λ2ν
+

σ2
C2

λ2(1−ν)
− 2σC1E1

λν
− 2σC2E2

λ(1−ν)
,

B1 = E
(

C1j−µC1

λ
− (E1j − µE1)

)3

, B2 = E
(

C2j−µC2

λ
− (E2j − µE2)

)3

,

where E(·) is the expectation function, and

A =
1

Q
3/2
2

[
B1

ν2
− B2

(1− ν)2

]
. (7)

8
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For a proof, see appendix B.

Similar to the ICER, we see that the normal approximation to T2 is

accurate when |q2(x)|/√N is small. When |q2(x)|/√N is large, the second

term in the expansion (6) can’t be ignored and the normal approximation

won’t be as accurate. The quantity q2(x) relates directly to the skewness of

the cost data, thus can be large when the cost data is highly skewed.

Similar to the ICER, we can derive the three transformational confidence

intervals for the NHB. The intervals will correct for the term q2(x) in the

expansion (6) above. With,

g−1
1 (x) =

(
1
3
Â

)−1 [
1 + 31

3
Â(x−N−1 1

6
Â)

]1/3

−
(

1
3
Â

)−1

,

g−1
2 (x) =

(
21

3
N−1/2Â

)−1

log
[
21

3
N−1/2Â(x−N−1 1

6
Â) + 1

]
,

g−1
3 (x) =

[
1 + 3(x−N−1 1

6
Â)

]1/3

− 1,

the (1 − α)100% transformational confidence interval for the NHB is given

by

N̂HB −
√

Ng−1
i

(
z1−α/2√

N

)
σ̂2 ≤ NHB ≤ N̂HB −

√
Ng−1

i

(
zα/2√

N

)
σ̂2 (8)

where, i = 1, 2, 3, zα = Φ(α), Â = 1

Q̂
3/2
2

[
B̂1

ν2
N
− B̂2

(1−νN )2

]
,

Q̂2 =
S2

E1

νN
+

S2
E2

(1−νN )
+

S2
C1

λ2νN
+

S2
C2

λ2(1−νN )
− 2SC1E1

λνN
− 2SC2E2

λ(1−νN )
,

B̂1 = 1
n1

∑n1

j=1

(
C1j−C̄1

λ
−(E1j−Ē1)

)3

, B̂2 = 1
n2

∑n2

j=1

(
C2j−C̄2

λ
−(E2j−Ē2)

)3

.

4. Simulation study

4.1 ICER Simulation

In this section we report a simulation study to evaluate the method pre-

sented in Sections 2. In particular, we compared our new intervals given

in equation (4) against the Taylor’s interval (based on normal theory), the

9
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Fieller’s interval (recommended by Briggs et al. (1999)), the bootstrap

percentile-t interval (recommended by Fan and Zhou (2005)), and the Hink-

ley’s interval. Details of these methods are given in Appendix C.

We generated data from three bivariate distributions: bivariate normal,

bivariate lognormal, and bivariate mixture (costs are lognormal and effec-

tiveness data are normal). We chose different correlation structures for costs

and effects and sample sizes as presented in Tables 1 and 2. The data were

generated as following:

Bivariate normal:

(
C1j

E1j

)
∼i.i.d N2

((
µ1 = 40, 000

µ2 = 60

)
,

(
σ2

1 = 200, 000 σ12

σ12 σ2
2 = 5

))
,

(
C2j

E2j

)
∼i.i.d N2

((
µ3 = 30, 000

µ4 = 50

)
,

(
σ2

3 = 100, 000 σ34

σ34 σ2
4 = 10

))
,

Bivariate mixture:

(
C1j

E1j

)
=

(
eYC1j

YE1j

)
,

(
YC1j

YE1j

)
∼i.i.d N2

((
µ1 = 8
µ2 = 4

)
,

(
σ2

1 = 2 σ12

σ12 σ2
2 = .5

))
,

(
C2j

E2j

)
=

(
eYC2j

YE2j

)
,

(
YC2j

YE2j

)
∼i.i.d N2

((
µ3 = 6
µ4 = 3

)
,

(
σ2

3 = 2 σ34

σ34 σ2
4 = .5

))
,

Bivariate lognormal:

(
C1j

E1j

)
∼i.i.d EXP

[
N2

((
µ1 = 8
µ2 = 4

)
,

(
σ2

1 = 2 σ12

σ12 σ2
2 = .5

))]
,

(
C2j

E2j

)
∼i.i.d EXP

[
N2

((
µ3 = 6
µ4 = 3

)
,

(
σ2

3 = 2 σ34

σ34 σ2
4 = .5

))]
.

[Tables 1 and 2 here]

The result of our simulation is presented in Tables 1 and 2. For data gen-

erated from normal distributions, all intervals give good coverages. Aver-

age interval lengths (presented in the parenthesis) are also comparable for

10
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all methods. For data generated from bivariate mixture and bivariate log-

normal distributions, however, confidence intervals based on normal theory

(Taylor’s) are obviously inadequate. Fieller’s intervals are also insufficient in

term of coverage accuracy in some cases. Hinkley’s intervals are very similar

to Fieller’s intervals. Overall, the bootstrap-t intervals (boott) appear best

in term of coverage accuracy. However, as mentioned before, bootstrap-t

intervals are often too wide. When facing with such wide intervals, one has

to balance between the coverage accuracy and the precision of the estimate.

Our new intervals give better coverage than Taylor’s interval. They are com-

parable and sometimes better than the Fieller’s and Hinkley’s intervals. T3

intervals have comparable coverage and are narrower than bootstrap-t inter-

vals. We also considered other correlation structures and sample sizes. The

results were similar and are not reported here.

It is clear from equation (3), |q1(x)|/√N plays an important factor in

the expansion. In our simulation study for the 95% confidence interval,

we saw that when |q1(1.96)|/√N was large (≥ 0.3), the coverages of normal

based intervals were inadequate. Such intervals can be improved upon by the

bootstrap-t or our new intervals T3. On the other hand, when |q1(1.96)|/√N

was small (< 0.3), normal based intervals gave reasonable coverage results.

In summary of our simulation in this section, we found the bootstrap-t

intervals gave best coverage. Our intervals T3 gave comparable coverage as

bootstrap-t intervals, were about one-third narrower, could be computed eas-

ily (with a hand-held calculator), and also required less computing than the

bootstrap-t intervals. T3 intervals should be recommended for the ICER con-

fidence intervals construction when data coming from skewed distributions

11
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and sample sizes are small.

4.2 NHB Simulation

We evaluated our three new intervals given in equation (8) against the

normal interval, the bootstrap bias-corrected interval, and the bootstrap

percentile-t interval. Details of these intervals are given in Appendix D.

We also simulated data from three setups: bivariate normal, bivariate

lognormal, and bivariate mixture (costs are lognormal and effectiveness data

are normal). With n1, n2, σ12, and σ34 vary as presented in Tables 3 and 4,

the data were generated as following:

Bivariate normal:
(

C1j

E1j

)
∼i.i.d N2

((
µ1 = 40, 000

µ2 = 60

)
,

(
σ2

1 = 200, 000 σ12

σ12 σ2
2 = 5

))
,

(
C2j

E2j

)
∼i.i.d N2

((
µ3 = 30, 000

µ4 = 50

)
,

(
σ2

3 = 100, 000 σ34

σ34 σ2
4 = 10

))
,

Bivariate mixture:
(

C1j

E1j

)
=

(
eYC1j

YE1j

)
,

(
YC1j

YE1j

)
∼i.i.d N2

((
µ1 = 8
µ2 = 4

)
,

(
σ2

1 = 1 σ12

σ12 σ2
2 = 1

))
,

(
C2j

E2j

)
=

(
eYC2j

YE2j

)
,

(
YC2j

YE2j

)
∼i.i.d N2

((
µ3 = 6
µ4 = 3

)
,

(
σ2

3 = 2 σ34

σ34 σ2
4 = .5

))
,

Bivariate lognormal:
(

C1j

E1j

)
∼i.i.d EXP

[
N2

((
µ1 = 8
µ2 = 4

)
,

(
σ2

1 = 1 σ12

σ12 σ2
2 = 1

))]
,

(
C2j

E2j

)
∼i.i.d EXP

[
N2

((
µ3 = 6
µ4 = 3

)
,

(
σ2

3 = 2 σ34

σ34 σ2
4 = .5

))]
.

[Tables 3 and 4 here]

For data generated from normal and mixture distributions, all intervals

give good coverage. Average interval length (in parenthesis) are also com-

parable. For data generated from lognormal distribution, however, intervals

12
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based on normal theory suffer deficiency in term of coverage accuracy. These

coverages can be improved upon by the bootstrap-t and especially intervals

based on T3 transformation. T3 intervals have several advantages over boot-

strap methods including shorter interval lengths, easy to compute, and less

computing time.

It is clear from equation (6) that coefficient A = 1
Q3/2

[
B1

ν2 − B2

(1−ν)2

]
in

absolute value and sample sizes play an important role in the normal ap-

proximation. Our simulation suggests that when |Â|/√N is small (≤ 0.3),

normal intervals give good coverages. On the contrary, when |Â|/√N is

large (> 0.3), normal intervals suffer deficiency and can be improved by

the bootstrap-t or the T3 intervals. Thus, when dealing with skewed data,

intervals based on T3 transformation should be recommended.

5. Application

In this section, we applied the methods evaluated above to a real data set. In

2002, Katon et al. (2002) conducted a randomized study to assess whether

a collaborative care intervention would increase the number of anxiety-free

days for patients with panic disorder, compared to the usual primary care

setting. The collaborative care intervention included a systematic patient

education and approximately 2 visits with an on-site consulting psychiatrist.

To demonstrate our methods, we consider total outpatient non-mental health

costs and for measure of effectiveness, we consider the number of days a

patient experiences panic disorder during the one-year study period.

The summary statistics are presented in Table 5. Distributions of costs

and effectiveness are presented in Figure 2. Costs in both groups are highly

skewed with coefficient of skewness 4.93 for the control group and 3.46 for

13
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the intervention group. On average, the control group incurred $1181.95 and

77.1 days of panic attack more than the intervention group. The estimated

ICER is 15.33 indicating that the intervention arm is dominant.

[Tables 5, 6, and Figure 2 here]

Confidence intervals for the ICER and the NHB are presented in Table 6.

Both bootstrap-t and T3 intervals are positive showing that the intervention is

significantly dominant (the control group incurred more cost and more days

of panic disorder). As anticipated, both Fieller and Hinkley intervals are

similar and T3 interval has shorter length than bootstrap-t. The estimated

q̂(1.96)/
√

N = .9, indicating the normal based interval is inadequate. Based

on our simulation results, we would recommend using the T3 interval as the

confidence interval for the ICER.

A common willingness-to-pay is λ = $50, 000, using this value, the esti-

mated NHB is 77.08. Confidence intervals for the NHB are presented in Table

6. All intervals are relatively similar, especially T1, T2, and normal intervals.

The coefficient Â/
√

N is 0.05 in this setting suggesting that the normal the-

ory interval is adequate. All of these confidence intervals are strictly positive

indicating, again, that intervention arm is cost-effective.

6. Discussion

In this paper, we derived the Edgeworth expansions for the studentized statis-

tics for the ICER and the NHB and proposed new confidence intervals based

on these Edgeworth expansion. We demonstrated via simulation studies that

our methods have comparable coverage accuracy and are narrower compared

with the current recommendation. In particular, for the ICER, when data

14
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were generated a from skewed distribution, our new intervals gave better

coverages than the Taylor’s interval. They are comparable and sometimes

better than the Fieller’s, and Hinkley’s intervals. We found that Hinkley’s

method, that has not been adopted for the ICER, was similar to the Fieller’s

method in term of coverage accuracy and interval length. Intervals based on

T3 transformation were comparable to the bootstrap-t intervals in term of

coverage but were about one-third narrower.

For the NHB, we saw that intervals based on T3 transformation gave good

coverages in all cases considered and they were comparable to the bootstrap-t

intervals. However, our intervals were narrower than the bootstrap-t intervals

and required less computing in term of bootstrap resampling.

When dealing with highly skewed data, our intervals based on the trans-

formation T3 should be recommended.

The remaining question is what one should choose between the ICER and

the NHB. As it has been pointed out by other authors, and is summarized

in our introduction section, each measure has its own advantages as well as

disadvantages. The purpose of this paper is not to recommend one measure

over the other, but to present new statistical methodology for both. We leave

it to the readers to decide which measure is more appropriate for their works.
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Appendix A

Derivation of the ICER Edgeworth expansion

A1. Proof of theorem 1

Let X = (X1, X2, X3, X4, X5, X6, X7, X8, X9, X10) and

Yi =
(C1i−µC1

)

σC1
, Ui =

(E1i−µE1
)

σE1
, Zi =

(C2i−µC2
)

σC2
, Wi =

(E2i−µE2
)

σE2

where

X1 = Ȳ , X2 = n−1
1

∑n1

i=1 Y 2
i , X3 = Ū , X4 = n−1

1

∑n1

i=1 U2
i ,

X5 = Z̄, X6 = n−1
2

∑n2

i=1 Z2
i , X7 = W̄ , X8 = n−1

2

∑n2

i=1 W 2
i ,

X9 = n−1
1

∑n1

i=1 YiUi, X10 = n−1
2

∑n2

i=1 ZiWi.
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Let k(X) = θ̂1 − θ1, h(X) = σ̂2
1, f(X) = k(X)

h(X)1/2 , and T1 = N1/2f(X).

Let V = E(X), then f(V ) = 0. By Taylor expansion, we obtain,

f(X) =
∂f(V )

∂V
(X − V ) +

1

2
(X − V )′

∂2f(V )

∂V 2
(X − V ) + ...

Let J1 = N1/2
(

∂f(V )
∂V

(X − V ) + 1
2
(X − V )′ ∂

2f(V )
∂V 2 (X − V )

)
. Let A1 and A2

be given as in Theorem 1. The first three moments of J1 are given by

EJ1 = −(A1 + A2)N
−1/2, EJ2

1 = 1 + O(N−1)

EJ3
1 = −(7A1 + 9A2)N

−1/2 + O(N−min(1,r+1/2)).

Let K1N , K2N , K3N be the first three cumulants of J1. Then

K1N = −(A1 + A2)N
−1/2, K2N = 1 + O(N−1)

K3N = −(4A1 + 6A2)N
−1/2 + O(N−min(1,r+1/2))

Let χN(t) be the characteristic function of J1. Applying Taylor’s expansion

to function f(x) = ex, we obtain

χN(t) = exp(− t2

2
)
[
1 + N−1/2

(
−(A1 + A2)(it)− (4A1+6A2)

6
(it)3

)
+ O(N−min(1,r+1/2)

]

Let r1(it) = −(A1 + A2)(it)− (4A1+6A2)
6

(it)3, we can write

χN(t) = exp(− t2

2
)
[
1 + N−1/2r1(it) + O(N−min(1,r+1/2))

]

Since χN(t) =
∫

eitxdP (J1 ≤ x) and e−t2/2 =
∫

eitxdΦ(x), this suggests that

P (J1 ≤ x) = Φ(x) + N−1/2R1(x) + O(N−min(1,r+1/2))

where R1(x) is such a function that its Fourier-Stieltjes transform equals to

r1(it)e
−t2/2. Applying integration by part, we obtain,

R1(x) = [(A1 + A2) + 4A1+6A2

6
(x2 − 1)]φ(x).

Therefore,

P (J1 ≤ x) = Φ(x) + N−1/2q1(x)φ(x) + O(N−min(1,r+1/2)).

Since T1 = J1 + O(N−1), Theorem 1 follows.
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A2. Confidence intervals construction

Let c1 = −(A1 + A2) and c2 = −(7A1 + 9A2). Following Hall (1992a), let

T ′
1 = T1 −N−1/2ĉ1, then

P (T ′
1 ≤ x) = P (T1 −N−1/2ĉ1 ≤ x) = P (T1 ≤ x + N−1/2ĉ1)

= Φ(x+N−1/2ĉ1)+N−1/2q1(x+N−1/2ĉ1)φ(x+N−1/2ĉ1)+O(N−min(1,r+1/2))

Applying Taylor expansion, with γ = 2A1+3A2

3
, and γ̂ is its estimate, we get

P (T ′
1 ≤ x) = Φ(x) + N−1/2γ̂(x2 − 1)φ(x) + O(N−min(1,r+1/2))

Similar to Zhou and Dinh (2005), intervals (4) follow.

Appendix B

Proof of Theorem 2

Let X be defined as in the proof of Theorem 1, k(X) = θ̂2 − θ2, h(X) =

σ̂2
2, f(X) = k(X)

h(X)1/2 , and T2 = N1/2f(X). Let V = E(X), then f(V ) = 0.

By Taylor expansion, we obtain,

f(X) = ∂f(V )
∂V

(X − V ) + 1
2
(X − V )′ ∂

2f(V )
∂V 2 (X − V ) + ...

Let J2 = N1/2
(

∂f(V )
∂V

(X − V ) + 1
2
(X − V )′ ∂

2f(V )
∂V 2 (X − V )

)
. With coefficient

A given in Theorem 2, the first 3 moments of J2 are:

EJ2 = −1
2
AN−1/2, EJ2

2 = 1+O(N−1), EJ3
2 = −7

2
AN−1/2+O(N−min(1,r+1/2)).

Let K1N , K2N , K3N be the first three cumulants of J2. Then,

K1N = −1
2
AN−1/2 +O(N−min(1,r+1/2)), K2N = 1+O(N−min(1,r+1/2)),

K3N = −2AN−1/2 + O(N−min(1,r+1/2)).

Let χN(t) be the characteristic function of J2. Applying Taylor expansion to

an exponential function, we obtain

χN(t) = exp(− t2

2
)

{
1 + N−1/2(−1

2
A(it)− 2A

6
(it)3) + O(N−min(1,r+1/2))

}
.
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Letting R2(it) = (−1
2
A(it)− 2A

6
(it)3), we can write

χN(t) = exp(− t2

2
)

{
1 + N−1/2R2(it) + O(N−min(1,r+1/2))

}
.(∗)

Since χN(t) =
∫∞
−∞ eitxdp(J2 ≤ x) and e−t2/2 =

∫∞
−∞ eitxdΦ(x), expression (*)

suggests that

P (J2 ≤ x) = Φ(x) + N−1/2R2(X) + O(N−min(1,r+1/2))

where R2(X) is such a function that its Fourier-Stieltjes transform equals to

r2(it)e
−t2/2. Applying integration by part, we obtain

R2(x) = A
2

+ 2A
6

(x2 − 1)φ(x) = A
6
(2x2 + 1)φ(x).

Therefore,

P (J2 ≤ x) = Φ(x) + N−1/2q2(x)φ(x) + O(N−min(1,r+1/2)).

Since T2 = J2 + O(N−1), Theorem 2 follows.

Appendix C

Details of Methods for the ICER Simulation

C1. Taylor’s interval

The variance of the ̂ICER can be estimated as in equation (2). The asymp-

totic confidence interval (namely Taylor’s interval) can be derived using the

central limit theorem and is given by ( ̂ICER−z1−α/2σ̂1, ̂ICER+z1−α/2σ̂1).

C2. Fieller’s interval

The Fieller (Fieller, 1954) method assumes that cost and effectiveness follow

a bivariate normal distribution. Thus, ∆̂2−R∆̂1 is normally distributed with

zero mean, with R denotes the ICER and ∆̂1 = Ē1− Ē2, and ∆̂2 = C̄1− C̄2.

Consequently,

∆̂2−R∆̂1√
V̂ ar(∆̂2−R∆̂1)

∼ N(0, 1).
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The (1− α)100% confidence interval for the ICER (denoted Fieller) can

be obtained by equating the formula

∆̂2−R∆̂1√
V̂ ar(∆̂2−R∆̂1)

= z1−α/2

and solve for R. This is equivalent to solving the quadratic equation

XR2 − 2Y R + Z = 0 (C.1)

where

X = (Ē1 − Ē2)
2 − z2

1−α/2

[
S2

E1

n1
+

S2
E2

n2

]
,

Y = (Ē1 − Ē2)(C̄1 − C̄2)− z2
1−α/2

[
SE1C1

n1
+

SE2C2

n2

]
,

Z = (C̄1 − C̄2)
2 − z2

1−α/2

[
S2

C1

n1
+

S2
C2

n2

]
.

Confidence limits for the ICER are the solutions of the equation (C.1).

C3. Bootstrap-t interval

The t-statistic T = ( ̂ICER−ICER)/σ̂1 is normally distributed based on the

central limit theorem when the sample size is large. When this assumption

is violated, an alternative is to approximate its distribution by a bootstrap

method, namely the bootstrap-t. For each bootstrap sample b, the bootstrap-

t computes another t-statistic T ∗
b = ( ̂ICER

∗
b− ̂ICER)/σ̂∗1b

. These t-statistics

will then be sorted to find the α/2 and (1−α/2) percentiles, denoted by t̂(α/2)

and t̂(1−α/2). The resulting (1−α)100% bootstrap-t interval (denoted boott)

is ( ̂ICER− t̂(1−α/2)σ̂1, ̂ICER− t̂(α/2)σ̂1).

C4. Hinkley’s interval

The Hinkley (Hinkley, 1969) method also assumes the numerator and de-

nominator of the ICER come from a bivariate normal distribution. The
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distribution function F (w) of the ICER is given by (Hinkley, 1969),

F (w) = L

(
∆2 −∆1w√
Γ1Γ2a(w)/N

,− ∆1√
Γ1/N

;
w

√
Γ1/N − ρ

√
Γ2/N√

Γ1Γ2a(w)/N

)

+L

(
∆1w −∆2√
Γ1Γ2a(w)/N

,
∆1√
Γ1/N

;
w

√
Γ1/N − ρ

√
Γ2/N√

Γ1Γ2a(w)/N

)

where, ∆1, ∆2, Γ1, Γ2, Γ12 are given in Theorem 1, and

L(h, k; γ) =
1

2π
√

1− γ2

∫ ∞

h

∫ ∞

k

exp

[
−x2 − 2γxy + y2

2(1− γ2)

]
dxdy,

a(w) =

(
w2

Γ2/N
− 2ρw√

Γ1Γ2/N
+

1

Γ1/N

)1/2

, ρ = Γ12/
√

Γ1Γ2.

The (1 − α)100% confidence interval (denoted Hinkley) for the ICER is

given by (w1, w2) where F (w1) = α/2, F (w2) = 1− α/2.

C5. Three new transformational intervals

The three new transformational intervals based on Edgeworth expansion are

given in equation (4). They are denoted by T1, T2, and T3 in our simulation.

Appendix D

Details of Methods for the NHB Simulation

D1. Normal interval

The asymptotic variance of the NHB can be estimated as in equation (5). By

the central limit theorem, the asymptotic normal confidence interval (denoted

normal) for the NHB is given by
(
N̂HB − z1−α/2σ̂2, N̂HB + z1−α/2σ̂2

)
.

D2. BCa interval

For each bootstrap sample b, the estimate N̂HB
∗
b is computed. The boot-

strap replicates are then ordered from smallest to largest. The bias-corrected
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acceleration (BCa) confidence interval is given by (N̂HB
∗(α1)

, N̂HB
∗(α2)

)

where

α1 = Φ

(
ẑ0 +

ẑ0 + zα

1− α̂(ẑ0 + zα)

)
, α2 = Φ

(
ẑ0 +

ẑ0 + z1−α

1− â(ẑ0 + z1−α)

)
,

ẑ0 = Φ−1

(
#{N̂HB

∗
(b) < N̂HB}
B

)
.

The acceleration constant â = 1
6
σ̂−3

2 (n−2
1 γ̂1 − n−2

2 γ̂2) is given in Hall and

Martin (1988) where

γ̂1 = 1
n1

∑n1

j=1

[
(E1j − Ē1)− (C1j−C̄1)

λ

]3

, γ̂2 = 1
n2

∑n2

j=1

[
(E2j − Ē2)− (C2j−C̄2)

λ

]3

.

D3. Bootstrap-t interval

As described previously, For each bootstrap sample b, the bootstrap-t com-

putes another t-statistic T ∗
b = (N̂HB

∗
b − N̂HB)/σ̂∗2b

. These t-statistics will

then be sorted to find the α/2 and (1 − α/2) percentiles, denoted by t̂(α/2)

and t̂(1−α/2). The resulting (1−α)100% bootstrap-t interval (denoted boott)

is (N̂HB − t̂(1−α/2)σ̂2, N̂HB − t̂(α/2)σ̂2).

D4. Three new transformational intervals

The three new transformational intervals based on Edgeworth expansion are

given in equation (8). They are denoted by T1, T2, and T3 in our simulation.
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Figure 1. The ∆E −∆C Plane
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Figure 2. Distributions of costs and effectiveness of two groups
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Table 5
Summary statistics for the two groups

Estimated ICER = 15.33, NHB = 77.08
Control group (n1 = 54) Intervention group (n2 = 53)

Mean S.D. Skewness Mean S.D. Skewness
Cost (U.S.$) 2507.42 4460.44 4.93 1325.48 1785.67 3.46
Effectiveness (days 211.52 139.68 -.30 134.42 134.55 .71
with anxiety attack)

Table 6
Summary of confidence intervals for the ICER and the NHB

Methods Confidence intervals Interval length
ICER

Taylor ( -3.44 , 34.10 ) 37.54
Fieller ( -1.43 , 53.86 ) 55.28
Hinkley ( -1.68 , 52.44 ) 54.12
Bootstrap-t ( 4.50 , 49.55 ) 45.05
T1 ( 3.33 , 81.87 ) 78.54
T2 ( -1.99 , 35.22 ) 37.21
T3 ( 0.35 , 38.38 ) 38.03

NHB
Normal ( 25.12, 129.03 ) 103.92
Bootstrap-t ( 21.68, 132.33 ) 110.65
BCa ( 20.21, 125.52 ) 105.31
T1 ( 26.78, 130.87 ) 104.10
T2 ( 25.46, 129.39 ) 103.92
T3 ( 32.84, 144.42 ) 111.58
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