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1. Introduction

The accuracy of a diagnostic test can be measured by its sensitivity and specificity, which are

defined as the probabilities of correctly identifying the diseased and the non-diseased individual

respectively. In many medical applications, we have two (or more) continuous-scale diagnostic

tests to the same set of individuals, some of whom are non-diseases, some diseased. In this

situation, it is of interest to know which test is better for them. When we have a minimally

acceptable value for the specificity of both tests, our focus of analysis is on comparison of

sensitivities of two tests at this minimal specificity.

Greenhouse and Mantel (1950) and Linnet (1987) proposed nonparametric procedures for

the comparison of two sensitivities at a fixed level of specificity. Wieand et al (1989) studied

asymptotic behaviors of these nonparametric procedures and generalized them to a comparison

of two weighted average of sensitivities.

Consider two diagnostic tests T1 and T2 that yield continuous measurements. Assume that

both tests are performed on the same m controls (non-diseased) and n cases (diseased). Let

(X1j, X2j), j = 1, 2, · · · ,m, be i.i.d. bivariate outcomes from the population with a joint

distribution F (x1, x2) that represents the non-diseased group, (Y1k, Y2k), k = 1, 2, · · · , n, be

i.i.d. bivariate outcomes from population with a joint distribution G(y1, y2) that represents the

diseased group. Denote the marginal distribution functions of Xi and Yi by Fi(xi) and Gi(yi),

respectively, i = 1, 2. For a given cut-off point c, the sensitivity and specificity of the test Ti,

i = 1, 2, are defined by

Si(c) = P (Yi ≥ c) = 1−Gi(c), Spi(c) = P (Xi ≤ c) = Fi(c),

respectively. Therefore, for a fixed value of specificity at p, the sensitivity of test Ti is Si(p) =

1 − Gi(F
−1
i (p)), where F−1

i (p) = inf{t : Fi(t) ≥ p}, i = 1, 2. The parameter of interest is the

difference between two sensitivities at the same fixed value of specificity p0,

∆ = S1(p0)− S2(p0).
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Let Ĝi be the empirical distribution of Gi, based on the sample Xi1, . . . , Xim, and let F̂−1
i (p)

be the empirical estimate for the p-th quantile of Fi, i = 1, 2, based on the sample Yi1, . . . , Yin.

The non-parametric estimator for ∆ proposed by Linnet (1987) and Wieand et al (1989) is

given as follows:

∆̂ = Ŝ1(p0)− Ŝ2(p0),

where Ŝi(p0) = 1− Ĝi(F̂
−1
i (p0)). Let N = m + n. Wieand et al (1989) have shown that

N1/2
(
∆̂−∆

)
∼ N

(
0, σ2

)
(1)

where

σ2 = σ2
1 + σ2

2 − 2σ12,

σ2
i = (1− λ)−1Si(p0)(1− Si(p0)) + λ−1(1− p0)p0

g2
i (F

−1
i (p0))

f 2
i (F−1

i (p0))
(i = 1, 2),

σ12 = (1− λ)−1
[
G

(
F−1

1 (p0), F
−1
2 (p0)

)
−G1(F

−1
1 (p0))G2(F

−1
2 (p0))

]
,

+λ−1
[
F

(
F−1

1 (p0), F
−1
2 (p0)

)
− p2

0

] g1(F
−1
1 (p0))

f1(F
−1
1 (p0))

g2(F
−1
2 (p0))

f2(F
−1
2 (p0))

,

λ = m/(m + n).

where fi and gi are the density functions of Fi and Gi respectively.

We can use the normal approximation (1) to construct a confidence interval for the differ-

ence between two sensitivities at the same fixed level of specificity if a good estimate for σ2 is

available. However, the estimation of σ2 requires the estimation of density functions fi and gi,

the estimation of bivariate distribution functions F (x1, x2) and G(y1, y2), and the estimation

of quantiles F−1
i (p). Therefore, the performance of the normal approximation based confidence

interval (hereafter called WGJ interval) is very sensitive to the choice of the smoothing param-

eters in density and distribution estimations. Selection of a satisfactory smoothing parameters

in this context is problematic.
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In this paper, we propose three new intervals for the difference between sensitivities of two

diagnostic tests at a fixed value of specificity. The major advantage of the new intervals over

the normal approximation based interval is that we don’t need to use density and distribution

estimation. In addition, the new intervals are computationally simple and easy to implement

in practice. Our simulation studies also indicate that the new intervals perform better than

the existing normal approximation based interval in terms of coverage accuracy and interval

length.

The rest of this paper is organized as follows. In Section 2 we propose three new confidence

intervals. In Section 3 we conduct simulation studies to assess the finite-sample performance of

the new intervals. In Section 4 we illustrate the application of the proposed methods in a real

example.

2. New confidence intervals

In this section, we construct (1 − α)100% confidence intervals for the difference ∆ of two

sensitivities at the same fixed value of specificity p0. Note that

∆ = S1(p0)− S2(p0) = P
(
Y1k ≥ F−1

1 (p0)
)
− P

(
Y2k ≥ F−1

2 (p0)
)
.

If Fi were known, an obvious estimator of ∆ would be the difference between the observed

sensitivities at p0-th quantiles F−1
1 (p0) and F−1

2 (p0), which would be defined as

∆0 =
1

n

n∑

k=1

I[Y1k≥F−1
1 (p0)] −

1

n

n∑

k=1

I[Y2k≥F−1
2 (p0)], (2)

where IA is the indicator function of A. We can also regard ∆0 as the difference between two

sample proportions of binomial distributions with proportions Si(p0), i = 1, 2. Because Fi’s are

in fact unknown, replacing the F−1
i (p0) by F̂−1

i (p0) in (2), we obtain an estimator for ∆. That

is,

∆̂0 =
1

n

n∑

k=1

I[Y1k≥F̂−1
1 (p0)] −

1

n

n∑

k=1

I[Y2k≥F̂−1
2 (p0)]. (3)
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Since the indicator variables I[Yi1≥F̂−1
i (p0)], I[Yi2≥F̂−1

i (p0)], · · ·, I[Yin≥F̂−1
i (p0)] are not independent,

∆̂0 is no longer the difference between two simple binomial proportions. Therefore, the usual

methods for construction of confidence interval for the difference between two binomial propor-

tions, such as one proposed by Agresti and Caffo (2000), can not be directly applicable here.

However, noticing the relationship between ∆̂0 and a two-sample binomial problem, we can

construct intervals for ∆ based on a variation of ∆̂0 by combining bootstrap method with the

technique by Agresti and Caffo (2000). Depending on whether there is a correlation between

the test results from two diagnostic tests, we propose the following different procedures for the

confidence intervals of ∆.

2.1 A paired uncorrelated samples

When the test results from two diagnostic tests are conditionally uncorrelated within the

diseased groups, ∆̂0 can be considered as the difference between two independent sample propor-

tions. Using the technique by Agresti and Caffo (2000), we proposed the following potentially

better estimator for ∆0 instead of ∆̂0:

∆̂ = Ŝ1(p0)− Ŝ2(p0), (4)

where

Ŝi(p0) =

∑n
k=1 I

[Yik≥F̂−1
i (p0)]

+ z2
1−α/2/2

n + z2
1−α/2

, i = 1, 2, (5)

and z1−α/2 is the 1− α/2 quantile of standard normal distribution when the confidence level is

1−α. Since z2
1−α/2 = 1.962 is approximately equal to 4 when α = 0.05, Ŝi(p0) may be regarded

as an adjusted estimate for binomial proportion Si(p0) by adding two successes and two failures

to Bernoulli observations. We use ∆̂ here rather than the standard ∆̂0 as the estimate for

∆0 because the simulation study by Agresti and Coull (1998) showed that the adjusted Wald

intervals for Si(p0) based on Ŝi(p0) have good coverage accuracy even for small sample sizes.

Although ∆̂ is the difference of two conditionally uncorrelated proportions, it is still difficult to

find a good variance estimate for ∆̂ because of the dependence among the indicator variables
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I
[Yik≥F̂−1

i (p)]
, k = 1, 2, · · · , n. Therefore, the most often used Wald interval cannot be directly

applicable here. In this paper we propose to use a bootstrap method to estimate the variance of

∆̂. We summarize the procedure for computing the bootstrap variance in the following steps:

1. For each i = 1, 2, draw a resample of size n, Y ∗
ik (k = 1, ..., n) with replacement from

the diseased patient sample Yik (k = 1, ..., n), and a separate resample of size m, X∗
ij

(j = 1, ...,m) with replacement from the non-diseased patient sample Xij (j = 1, ..., m).

2. Calculate the bootstrap version of Ŝi(p0) (i=1,2), and ∆̂,

Ŝ∗i (p0) =

∑n
k=1 I

[Y ∗
ik
≥F̃−1

i (p0)]
+ z2

1−α/2/2

n + z2
1−α/2

,

∆̂∗ = Ŝ∗1(p0)− Ŝ∗2(p0),

where F̃−1
i (p) is the p-th sample quantile based on the bootstrap resample X∗

ij’s.

3. Repeat the first two steps B times to obtain the set of bootstrap replications {Ŝ∗ib(p0), ∆̂
∗
b :

b = 1, 2, · · · , B}, i = 1, 2.

Then, the bootstrap variance estimator V ∗ for ∆̂ is defined as follows:

V ∗ = V ∗
1 + V ∗

2 ,

where

V ∗
i =

1

B − 1

B∑

b=1

(
Ŝ∗ib(p0)− S̄∗i (p0)

)2
, i = 1, 2,

and S̄∗i (p0) = (1/B)
∑B

b=1 Ŝ∗ib(p0), i = 1, 2.

Here we want to point out that the above procedure can easily be extended to the case

of two independent samples with different sample sizes. For simplicity, we only consider the

paired conditionally uncorrelated samples in this paper.

2.2 A paired dependent samples

7
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When two diagnostic tests are applied to the same patients, the test results from two

diagnostic tests are most likely correlated. Because of the dependence of the paired samples,

we propose to use the bootstrap procedure defined as before except that the constant z1−α/2 in

(5) and in the second step be taken to be (z1−α/2)
1/2. When α = 0.05, (z1−α/2)

1/2 ≈ √
2, and

Ŝi(p0) =

∑n
k=1 I

[Yik≥F̂−1
i (p0)]

+ 1

n + 2
, i = 1, 2.

Therefore, ∆̂ may be regarded as an adjusted estimate for the difference between two binomial

proportions by adding one success and one failure to Bernoulli observations. Our extensive

simulation study indicated that the confidence intervals for ∆ resulting from this modification

have better coverage accuracy than that of adding two successes and two failures method pro-

posed for two independent (or paired uncorrelated) samples. The bootstrap variance estimator

V ∗ for ∆̂ is then defined as follows:

V ∗ = V ∗
1 + V ∗

2 − 2V ∗
12

where V ∗
i (i=1, 2) are defined as before, and

V ∗
12 =

1

B − 1

B∑

b=1

(
Ŝ∗1b(p0)− S̄∗1(p0)

) (
Ŝ∗2b(p0)− S̄∗2(p0)

)
.

2.3 New bootstrap intervals for ∆

Now we can propose new intervals for ∆. The first two (1−α)100% confidence intervals for

∆ are bootstrap intervals based on the bootstrap variance estimator V ∗. They are defined as

follows:

(i) The first one, called BTI interval, is

(
∆̂− z1−α/2

√
V ∗, ∆̂ + z1−α/2

√
V ∗

)

where ∆̂ is defined by (4).
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(ii) The second one, called BTII interval, is

(
∆̄∗ − z1−α/2

√
V ∗, ∆̄∗ + z1−α/2

√
V ∗

)
,

where ∆̄∗ = (1/B)
∑B

b=1 ∆̂∗
b .

The above two intervals require variance estimation of ∆̂. The third interval for ∆ is a

BCa-type bootstrap interval, which does not require the direct variance estimation. Efron and

Tibshirani suggest the use of the BCa intervals as they provide more stable results and bettter

coverage probabilities with fewer bootstrap resamples that do the percentile intervals. The

following is a modified BCa interval for ∆ in the setting of comparing two sensitivities at the

same fixed level of specificity :
(
∆̂∗

(Bα̂/2), ∆̂
∗
(B(1−α̂/2))

)
,

where

α̂ = Φ

(
w +

w + zα

1− a(w + zα)

)
,

w = Φ−1

(
1

B

B∑

b=1

I[∆̂∗
b
≤∆̂]

)
,

a =
1

6

∑n
k=1 l3k

(
∑n

k=1 l2k)
3/2

,

lk =
(
I[Y1k≥F̂−1

1 (p0)] − I[Y2k≥F̂−1
2 (p0)]

)
−

(
Ŝ1(p0)− Ŝ2(p0)

)
,

Φ is the standard normal distribution, and ∆̂∗
(b) is the b-th ordered value among {∆̂∗

b , b =

1, 2, · · · , B}.

3. Simulation Studies for the Confidence Intervals

In this section, we conduct two simulation studies to evaluate coverage accuracy and interval

length of the newly proposed intervals for ∆ when the specificity p is taken to be 80% or 90%

in finite-sample sizes. In both studies, We generated 2,000 random samples of size n from

G(y1, y2) for test responses of diseased patients, and another independent random samples of

9
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size m from F (x1, x2) for test responses of non-diseased patients. The normal approximation

based interval (WGJ interval), proposed by Wieand et al (1989), is also included in these studies

for comparison.

In the first study, G(y1, y2) is chosen to be a bivariate normal distribution having means

E(Y1) = µ1, E(Y2) = µ2, and with a common standard deviation 2 and correlation ρ; F (x1, x2)

is chosen to be a bivariate normal distribution with means E(X1) = 0, E(X2) = 0, and with a

common standard deviation 1 and correlation ρ. Thus Si(p) = 1 − Φ{Φ−1(p)−µi

2
}, for i = 1, 2.

For ∆ = 0, we choose µ1 = µ2 such that the sensitivity Si(p) of the test Ti (i = 1, 2) varies over

the points 0.95, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, respectively.

In the second study, the distributions G(y1, y2), F (x1, x2) are chosen to be different bivariate

exponential distributions that have exponential distributions as their marginal distributions.

Depending on the possible correlation between the test results from two diagnostic tests, we

use two different procedures to generate the random samples of test responses. First we choose

the correlation as zero (ρ = 0), and then we generate two independent samples, X11, X12, · · ·,
X1m and X21, X22, · · ·, X2m, from standard exponential distribution; and two independent

samples, Y11, Y12, · · ·, Y1n, and Y21, Y22, · · ·, Y2n, from exponential distributions with rates

λ1, λ2, respectively. Therefore, Si(p) = exp[λi log(1 − p)], for i = 1, 2. Second, we choose

a positive correlation (ρ > 0), we first generate random samples, Ui1, Ui2, · · · , Uim, from a

exponential distribution with rate 0.5, for i = 1, 2, 3; and random samples, Vi1, Vi2, · · · , Vin, from

a exponential distribution with rate li, for i = 1, 2; and a random sample, V31, V32, · · · , V3n, from

a exponential distributions with rate 0.01. Then, the simulated test responses for non-diseased

patients are Xij = min(Uij, U3j), i = 1, 2, j = 1, 2, · · · , m, which are random samples from

two standard exponential distributions with correlation ρ; and those for diseased patients are

Yik = min(Vik, V3k), i = 1, 2, k = 1, 2, · · · , n, which are random samples from two exponential

distributions with correlation ρ and rates l1 + 0.01, l2 + 0.01, respectively. Under this setting,

Si(p) is exp[(li + 0.01) log(1− p)], for i = 1, 2. Similar to the first simulation study, we choose

10
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λi, li ( i = 1, 2) such that ∆ = 0 as the sensitivity S1(p) varies over the points 0.50, 0.55, 0.60,

0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, respectively.

The computation of WGJ interval is complicated by estimating the unknown underlying

density functions fi and gi, and bivariate distribution functions F (x1, x2) and G(y1, y2). In the

simulation studies, we use the same method as that by Wieand et al (1989) to estimate the

asymptotic variance σ2. That is, the consistent estimate of σ2 is obtained by substituting kernel

density estimators for fi and gi, the empirical distribution functions and sample quantiles for

corresponding population distribution functions and quantiles.

Tables 1-4 goes here

We summary the average coverage probabilities and average interval lengths over selected

values of sensitivities S1(p)’s for the WGJ interval and the three newly proposed intervals

(BCa, BTI and BTII) in Tables 1-2 when the underlying distributions are bivariate normal

distributions and in Tables 3-4 when the underlying distributions are the bivariate exponen-

tial distributions. Since the averaging coverage probabilities do not provide information on

effects of particular values of S1(p) and S2(p) on coverage probability, we also plot the coverage

probabilities of ∆ when S1(p) varies over the points chosen above. Figures 1-4 display the

coverage coverage probabilities of ∆ for the four intervals as functions of sensitivity S1(p) when

(m,n) = (20, 20), (50, 50), and (30, 50), respectively.

Figures 1-4 goes here

From Tables 1-4 and Figures 1-4, we make the following observations.

(1) When the correlation ρ = 0, the newly proposed BTI and BTII intervals have uniformly

better coverage accuracy than the WGJ interval across all the sensitivity levels at the specificity

levels considered here. The coverage probabilities of WGL interval are below the nominal level

11
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for most of the sensitivity levels. The BTI, BTII intervals outperform the WGJ interval,

particularly for small to moderate sample size (n,m ≤ 20).

(2) When the correlation ρ is positive, BCa performs better than the other methods in terms

of coverage probability for most of the sensitivities levels.

(3) Although WGJ interval occasionally has good coverage probability, it generally has

longer average interval length than the newly proposed intervals, and sometimes its average

interval length is twice long as the newly proposed intervals. Moreover, the computation of

WGJ interval is the most complicated.

In summary, our simulation studies suggest that the newly proposed BTI and BTII intervals

perform better than the existing WGJ interval for independent samples, and BCa performs

better than the WGJ interval for paired dependent samples. In addition, the new intervals

are computationally much simpler than the WGJ interval. Among the three new intervals, we

recommend the BCa interval for paired dependent samples and the BTI and BTII intervals for

independent samples.

4 Dermoscope Example

The most deadly kind of skin disease is malignant melanoma (MM), and early detection

of MM combined with excision of MM is the only way to cure patients with MM. Stolz et al.

(1994) studied the accuracy of clinical evaluations with or without the aid of dermatoscopy in

detecting malignant melanoma by using the ABCD rule (Asymmetry, irregular Border, different

Colors, and Diameter larger than 6mm). The dermatoscopy is a hand-held instrument for skin

surface microscopy at 10 times magnification. The study sample consists of 21 patients with

MM and 51 patients with benign melanocytic lesions, and the gold standard used in the study

is biopsy (Venkatraman, 1996). Hence, we have two tests for detecting MM; the first test is

the clinical assessment without the aid of dermatoscopy, and the second test is the clinical

assessment with the aid of dermatoscopy.
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To be sure that the two tests have a high change of ruling out patients without MM,

dermatologists want the specificity of the tests to be at least 90% for detecting patients without

MM and want to know what the relative corresponding sensitivities of the two tests are in

detecting patients with MM. Therefore, It is an interest to construct a confidence interval for

the difference of sensitivities of the two tests when their specificities are fixed at 90% (or 95%).

Ninety-five percent confidence intervals for the difference in sensitivities between the two

clinical assessments without and with the aid of dermatoscopy at the two fixed levels of speci-

ficities (90% and 95%) are shown in Table 5. All confidence intervals are containing zero.

Therefore, we conclude that there is no significant advantage to adopt the clinical assessment

with the aid of dermatoscopy in detecting MM.

Table 5 goes here

5. Discussion

There are different ways for comparing the accuracy of two continuous-scale tests, depending

on whether we can specify a commonly minimal acceptable value for the specificity of both tests.

If we can, we would be interested in comparing sensitivities of the two tests at the same fixed

level of their specificities. If we cannot, specify a minimally acceptable value for the specificity

of test, our interest would be comparison of the whole or partial ROC curve.

In this paper, we have focused our attention on the situation where we can specify a com-

monly minimal acceptable value for the specificity of both tests. We have proposed BTI, BTII

and BCa confidence intervals for sensitivity at a fixed level of specificity, and have shown via

simulation that the newly proposed methods outperform the existing method in terms of the

coverage accuracy and interval length. Among the three new intervals, BTI and BTII are based

on the techniques for the confidence intervals between two independent binomial proportions

proposed by Agresti and Caffo (2000), it is expected that BTI and BTII perform better than

13
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the other methods for independent samples. Agresti and Caffo (2000) didn’t discuss the confi-

dence intervals for paired dependent binomial proportions. We applied the similar technique to

paired dependent samples with adjustment for variance estimate (see section 2.2), and proposed

a BCa interval for the difference between two sensitivities for paired dependent samples. Our

simulation study indicated that this method works and BCa method performs better than BTI

and BTII. One possible reason is that BCa method better captures the dependence between

the paired samples and produced a better adjusted confidence level. The theoretical compari-

son of these methods are difficult. Edgeworth expansion or saddlepoint approximation for the

coverage probabilities may shed some light on this problem (see Zhou, Tsao and Qin, 2004;

Zhou and Qin, 2005).
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Table 1. Level 95% confidence interval for ∆. Bivariate normal distribution with ρ = 0

Specificity sample size Method Ave. coverage probability Average length
0.90 m=10, n=10 WGJ 0.9072 1.0629

BCa 0.9181 0.4634
BTI 0.9528 0.5664
BTII 0.9662 0.5664

m=20, n=20 WGJ 0.9225 0.7664
BCa 0.9331 0.4300
BTI 0.9584 0.4966
BTII 0.9701 0.4966

m=50, n=50 WGJ 0.9377 0.4752
BCa 0.9418 0.3222
BTI 0.9588 0.3535
BTII 0.9682 0.3535

m=30, n=50 WGJ 0.9212 0.5348
BCa 0.9418 0.3511
BTI 0.9603 0.3842
BTII 0.9687 0.3842

0.80 m=10, n=10 WGJ 0.9082 1.0373
BCa 0.9230 0.4692
BTI 0.9582 0.5716
BTII 0.9675 0.5716

m=20, n=20 WGJ 0.9217 0.7454
BCa 0.9312 0.4175
BTI 0.9557 0.4797
BTII 0.9645 0.4797

m=50, n=50 WGJ 0.9336 0.4651
BCa 0.9388 0.3101
BTI 0.9555 0.3382
BTII 0.9645 0.3382

m=30, n=50 WGJ 0.9234 0.5153
BCa 0.9360 0.3308
BTI 0.9561 0.3614
BTII 0.9667 0.3614
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Table 2. Level 95% confidence interval for ∆. Bivariate normal distribution with ρ = 0.5

Specificity sample size Method Ave. coverage probability Average length
0.90 m=10, n=10 WGJ 0.9015 0.9369

BCa 0.9570 0.5286
BTI 0.9279 0.4960
BTII 0.9520 0.4960

m=20, n=20 WGJ 0.9315 0.7051
BCa 0.9646 0.4649
BTI 0.9212 0.3917
BTII 0.9470 0.3917

m=50, n=50 WGJ 0.9333 0.4303
BCa 0.9688 0.3347
BTI 0.9241 0.2647
BTII 0.9332 0.2647

m=30, n=50 WGJ 0.9189 0.4862
BCa 0.9708 0.3598
BTI 0.9182 0.2864
BTII 0.9414 0.2864

0.80 m=10, n=10 WGJ 0.9075 0.8988
BCa 0.9595 0.5280
BTI 0.9279 0.4889
BTII 0.9562 0.4889

m=20, n=20 WGJ 0.9352 0.6720
BCa 0.9623 0.4493
BTI 0.9193 0.3760
BTII 0.9448 0.3760

m=50, n=50 WGJ 0.9318 0.4100
BCa 0.9687 0.3225
BTI 0.9155 0.2525
BTII 0.9336 0.2525

m=30, n=50 WGJ 0.9232 0.4693
BCa 0.9696 0.3435
BTI 0.9142 0.2700
BTII 0.9378 0.2700
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Table 3. Level 95% confidence interval for ∆. Bivariate exponential distribution with ρ = 0

Specificity sample size Method Ave. coverage probability Average length
0.90 m=10, n=10 WGJ 0.9040 1.1603

BCa 0.9185 0.4479
BTI 0.9652 0.6083
BTII 0.9769 0.6083

m=20, n=20 WGJ 0.9132 0.8423
BCa 0.9277 0.4430
BTI 0.9591 0.5303
BTII 0.9712 0.5303

m=50, n=50 WGJ 0.9329 0.5069
BCa 0.9358 0.3431
BTI 0.9580 0.3810
BTII 0.9688 0.3810

m=30, n=50 WGJ 0.9151 0.5721
BCa 0.9379 0.3721
BTI 0.9581 0.4174
BTII 0.9685 0.4174

0.80 m=10, n=10 WGJ 0.8906 1.1659
BCa 0.9249 0.4769
BTI 0.9652 0.6291
BTII 0.9753 0.6291

m=20, n=20 WGJ 0.9124 0.8516
BCa 0.9311 0.4484
BTI 0.9644 0.5311
BTII 0.9730 0.5311

m=50, n=50 WGJ 0.9286 0.5191
BCa 0.9370 0.3393
BTI 0.9576 0.3766
BTII 0.9668 0.3766

m=30, n=50 WGJ 0.9095 0.5954
BCa 0.9325 0.3695
BTI 0.9555 0.4121
BTII 0.9671 0.4121
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Table 4. Level 95% confidence interval for ∆. Bivariate exponential distribution with ρ > 0

Specificity sample size Method Ave. coverage probability Average length
0.90 m=10, n=10 WGJ 0.9198 0.6707

BCa 0.9317 0.5253
BTI 0.8915 0.5020
BTII 0.9277 0.5020

m=20, n=20 WGJ 0.9285 0.5006
BCa 0.9494 0.4871
BTI 0.8924 0.4076
BTII 0.9174 0.4076

m=50, n=50 WGJ 0.9387 0.4882
BCa 0.9592 0.3570
BTI 0.8895 0.2794
BTII 0.9075 0.2794

m=30, n=50 WGJ 0.9301 0.5663
BCa 0.9577 0.3848
BTI 0.8933 0.3047
BTII 0.9161 0.3047

0.80 m=10, n=10 WGJ 0.9014 1.1545
BCa 0.9363 0.5596
BTI 0.8873 0.5173
BTII 0.9223 0.5173

m=20, n=20 WGJ 0.9236 0.8271
BCa 0.9497 0.4928
BTI 0.8834 0.4081
BTII 0.9103 0.4081

m=50, n=50 WGJ 0.9323 0.5054
BCa 0.9551 0.3532
BTI 0.8858 0.2767
BTII 0.9043 0.2767

m=30, n=50 WGJ 0.9209 0.5717
BCa 0.9572 0.3841
BTI 0.8884 0.3011
BTII 0.9105 0.3011
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Table 5. 95% Confidence interval for the difference of sensitivities between
the two clinical assessments without and with the aid of dermatoscopy

Specificity WGJ BTI BTII BCa
0.90 (-0.538, 0.729) (-0.220, 0.394) (-0.302, 0.312) (-0.261, 0.261)
0.95 (-1.000, 1.000) (-0.346, 0.346) (-0.336, 0.357) (-0.609, 0.479)
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Figure 1: Coverage probability of 95% confidence interval for ∆. Bivariate normal distribution
with ρ = 0
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Figure 2: Coverage probability of 95% confidence interval for ∆. Bivariate normal distribution
with ρ = 0.5
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Figure 3: Coverage probability of 95% confidence interval for ∆. Bivariate exponential distri-
bution with ρ = 0
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Figure 4: Coverage probability of 95% confidence interval for ∆. Bivariate exponential distri-
bution with ρ > 0
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