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1. INTRODUCTION

The analysis of right-skewed, heteroscedastic data can often be simplified by applying a monotone

transformation and then analyzing the data on the transformed scale. This approach is particularly at-

tractive when a transformation which achieves linearity with additive, normal and homoscedastic errors

can be found. The main complication in this case is the retransformation bias which arises when we try

to transform back to the original scale for prediction and forecasting. In practice, there is often no single

transformation which simultaneously achieves additivity, normality and homoscedasticity so that, if we

achieve linearity with additive errors, we may still have to deal with non-normality and heteroscedasticity.

A further complication in the transformation approach arises when, in addition, the data contain a cer-

tain proportion of zero measurements. This is a common occurrence when measuring diverse phenomena

such as rainfall, tumor size, reaction time, resource usage, etc where the non-occurrence or absence of the

phenomenon leads to a zero observation. See Panel on Nonstandard Mixtures of Distributions (1989) for

discussion and further examples. Our purpose in this paper is to develop a flexible methodology which

enables us to handle retransformation bias when the transformation achieves linearity and additivity but

not necessarily normality and homoscedasticity, and the data contain zero measurements.

The complications of using transformation based models described above are well documented in the

literature on analyzing health care cost data. Duan et al (1983) proposed fitting standard linear regression

models to transformed cost data. However, for cost data, the assumption of homoscedastic variance after

transformation is often not met; see Manning (1998), Mullahy (1998), Zhou et al (1997a), Zhou et al

(1997b), and Zhou and Tu, (1999). Mullahy (1998) gave several real situations where two-part regression

models which assume homoscedasticity after transforming the nonzero responses yield inconsistent infer-

ences about important policy parameters and has warned against their automatic application in health

econometrics when interest is focused on the mean of the original responses.

Retransformation bias has been treated previously under different assumptions about what the trans-

formation achieves in the data. For problems without zeros, Duan (1983) assumed that a known trans-

formation achieved linearity with additive, homoscedastic but not necessarily normal errors. He proposed

a nonparametric estimator of the mean on the original scale which he called the smearing estimator. He

showed that the smearing estimator is consistent under mild conditions but did not give its asymptotic

distribution, leaving open the problem of setting approximate confidence and prediction intervals on the

original scale. Carroll and Ruppert (1984) suggested using the smearing estimator when the transforma-

tion has been estimated from the data and Taylor (1986) explored the properties of this estimator by
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simulation. Taylor (1986) also proposed a parametric estimator of the mean on the original scale which

is appropriate when the transformation additionally achieves normality. In his simulation, he showed that

the performance of the two methods is very similar.

The presence of zero observations can be handled by fitting a nonstandard mixture model with a

degenerate component at zero. That zero/nonzero response can be modeled by binary regression and the

magnitude of the nonzero responses can be modelled conditionally by a continuous distribution. To allow for

the fact that transformation of the nonzero responses may not achieve normality and homoscedasticity, we

fit a heteroscedastic regression model proposed by Welsh et al (1994) to the transformed nonzero responses.

Although the zero and nonzero responses are effectively modelled separately, the two models need to be

combined to produce estimates of the mean response on the original scale. We propose extensions of Duan’s

smearing estimator which combine the two parts of the model to produce estimates of the mean response

on the original scale.

We describe our semi-parametric two-part heteroscedastic regression model for a skewed population

with additional zero observations in Section 2. In Section 3, we specify estimators of the regression

parameters on the transformed scale. Then, in Section 4, we propose two nonparametric estimators for

the overall mean on the original scale; these non-parametric estimators are extensions of Duan’s smearing

estimator to the semi-parametric two-part heteroscedastic regression model. We show in Section 5 that

both the estimators are consistent and asymptotically normally distributed and show how to construct

approximate confidence intervals for the mean response on the original scale. In Section 6 we illustrate the

application of the estimators in a real clinical study and in Section 7 we report a simulation study of the

finite-sample performance of these two estimators.

2. A HETEROSCEDASTIC TWO-PART REGRESSION MODEL

We treat the observations as realizations of independently distributed random variables Y1, . . . , Yn

which have a density function

f∗(yi, πi, φi) =





πi if yi = 0

(1− πi)f(yi, φi) if yi > 0
, (1)

where f(yi, φi) is a proper density function. Clearly, πi = Pr(Yi = 0) and f(yi, φi) is the conditional

density of Yi given that Yi > 0.

As in a standard generalized linear model (see for example McCullagh and Nelder, 1989), πi can be

related to known vectors of covariates zi through a known link function l so that

l(πi) = zT
i α0, (2)
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where α0 is a vector of unknown parameters. Here the symbol T denotes the transpose of a matrix or

vector. A common choice of l is the logistic function l(x) = log(x/(1− x)) but other choices are possible.

As f(yi, φi) is often asymmetric, we adopt a conditional transformation model to relate Yi to vectors

of covariates xi. Specifically, given that Yi > 0, we assume that for a monotone transformation h,

h−1(Yi) = xT
i β0 + gi(β0, θ0)εi, (3)

where β0 and θ0 are vectors of unknown parameters with dimensions q1 and q2, respectively, gi is a known

function allowing scaling and heteroscedasticity on the transformed scale, and {εi} are independent and

identically distributed random variables with common density function fε with mean zero and variance one.

It is traditional to assume that the transformation h−1 makes the mean linear and the residual variation

both homoscedastic and normally distributed. In model (3), we assume only that the transformation

h−1 makes the mean linear, leaving us to model any heteroscedasticity through the gi and to account for

possible non-normality of the {εi}. The transformation h can be known or unknown, depending on the

application: for simplicity, in this paper, we treat h as known, reserving comment on the case of estimated

h to the final discussion.

Note that the covariates in zi and xi may be but are not necessarily different and that the function gi

can depend on xi and/or other covariates. Put ξ = (βT , θT )T and define

ei(ξ) =
h−1(Yi)− xT

i β

gi(ξ)
. (4)

Here the dimension of ξ is q = q1 + q2. Then the conditional transformation model implies that f(yi, φi) =
1

h′(h−1(yi))gi(ξ0)
fε(ei(ξ0)), with φi = (xT

i β0, gi(β0, θ0))T .

3. PARAMETER ESTIMATION

The log-likelihood for the model (1) is

`(α, ξ) =
n∑

i=1

{
I (yi = 0) log

(
πi

1− πi

)
+ log(1− πi)

}
+

n∑

i=1

I(yi > 0) log f(yi, φi)

= `1(α) + `2(ξ).

This factorization shows that the parameters α0 and ξ0 are orthogonal so, without any loss of efficiency,

can be estimated separately.

Estimation of α0 by maximizing `1(α) is a standard binary regression problem. Under mild conditions,

it follows from standard estimating equation theory (see for example Diggle et al, 2002) that

α̂− α0 =
1
n

A−1
n∑

i=1

ρi{I(yi = 0)− πi}+ op(
1√
n

), (5)
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where ρi = zi/(l′(πi)πi(1− πi)) and

A = lim
n→∞

1
n

n∑

i=1

ρiz
T
i /l′(πi).

Similarly, we can maximize `2(ξ) to estimate ξ0 but it is useful to consider a wider class of estimators.

We therefore consider estimators which satisfy estimating equations of the form

n∑

i=1

Ψi(Yi, ξ) = 0, (6)

where Ψi(Yi, ξ) and 0 are q dimensional vectors. Writing the derivatives of g as

g
(1)
i (ξ) =

∂gi(ξ)
∂β

, and g
(2)
i (ξ) =

∂gi(ξ)
∂θ

,

the maximum likelihood estimator satisfies (6) with

Ψi(Yi, ξ) = I(Yi > 0)(ψ(ei(ξ))xT
i /gi(ξ) + χ(ei(ξ))g

(1)
i (ξ)T /gi(ξ), χ(ei(ξ))g

(2)
i (ξ)T /gi(ξ))T ,

where ψ(x) = −f ′ε(x)/fε(x) and χ(x) = xψ(x)− 1. The pseudo likelihood estimator (Carroll and Ruppert,

1982) satisfies (6) with

Ψi(Yi, ξ) = I(Yi > 0)(ψ(ei(ξ))xT
i , χ(ei(ξ))g

(2)
i (ξ)T )T .

When the {εi} are normally distributed, ψ(x) = x and χ(x) = x2 − 1.

From the standard theory of estimating equations (see for example Diggle et al, 2002), we can show

that under mild conditions

ξ̂ − ξ0 =
1
n

n∑

i=1




BβΨi(Yi, ξ0)

BθΨi(Yi, ξ0)


 + op(

1√
n

), (7)

where Bβ and Bθ are defined by



Bβ

Bθ


 =

{
− 1

n

n∑

i=1

E
∂

∂ξ
Ψi(Yi, ξ)|ξ=ξ0

}−1

.

Here Bβ is a q1 × q matrix, and Bθ is a q2 × q matrix.

4. ESTIMATING THE MEAN ON THE ORIGINAL SCALE

When a linear regression model is fitted on the transformed scale, it is often of interest to use the

estimated coefficients to estimate the (unconditional) mean of the response on the original-scale. That is,
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given the covariates x and z, we want to estimate u = E(Y | x, z), where Y is the response of the outcome

on the patient with the covariates x and z. Define

ηi(ξ) = xT β + g(ξ)ei(ξ),

where ei(ξ) is defined by (4), and g(ξ) is the value of gi(ξ) when xi = x and zi = z. For simplicity, we

write ηi(ξ0) = ηi. Since ei(ξ0) = εi and the {εi} are assumed to be independent and identically distributed,

for fixed x and z, the random variables {ηi} are independent and identically distributed. In this notation,

we have Eh(ηi) = Eh(η1) and that

u = (1− π)Eh(η1),

where π = l−1(zT α0).

We consider two different estimators of u. Both estimators are generalizations of the smearing estimator

of Duan (1983). Put ξ̂ = (β̂T , θ̂T )T and π̂i = l−1(zT
i α̂). Then we have the “externally” weighted estimator

û∗ =
1− π̂

1− ¯̂π
m̂∗, (8)

where ¯̂π = 1
n

∑n
i=1 π̂i and m̂∗ = 1

n

∑n
i=1 I(yi > 0)h(ηi(ξ̂)), and the “internally” weighted estimator

û = (1− π̂)m̂, (9)

where m̂ = 1
n

∑n
i=1

I(yi>0)
1−π̂i

h(ηi(ξ̂)).

5. ASYMPTOTIC PROPERTIES

To analyze the asymptotic properties of û∗ and û, we require conditions on the {εi}, the covariates zi

and xi, and smoothness conditions on gi and h. These conditions (C) and (D) are given in Appendix A.

The conditions for û are clearly stronger than those for û∗. In both cases, we avoid assuming that either the

covariates zi and xi, or the functions gi and h are bounded; the conditions can be simplified considerably if

boundedness assumptions are appropriate and if h and its derivatives are monotone. This point is also made

in Duan (1983). In either case, our conditions are stronger than those of Duan (1983) because he proved

only consistency of the estimator using the linear least squares estimator under a homoscedastic regression

model while we establish central limit theorems using nonlinear estimators for both the regression and

heteroscedasticity parameters, both of which require expansions for their treatment.

We introduce the notation

µi(ξ) = x− g(ξ)
gi(ξ)

xi, νi(ξ) = g(1)(ξ)− g(ξ)
gi(ξ)

g
(1)
i (ξ), and τi(ξ) = g(2)(ξ)− g(ξ)

gi(ξ)
g
(2)
i (ξ),

7

Hosted by The Berkeley Electronic Press



and write µi(ξ0) = µi, νi(ξ0) = νi and τi(ξ0) = τi for simplicity.

5.1 The externally weighted estimator û∗

We first consider the externally weighted estimator û∗. Define

w∗ =




1

BT
β {Eh′(η1)µ̄∗ + Eε1h

′(η1)ν̄∗}
BT

θ {Eε1h
′(η1)τ̄∗}




and

Ω∗i =




I(Yi > 0)h(ηi)− (1− πi)Eh(η1)

Ψi(Yi, ξ0)

Ψi(Yi, ξ0)




,

where µ̄∗ = 1
n

∑n
i=1(1− πi)µi, ν̄∗ = 1

n

∑n
i=1(1− πi)νi, τ̄∗ = 1

n

∑n
i=1(1− πi)τi, and π̄ = 1

n

∑n
i=1 πi. Here ω∗

and Ω∗i are (2q + 1) dimensional vectors.

From now on, we use ‖ · ‖ to denote Euclidean norm for a vector and | · | to denote the absolute value

for a scalar. The basis of our analysis is the following asymptotic linearity result.

Theorem 1

Suppose that conditions (C) hold. Then, as n →∞,

m̂∗
0 − (1− π̄)Eh(η1) =

1
n

n∑

i=1

w∗T Ω∗i + op(
1√
n

).

The proof of the theorem is given in Appendix B.

Next, put

Σ∗ = lim
n→∞

1
n

n∑

i=1

V ar(Ω∗i )

and

d∗ = Eh(η1)

{
z

l′(π)
− 1

n

1− π

1− π̄

n∑

i=1

zi

l′(πi)

}
.

Then we have the following expansion for û∗.

Theorem 2

Suppose that (5), (7) and the conditions (C) hold. Then, as n →∞

û∗ − u =
1
n

n∑

i=1

{
1− π

1− π̄
w∗T Ω∗i − d∗T A−1ρi(I(Yi = 0)− πi)

}
+ op(

1√
n

).
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Moreover, if for some λ > 0,

lim
n→∞

1
n1+λ/2

n∑

i=1

E

∣∣∣∣
1− π

1− π̄
w∗T Ω∗i + d∗T A−1ρi(I(Yi = 0)− πi)

∣∣∣∣
2+λ

= 0,

then

n1/2(û∗ − u) D→ N

(
0,

(
1− π

1− π̄

)2

w∗T Σ∗w∗ + d∗T A−1d∗
)

.

The theorem follows from the fact that we can write

|û∗ − u− 1
n

1− π

1− π̄

n∑

i=1

w∗T Ω∗i +
1
n

d∗T
n∑

i=1

A−1ρi(I(Yi = 0)− πi)|

≤ |1− π̂

1− ¯̂π
m̂∗ − u− 1− π

1− π̄
(m̂∗ − (1− π̄)Eh(η1)) + d∗T (α̂− α0)|

+ ‖d∗‖ ‖α̂− α0 − 1
n

n∑

i=1

A−1ρi(I(Yi = 0)− πi)‖

+
|1− π|
|1− π̄|

∣∣∣∣∣m̂
∗ − (1− π̄)Eh(η1)− 1

n

n∑

i=1

w∗T Ω∗i

∣∣∣∣∣

and each term on the right hand side is op(1).

Define B̂β and B̂θ by 


B̂β

B̂θ


 =

{
− 1

n

n∑

i=1

E
∂

∂ξ
Ψi(Yi, ξ)|ξ=ξ̂

}−1

and set

Ω̂∗i =




I(Yi > 0)h(ηi(ξ̂))− (1− π̂i) 1
n

∑n
j=1

I(Yj>0)
1−π̂j

h(ηj(ξ̂))

Ψi(Yi, ξ̂)

Ψi(Yi, ξ̂)




.

Also, put ¯̂µ∗ = 1
n

∑n
i=1(1− π̂i)µi(ξ̂), ¯̂ν∗ = 1

n

∑n
i=1(1− π̂i)νi(ξ̂) and ¯̂τ∗ = 1

n

∑n
i=1(1− π̂i)τi(ξ̂). Then we can

estimate the asymptotic variance of û∗ by

v̂∗ =
1
n

(
1− π̂

1− ¯̂π

)2

ŵ∗T Σ̂∗ŵ∗ +
1
n

d̂∗T Â−1d̂∗,

where

ŵ∗ =




1

B̂T
β

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

h′(ηi(ξ̂))
)

¯̂µ∗ +
(

1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
)

¯̂ν∗
}

B̂T
θ

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
)

¯̂τ∗
}




,

Σ̂∗ =
1
n

n∑

i=1

Ω̂∗i Ω̂
∗T
i ,
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d̂∗ =

{
1
n

n∑

i=1

I(Yi > 0)
1− π̂i

h(ηi(ξ̂))

} {
z

l′(π̂)
− 1

n

1− π̂

1− ¯̂π

n∑

i=1

zi

l′(π̂i)

}

and

Â =
1
n

n∑

i=1

ziz
T
i

1
l′(π̂i)2π̂i(1− π̂i)

.

An approximate 100(1− γ)% confidence interval for u is then given by

[
û∗ − Φ−1(1− γ/2)

√
v̂∗, û∗ + Φ−1(1− γ/2)

√
v̂∗

]
,

where Φ is the cumulative distribution function of the standard normal distribution.

5.2 Duan’s (1983) problem

Duan (1983) considered the case in which there are no zeros (πi = 0), no heteroscedasticity (gi = 1),

the εi are normally distributed (at least for variance calculations), and β̂ is the least squares estimator.

Theorem 2 generalizes the results given in Duan (1983) for this case. Even without assuming that εi are

normally distributed, we have B−1
β = limn→∞ 1

n

∑n
i=1 xix

T
i , Ω∗i =

(
h(ηi)−Eh(η1), xT

i εi

)T
so that

Σ∗ =




E{h(η1)−Eh(η1)}2 x̄T E{ε1h(η1)}
x̄E{ε1h(η1)} B−1

β Eε21


 ,

where x̄ = limn→∞ 1
n

∑n
i=1 xi, and

w∗ =




1

Eh′(η1)BT
β (x− x̄)


 ,

from which the asymptotic variance is readily obtained as w∗T Σ∗w∗.

Note that for Duan’s problem, conditions (C) can be weakened considerably: we can replace conditions

(ii)-(iv) by

(ii) The following moment conditions hold: Eh′(η1)2 < ∞, Eε21h
′(η1)2 < ∞,

1
n

n∑

i=1

E

{
sup
‖b‖≤M

∣∣∣∣h′′(ηi +
1√
n

(x− xi)T b)
∣∣∣∣
}2

= O(1)

and
1
n2

n∑

i=1

E

{
sup
‖b‖≤M

∣∣∣∣h′′(ηi +
1√
n

(x− xi)T b)
∣∣∣∣
}4

= o(1).

(iii) the limits B−1
β = limn→∞ 1

n

∑n
i=1 xix

T
i and x̄ = limn→∞ 1

n

∑n
i=1 xi exist.
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We can estimate the asymptotic variance of Duan’s smearing estimator by 1
n ŵ∗T Σ̂∗ŵ∗, where

ŵ∗ =




1
{

1
n

∑n
i=1 h′(ηi(ξ̂))

} {
1
n

∑n
i=1 xix

T
i

}−1
(x− x̄)


 ,

and

Σ̂∗ =
1
n

n∑

i=1




h(ηi(ξ̂))− 1
n

∑n
j=1 h(ηj(ξ̂))

xiei(ξ̂)





h(ηi(ξ̂))− 1

n

n∑

j=1

h(ηj(ξ̂)), xT
i ei(ξ̂)


 .

An approximate 100(1− γ)% confidence interval for Eh(η1) is then given by
[
û− Φ−1(1− γ/2)

√
1
n

ŵ∗T Σ̂∗ŵ∗, û + Φ−1(1− γ/2)
√

1
n

ŵ∗T Σ̂∗ŵ∗
]

,

where Φ is the cumulative distribution function of the standard normal distribution.

5.3 The internally weighted estimator û

Now consider the internally weighted estimator û. Define

w =




1

BT
β {Eh′(η1)µ̄ + Eε1h

′(η1)ν̄}
BT

θ {Eε1h
′(η1)τ̄}




and

Ωi =




I(Yi>0)
1−πi

h(ηi)−Eh(η1)

Ψi(Yi, ξ0)

Ψi(Yi, ξ0)




,

where µ̄ = 1
n

∑n
i=1 µi, ν̄ = 1

n

∑n
i=1 νi, τ̄ = 1

n

∑n
i=1 τi, and ρ̄∗ = 1

n

∑n
i=1 πiρi.

We have the following asymptotic linearity result.

Theorem 3

Suppose that conditions (D) hold. Then, as n →∞

m̂− Eh(η1) =
1
n

n∑

i=1

wT Ωi + op(
1√
n

).

The proof of Theorem 3 is similar to the proof of Theorem 1 so is omitted.

Next, put

Σ = lim
n→∞

1
n

n∑

i=1

V ar(Ωi)
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and

d = Eh(η1)

{
z

l′(π)
− 1

n
(1− π)

n∑

i=1

zi

l′(πi)(1− πi)

}
.

Then we have the following result for û.

Theorem 4

Suppose that (5), (7) and the conditions (D) hold. Then, as n →∞

û− u =
1
n

n∑

i=1

{(1− π)wT Ωi + dT A−1ρi(I(Yi = 0)− πi)}+ op(
1√
n

).

Moreover, if for some λ > 0,

lim
n→∞

1
n1+λ/2

n∑

i=1

E
∣∣∣(1− π)wT Ωi + dT A−1ρi(I(Yi = 0)− πi)

∣∣∣
2+λ

= 0,

then

n1/2(û− u) D→ N(0, (1− π)2wT Σw + dT A−1d).

The result follows from the fact that we can write

|û− u +
1
n

Eh(η1)
zT

l′(π)

n∑

i=1

A−1ρi(I(Yi = 0)− πi)

− 1
n

(1− π)
n∑

i=1

{wT Ωi + Eh(η1)ρ̄∗T A−1ρi(I(Yi = 0)− πi)}|

≤ |(1− π̂)m̂− u + (π̂ − π)Eh(η1)− (1− π)(m̂− Eh(η0))|

+|Eh(η1)||π̂ − π − 1
n

zT

l′(π)

n∑

i=1

A−1ρi(I(Yi = 0)− πi)|

+|1− π||m̂− Eh(η0)− 1
n

n∑

i=1

{wT Ωi + Eh(η1)ρ̄∗T A−1ρi(I(Yi = 0)− πi)}|

and each term on the right hand side is op(1).

We can estimate the asymptotic variance of û by

v̂ =
1
n

(1− π̂)2ŵT Σ̂ŵ +
1
n

d̂T Â−1d̂,

where

ŵ =




1

B̂T
β

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

h′(ηi(ξ̂))
) (

1
n

∑n
i=1 µi(ξ̂)

)
+

(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
) (

1
n

∑n
i=1 νi(ξ̂)

)}

B̂T
θ

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
) (

1
n

∑
i=1 τi(ξ̂)

)}




,

Σ̂ =
1
n

n∑

i=1

Ω̂iΩ̂T
i ,
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with

Ω̂i =




I(Yi>0)
1−π̂i

h(ηi(ξ̂))− 1
n

∑n
j=1

I(Yj>0)
1−π̂j

h(ηj(ξ̂))

Ψi(Yi, ξ̂)

Ψi(Yi, ξ̂)




,

and

d̂ =

{
1
n

n∑

i=1

I(Yi > 0)
1− π̂i

h(ηi(ξ̂))

} {
z

l′(π̂)
− 1

n
(1− π̂)

n∑

i=1

zi

(1− π̂i)l′(π̂i)

}
.

An approximate 100(1− γ)% confidence interval for u is then given by

[
û− Φ−1(1− γ/2)

√
v̂, û + Φ−1(1− γ/2)

√
v̂
]
,

where Φ is the cumulative distribution function of the standard normal distribution.

6. AN REAL EXAMPLE

We illustrate the application of our method in a subset from real ongoing clinical study (Fortney et al,

2003) on the impact of establishing veterans’ health administration (VHA) Community Based Outpatient

Clinics in underserved areas on utilization and costs. Our data set consists of 1,785 female veterans, and

the outcome variable in this analysis is the year 1998 total cost for a veteran. There are 483 veterans in

our sample who do not incur any cost during the year 1998, and hence they have zero cost outcomes.

In the data set we have the following important explanatory variables that have been shown to be

associated with VA costs in the literature. We have information on demographics of veterans, including

age, sex, race, and marital status. We also have information on the degree to which a veteran’s condition

was related to their military experience, as well as means test category (Category A - not service connected,

Category A - service connect, Category C and Category not applicable). In addition, travel distance to the

closest VHA hospital was included to control for access differences. Euclidean distance to VHA facilities

for every zip code was determined using the longitude and latitude of each VHA facility and the longitude

and latitude of zip code centroids, based on the ArcInfo/ArcView Geographic Information System (GIS).

Finally, we have information on Diagnostic Cost Group (DCG) risk category. The risk DCG score is a very

widely used diagnosis-based case-mix instrument.

Let Yi be the total health care cost of the ith patient, and her corresponding covariates are defined

as follows. Xi1 is her travel distance to the closest VHA hospital; Xi2 represents her 1997 DCG score;

Xi3 represents her age; Xi4 represents her marital status; Xi5 represents the percentage of her service

connection; Xi6 and Xi7 represent her mean test category A NSC and category A SC, respectively. Then,
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for i = 1, . . . , n, we model the probability of non-zero cost by the logistic regression model,

log
P (Yi = 0 | Xi1, . . . , Xi7)
P (Yi > 0 | Xi1, . . . , Xi7)

= α0 + α1Xi1 + . . . α7Xi7, (10)

and we model the conditional magnitude of the positive costs Yi given Yi > 0 by the log-transformed,

heteroscedastic linear regression model

log Yi = β0 + β1Xi1 + . . . + β7Xi7 + exp{(θ0 + θ1Xi1 + . . . + θ7Xi7)/2}εi. (11)

The parameters in the model were estimated using (6) with ψ(x) = x and χ(x) = x2−1. The estimates

for these parameters and their standard errors are given in Table 1. Using these parameter estimates,

we can estimate the average cost of a patient with the given covariate values and an associated standard

deviation. For example, for a 49-years old unmarried female veteran with the travel distance of 31 miles to

her closest VHA hospital, not service connected, with 1997 DCG score 0.56, the estimated average cost is û∗0

= $855.3 using the externally weighted estimator with the estimated standard deviation of $150.9 and û0 =

$823.8 using the internally weighted estimator with the estimated standard deviation of $134.5. According

to the simulation results presented in the next section, we would use the externally weighted estimate for

the average cost of such patients during the study period. Hence, we would estimate the average cost for

this patient to be $855.3 with the corresponding 95% confidence interval of ($559.6,$1151.1).

7. A SIMULATION STUDY

We conducted a simulation study to assess the finite-sample performance of the proposed estimators

û∗ and û.

We adopted the two-part regression model with a continuous covariate X1 ∼ N(2, 1) and a binary

covariate X2 ∼ Bernoulli(0.3). We used a two-stage procedure to generate the response variable. We first

generated a sample of size n from a Bernoulli distribution with the probability of zero defined by (10)

with α0 = −0.5, α1 = −0.1, and α2 = −0.9. Let n1 denote the number of nonzero observations in the

Bernoulli sample. Then we generated a random sample of n1 errors with ε1, . . . , εn1from the standard

normal distribution. The logarithms of the non-zero observations were then given by (11) with β0 = 3.4,

β1 = 0.01, β2 = −0.3, θ0 = 0.1, θ1 = 0.5, and θ2 = 0.15. We explored the effect of sample size by letting

n = 130, 150, 200, 500, 1000.

For each simulated dataset, we estimated the parameters using (6) with ψ(x) = x and χ(x) = x2−1, as

in the previous section, and then computed the externally weighted estimate û∗0 and the internally weighted

14

http://biostats.bepress.com/uwbiostat/paper215



estimate û0 of E(Y |X = x0). We compare the relative performance of these two estimators in terms of

bias and mean squared error (MSE) in Table 2. The results are based on 10, 000 simulated data sets.

The results suggest that, both the internally weighted estimator and the externally weighted estimator

have very similar bias and MSE, and the externally weighted estimator has slightly smaller MSE than the

internally weighted estimator.

8. DISCUSSION

For modelling skewed, heteroscedastic data with zeros, we used a two-part regression model which en-

abled us to treat the zeros and the positive observations separately. We proposed applying a transformation

to the positive responses to achieve linearity, leaving us to model heteroscedasticity and handle possible

non-normality explicitly . We then considered the problem of estimating the mean on the original scale.

This entails bias-adjusted back transformation for the positive part of the model and adjustment for the

zeros. We proposed two nonparametric estimators of the mean on the original scale. These estimators are

extensions of Duan’s smearing estimator to our more general context. In particular, our estimators of the

mean on the original scale accommodate the zeros, the heteroscedasticity and the possible nonnormality of

the positive part of our model. We showed the consistency and asymptotic normality of the two estimators

and derived closed-forms for their asymptotic variances. We applied the estimators to a real data set and

explored their properties in a simulation study.

A useful extension of the methodology would be to allow the transformation h to be estimated from the

data. This is not conceptually difficult but would make the theory more complicated and, in particular,

result in much more complicated expressions for the asymptotic variance of the estimators. Specifically,

the estimation of h changes the expansion of the estimator ξ̂ and then of the conditional mean estimators

m̂0 and m̂∗
0. These changes tend to increase the asymptotic variance of the estimators.
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Appendix A: Conditions

Let k = (bT , tT )T be a q-dimensional vector. It is tedious to keep writing ξ0 + 1√
n
k in the conditions

and the proofs. We therefore write gi(k) = gi(ξ0 + 1√
n
k) and gi = gi(ξ0) and then ηi(k) = ηi(ξ0 + 1√

n
k),

ei(k) = ei(ξ0 + 1√
n
k), µi(k) = µi(ξ0 + 1√

n
k), νi(k) = νi(ξ0 + 1√

n
k) and τi(k) = τi(ξ0 + 1√

n
k). Similarly, it is

convenient to write πi(a) = l−1(zT
i α0 + 1√

n
zT
i a). Here gi(k), gi, ηi(k), ei(k) are scalar, µi(k) and νi(k) are

q1× 1 vectors, and τi(k) is a q2× 1 vector. To simplify our notation, we introduce the following notations:

H
(r)
in (εi) = sup

‖k‖≤M

∣∣∣∣h(r)
{

ηi +
1√
n

µi(k)T b +
1√
n

νi(k)T b
gi

gi(k)
εi

− 1
n

νi(k)T b
xT

i b

gi(k)
+

1√
n

τi(k)T t
gi

gi(k)
εi − 1

n
τi(k)T t

xT
i b

gi(k)

}∣∣∣∣∣

for r = 0, 1, 2;

K
(c)
n1 =

1
n2

n∑

i=1

sup
‖k‖≤M

‖µ′i(k)‖2

(1− πi)2−c
,

K
(c)
n2 =

1
n2

n∑

i=1

sup
‖k‖≤M

‖ν′i(k)‖2

(1− πi)2−c

(
gi

gi(k)

)2

,

K
(c)
n3 =

1
n2

n∑

i=1

sup
‖k‖≤M

‖νi(k)‖2

(1− πi)2−c

(
g2
i

gi(k)4

) ∥∥∥(g(1)
i (k)T , g

(2)
i (k))T

∥∥∥
2
,

K
(c)
n4 =

1
n2

n∑

i=1

sup
‖k‖≤M

‖τ ′i(k)‖2

(1− πi)2−c

(
g2
i

gi(k)2

)
,

and

K
(c)
n4 =

1
n2

n∑

i=1

sup
‖k‖≤M

‖τi(k)‖2

(1− πi)2−c

(
g2
i

gi(k)4

) ∥∥∥(g(1)
i (k)T , g

(2)
i (k))T

∥∥∥
2
,

where c = 0 ,2.

Conditions (C) refers to the following:

(i) The estimator ξ̂ satisfies ξ̂ − ξ0 = Op( 1√
n
).

(ii) The following moment conditions hold:
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(a) Eε21h
′(η1)2 < ∞ and Eh′(η1)2 < ∞.

(b)

1
n

n∑

i=1

Eε2i H
(2)
in (εi)2 = O(1),

1
n2

n∑

i=1

Eε4
i H

(2)
in (εi)4 = o(1)

and
1
n

n∑

i=1

EH
(2)
in (εi)2 = O(1),

1
n2

n∑

i=1

EH
(2)
in (εi)4 = o(1).

(iii) The following conditions hold on gi:

1
n2

n∑

i=1

‖νi‖2 = o(1),
1
n2

n∑

i=1

‖τi‖2 = o(1),
1
n2

n∑

i=1

sup
‖k‖≤M

‖µi(k)‖4 = o(1),

1
n2

n∑

i=1

sup
‖k‖≤M

‖νi(k)‖4
(

gi

gi(k)

)4

= o(1),
1
n3

n∑

i=1

sup
‖k‖≤M

‖νi(k)‖4
∥∥∥∥

xi

gi(k)

∥∥∥∥
4

= o(1),

1
n2

n∑

i=1

sup
‖k‖≤M

‖τi(k)‖4
(

gi

gi(k)

)4

= o(1) and
1
n3

n∑

i=1

sup
‖k‖≤M

‖τi(k)‖4

∥∥∥∥
xi

gi(k)

∥∥∥∥
4

= o(1).

(iv) The following conditions hold on g′i

K
(2)
n1 = o(1),K(2)

n2 = o(1),K(2)
n3 = o(1),K(2)

n4 = o(1), and K
(2)
n5 = o(1).

Note that Conditions (iib) are implied by 1
n

∑n
i=1 Eε4

i H
(2)
in (εi)4 = O(1) and 1

n

∑n
i=1 EH

(2)
in (εi)4 = O(1)

because then
1
n

n∑

i=1

Eε2
i H

(2)
in (εi)2 ≤

(
1
n

n∑

i=1

Eε4
i H

(2)
in (εi)4

)1/2

= O(1)

and
1
n2

n∑

i=1

Eε4i H
(2)
in (εi)4 = O

(
1
n

)
.

Similarly, since

1
n2

n∑

i=1

‖µi‖2 ≤ 1
n2

n∑

i=1

sup
‖k‖≤M

‖µi(k)‖2

≤
(

1
n3

n∑

i=1

sup
‖k‖≤M

‖µi(k)‖4

)1/2

= o

(
1√
n

)
,

the conditions (iii) imply the convergence to zero of similar terms with squared instead of fourth power

summands.

The conditions for the internally weighted estimator are stronger than conditions (C). We require the

following conditions (D).
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(i) The estimator ξ̂ satisfies ξ̂ − ξ0 = Op

(
1√
n

)
and α̂ satisfies α̂− α0 = Op

(
1√
n

)
.

(ii) The following moment conditions hold:

(a) Eh(η1)2 < ∞, Eε21h
′(η1)2 < ∞ and Eh′(η1)2 < ∞.

(b)

1
n

n∑

i=1

EH
(r)
in (εi)2 = O(1),

1
n2

n∑

i=1

EH
(r)
in (εi)4 = o(1),

for r = 0, 1, 2 and

1
n

n∑

i=1

Eε2r
i H

(r)
in (εi)2 = O(1),

1
n2

n∑

i=1

Eε4r
i H

(r)
in (εi)4 = o(1)

for r = 1, 2.

(iii)

1
n2

n∑

i=1

‖zi‖2

(1− πi)3l′(πi)2
= o(1),

1
n2

n∑

i=1

sup
‖a‖≤M

‖zi‖4

(1− πi(a))6l′(πi(a))4
= o(1),

and
1
n2

n∑

i=1

sup
‖a‖≤M

‖zi‖4l′′(πi(a))2

(1− πi(a))4l′(πi(a))6
= o(1),

(iv) The following conditions hold on gi:

1
n2

n∑

i=1

‖νi‖2

1− πi
= o(1),

1
n2

n∑

i=1

‖τi(k)‖2

1− πi
= o(1),

1
n2

n∑

i=1

sup
‖k‖,‖a‖≤M

‖µi(k)‖4

(1− πi(a))2
= o(1),

1
n2

n∑

i=1

sup
‖k‖,‖a‖≤M

‖νi(k)‖4

(1− πi(a))2

(
gi

gi(k)

)4

= o(1),

1
n4

n∑

i=1

sup
‖k‖,‖a‖≤M

‖νi(k)‖4

(1− πi(a))2

∥∥∥∥
xi

gi(k)

∥∥∥∥
4

= o(1),

1
n2

n∑

i=1

sup
‖k‖,‖a‖≤M

‖τi(k)‖4

(1− πi(a))2

(
gi

gi(k)

)4

= o(1)

and
1
n4

n∑

i=1

sup
‖k‖,‖a‖≤M

‖τi(k)‖4

(1− πi(a))2

∥∥∥∥
xi

gi(k)

∥∥∥∥
4

= o(1).
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(v) The following conditions hold on g′i

K
(0)
n1 = o(1),K(0)

n2 = o(1),K(0)
n3 = o(1),K(0)

n4 = o(1), and K
(0)
n5 = o(1).

(vi) The following joint conditions hold:

1
n2

n∑

i=1

sup
‖k‖,‖a‖≤M

‖µi(k)‖2‖zi‖2

(1− πi(a))4l′(πi(a))2
= o(1),

1
n2

n∑

i=1

sup
‖k‖,‖a‖≤M

‖νi(k)‖2‖zi‖2

(1− πi(a))4l′(πi(a))2

(
gi

gi(k)

)2

= o(1),

1
n4

n∑

i=1

sup
‖k‖,‖a‖≤M

‖νi(k)‖2‖zi‖2

(1− πi(a))4l′(πi(a))2

∥∥∥∥
xi

gi(k)

∥∥∥∥
2

= o(1),

1
n2

n∑

i=1

sup
‖k‖,‖a‖≤M

‖τi(k)‖2‖zi‖2

(1− πi(a))4l′(πi(a))2

(
gi

gi(k)

)2

= o(1)

and
1
n4

n∑

i=1

sup
‖k‖,‖a‖≤M

‖τi(k)‖2‖zi‖2

(1− πi(a))4l′(πi(a))2

∥∥∥∥
xi

gi(k)

∥∥∥∥
2

= o(1).

Appendix B: Proof of Theorem 1

Proof. Our proof is based on a Taylor expansion of h(ηi(ξ̂)) in m̂∗
0 = 1

n

∑n
i=1 I(Yi > 0)h(ηi(ξ̂)). To write

down this Taylor expansion we need to compute the derivative of ηi(ξ) w.r.t ξ. Note that ηi(ξ) can be

written as

ηi(ξ) = xT
0 β +

g0(ξ)
gi(ξ)

(h−1(Yi)− xT
i β).

We can show that

∂ηi(ξ)
∂β

= (x0 − g0(ξ)
gi(ξ)

xi) +
g
(1)
0 (ξ)gi(ξ)− g0(ξ)g

(1)
i (ξ)

g2
i (ξ)

(h−1(Yi)− xT
i β) = µi(ξ) + νi(ξ)ei(ξ)

and that
∂ηi(ξ)

∂θ
=

g
(2)
0 (ξ)gi(ξ)− g0(ξ)g

(2)
i (ξ)

g2
i (ξ)

(h−1(Yi)− xT
i β) = τi(ξ)ei(ξ).

For k = (bT , tT )T , put

T (k) =
1√
n

n∑

i=1

I(yi > 0)h(ηi(k))− 1√
n

n∑

i=1

I(yi > 0)h(ηi)

− {Eh′(η1)µ̄∗ + Eε1h
′(η1)ν̄∗}T b−Eε1h

′(η1)τ̄∗T t
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and δi = ηi(k)− ηi. Then

|T (k)| ≤
∣∣∣∣∣

1√
n

n∑

i=1

I(yi > 0){h(ηi(k))− h(ηi)− δih
′(ηi)}

∣∣∣∣∣

+

∣∣∣∣∣
1√
n

n∑

i=1

I(yi > 0)h′(ηi)[δi − 1√
n
{µi + νiεi}T b− 1√

n
τiε

T
i t]

∣∣∣∣∣

+M

∥∥∥∥∥
1
n

n∑

i=1

µi{I(yi > 0)h′(ηi)− (1− πi)Eh′(η1)}
∥∥∥∥∥

+M

∥∥∥∥∥
1
n

n∑

i=1

νi{I(yi > 0)εT
i h′(ηi)− (1− πi)Eε1h

′(η1)}
∥∥∥∥∥

+M

∥∥∥∥∥
1
n

n∑

i=1

τi{I(yi > 0)εT
i h′(ηi)− (1− πi)Eε1h

′(η1)}
∥∥∥∥∥

= T1(k) + T2(k) + T3 + T4 + T5,

say, and the result will follow if we can show that

sup
‖k‖≤M

Tj(k) = op(1), j = 1, . . . , 5.

The terms T3-T5 involve weighted averages of independent random variables with mean zero and vari-

ances which converge to zero by conditions (iii) and (iv) so they converge in probability to zero.

Next, note that for ‖k̃‖ ≤ ‖k‖ ≤ M , we have

1√
n

δi = µi(k̃)T b + νi(k̃)T b
gi

gi(k̃)
εi − 1√

n
νi(k̃)T b

xT
i b

gi(k̃)

+τi(k̃)T t
gi

gi(k̃)
εi − 1√

n
τi(k̃)T t

xT
i b

gi(k̃)
.

For notational simplicity, we drop the tilde and simply write k̃ as k. Then

T2(k) ≤ M

∥∥∥∥∥
1
n

n∑

i=1

(µi(k)− µi)I(yi > 0)h′(ηi)

∥∥∥∥∥

+M

∥∥∥∥∥
1
n

n∑

i=1

(νi(k)
gi

gi(k)
− νi)I(yi > 0)εih

′(ηi)

∥∥∥∥∥

+M2 1
n3/2

n∑

i=1

‖νi(k)‖
∥∥∥∥

xi

gi(k)

∥∥∥∥
∣∣I(yi > 0)h′(ηi)

∣∣

+M

∥∥∥∥∥
1
n

n∑

i=1

(τi(k)T gi

gi(k)
− τi)I(yi > 0)εih

′(ηi)

∥∥∥∥∥

+M2 1
n3/2

n∑

i=1

‖τi(k)‖
∥∥∥∥

xi

gi(k)

∥∥∥∥
∣∣I(yi > 0)h′(ηi)

∣∣ . (12)
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Now, by the Cauchy-Schwarz inequality,

∥∥∥∥∥
1
n

n∑

i=1

{µi(k)− µi}I(yi > 0)h′(ηi)

∥∥∥∥∥ ≤
(

1
n

n∑

i=1

‖µi(k)− µi‖2

)1/2 (
1
n

n∑

i=1

h′(ηi)2
)1/2

≤ M

(
1
n2

n∑

i=1

sup
‖k‖≤M

∥∥µ′i(k)
∥∥2

)1/2 (
1
n

n∑

i=1

h′(ηi)2
)1/2

so the first term in (12) converges to zero by conditions (iii) and (v). Similarly, the remaining terms in

(12) converge to zero.

Finally,

T1(k) ≤ 2M2 1
n3/2

n∑

i=1

‖µi(k)‖2 |h′′(ηi + siδi)|

+ 2M2 1
n3/2

n∑

i=1

∥∥∥∥νi(k)
gi

gi(k)

∥∥∥∥
2

ε2i |h′′(ηi + siδi)|

+ 2M4 1
n5/2

n∑

i=1

‖νi(k)‖2
∥∥∥∥

xi

gi(k)

∥∥∥∥
2

|h′′(ηi + siδi)|

+ M2 1
n3/2

n∑

i=1

∥∥∥∥τi(k)
gi

gi(k)

∥∥∥∥
2

ε2i |h′′(ηi + siδi)|

+ M4 1
n5/2

n∑

i=1

‖τi(k)‖2
∥∥∥∥

xi

gi(k)

∥∥∥∥ |h′′(ηi + siδi)| (13)

Now argue as before to bound h′′ by H
(2)
in (εi) so

1
n3/2

n∑

i=1

‖µi(k)‖2 |h′′(ηi + siδi)| ≤ 1
n3/2

n∑

i=1

‖µi(k)‖2 H
(2)
in (εi)

≤
(

1
n2

n∑

i=1

‖µi(k)‖4

)1/2 (
1
n

n∑

i=1

H
(2)
in (εi)2

)1/2

(14)

and
1
n

n∑

i=1

H
(2)
in (εi) =

1
n

n∑

i=1

EH
(2)
in (εi) +

1
n

n∑

i=1

{H(2)
in (εi)− EH

(2)
in (εi)} = O(1)

by condition (iiib) so (14) is op(1) by condition (iv). Similar arguments establish that the remaining terms

in (13) are also op(1).
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Table 1. Parameter Estimates and Associated Standard Deviations for VA Health Care Costs (n = 1785)

Parameter estimate (standard deviation)

Covariates in the logistic regression model for non-zero versus zero costs

Constant -0.4308 (0.2069)

Travel Distance (miles) 0.0033 (0.0025)

1997 DCG score -0.4393 (0.1481)

Age 0.0115 (0.0037)

Married -0.8636 (0.1376)

Service connection (%) -0.0018 (0.0055)

Means test

- Cat A NSC (%) -1.4901 (0.1632)

- Cat A SC (%) -1.9371 (0.2558)

Covariates in the regression model for positive costs

Constant 5.8311 (0.1306)

Travel Distance (miles) 0.0041 (0.0015)

1997 DCG score 0.9486 (0.0698)

Age -0.0017 (0.0023)

Married 0.2082 (0.0700)

Service connection (%) 0.0078 (0.0019)

Mean test

- Cat A NSC (%) 0.6745 (0.0884)

- Cat A SC (%) 0.7026 (0.1058)

Covariates in the variance model for positive costs

Constant 0.5989 (0.1492)

Travel Distance (miles) -0.0024 (0.0017)

1997 DCG score 0.1737 (0.0720)

Age -0.0007 (0.0027)

Married -0.1342 (0.0827)

Service connection 0.0013 (0.0022)

Mean test

- Cat A NSC (%) -0.3238 (0.1033)

- Cat A SC (%) -0.2571 (0.1229)
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Table 2. Simulation results for û∗0 and û0 estimating the average cost for patients with covariates

x0 = (x01, x02)

x01 = 1.00 and x02 = 0

n=130 n=150 n=200 n=500 n=1000

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

û∗0 0.025 328.25 -0.425 287.24 -0.103 223.32 -0.314 72.86 -0.201 38.08

û0 0.038 329.98 -0.412 288.95 -0.092 224.76 -0.309 72.92 -0.199 38.14

x01 = 2.00 and x02 = 0

n=130 n=150 n=200 n=500 n=1000

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

û∗0 -5.055 1624.73 -4.684 1436.66 -2.872 1132.14 -1.562 501.94 -1.367 235.35

û0 -4.996 1651.20 -4.622 1478.44 -2.801 1159.98 -1.534 502.23 -1.358 237.27
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