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1. INTRODUCTION

Two-stage designs have commonly been used in studies of Alzheimer’s disease (AD) because of the

relatively low prevalence of the disease and high cost of ascertaining a diagnosis. In the first stage,

a large sample of subjects are screened for AD with inexpensive screening tests. In the second stage,

a subset of the screened subjects are selected for the clinical diagnosis by a more extensive but more

expensive clinical assessment. The probability of selection for the clinical assessment depends on the

screening result from the first stage, as well as other factors, such as subject’s age. Furthermore, not

all selected subjects have the clinical diagnosis because some subjects may refuse and others are unable

to be clinically assessed.

For example, in the motivational example, as reported in Zhou and Higgs (2000), Hendrie and his

colleagues employed a two-stage design to study the role of environmental risk factors for development

of dementia in two black populations in Indianapolis, USA, and Ibadan, Nigeria. The study used a

two-stage design. The first stage consisted of screening a large sample of subjects for dementia with

the screening instruments, and the second stage consisted of selecting a small number of the screened

subjects for the clinical diagnosis of dementia by a clinical assessment, which consisted of a neurological

examination, a neuropsychological test battery, laboratory tests, CT scans, and a detailed interview with

a relative of the subject. Selection for the clinical assessment was based on the score of the screening

instruments and the age of a subject. All subjects who were screened into the ‘poor performance’

category were selected for the clinical assessment; a subject who was screened into the ‘intermediate

performance’ category had the 50% chance of being selected for the clinical assessment; and a subject

who was screened into the ‘good performance’ group had the 5% chance of being selected for the

clinical assessment. In addition, a stratified random sample was taken in the ‘good performance’ group,

selecting 75% from those age 75 years and older in order to have enough older subjects. The clinical

diagnosis, however, was not obtained for all subjects who were selected for disease verification because
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some subjects were unable to be clinically assessed, while others refused.

We are interested in comparing the accuracy of a new screening test (T1) with that of a standard

screening test (T2) for subjects age 75 years or older. The standard test is based on results from

the cognitive test only; and the new test uses information from the cognitive assessment given to the

subject as well as informant data from someone who knows the subject. Table 1 displays the resulting

classification data in Indianapolis and Ibadan for subjects who were 75 years or older.

TABLE 1 GOES HERE

It has been shown that inferences on the accuracy of screening tests that use only verified cases

may result in verification bias. Under the ignorable verification bias assumption that the probability of

selection for verification depends only on the observed data, Zhou and Higgs (2000) proposed a maximum

likelihood (ML) approach for comparing the accuracies of two tests while correcting for verification bias.

However, if the verification mechanism depends on unobserved variables that are related to the

disease status, the verification mechanism is not ignorable. For example, if selected subjects who refuse

to be verified are likely demented, the verification mechanism most likely depends on the unobserved

disease status and hence is non-ignorable. If the verification mechanism is non-ignorable, the method

proposed in Zhou and Higgs (2000) cannot be applied to assess the relative accuracy of two screening

tests. Zhou and Castelluccio (2003) have developed a general approach for comparing the relative

accuracy of two screening tests in the presence of non-ignorable verification bias.

In this paper, we apply the method of Zhou and Castelluccio (2003) to comparing the relative

accuracy of two screening tests in a two-stage design study in the presence of non-ignorable verification

bias. This paper is organized as follows. In Section 2, we introduce notation and parameters of interest.

In Section 3, we propose a particular model for the non-ignorable verification mechanism and discuss an

estimation method under the assumed non-ignorable verification bias model. In Section 4, we contrast
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the difference between ML estimates under the ignorable verification bias assumption and ones derived

under a non-ignorable verification bias model and study effects of non-ignorability on ML estimates

for ROC curve areas. In Section 5, we present results from the analysis of our AD data set using the

proposed methods.

2. Notation and Parameters of Interest

We denote ordinal-scale responses of two tests by T1 and T2, ranging from 1 to K. We let D

and V denote two indicator variables for the true disease status and disease verification of a patient,

respectively. Here D = 1 for a diseased patient and 0 otherwise, and V = 1 for a verified patient and 0

for a non-verified patient. With such notation, we can display the observed data in Table 2.

Table 2 goes there

We let A1 and A2 denote the areas under the ROC curves of the screening test 1 and screening test

2, respectively, under the trapezoidal rule. If we let φ1jk = P (T1 = j, T2 = k) and φ2jk = P (D = 1 |

T1 = j, T2 = k), we can show that A1 and A2 are functions of φ1jk and φ2jk:

A1 =
1

γ(1 − γ)
[
K−1∑

j=1

K∑

k=1

(1 − φ2jk)φ1jk

K∑

l=j+1

K∑

k=1

φ2lkφ1lk + (1/2)
K∑

j=1

K∑

k=1

(1 − φ2jk)φ1jk

K∑

k=1

φ2jkφ1jk], (1)

and

A2 =
1

γ(1 − γ)
[
K−1∑

k=1

K∑

j=1

(1 − φ2jk)φ1jk

K∑

l=k+1

K∑

j=1

φ2jlφ1jl + (1/2)
K∑

l=1

K∑

j=1

(1 − φ2jl)φ1jl

K∑

j=1

φ2jlφ1jl], (2)

respectively, where γ = P (D = 1) =
∑K

j,l=1 φ1jlφ2jl.

Our statistical problem is to perform hypothesis testing about the two ROC curve areas and to

construct a confidence interval for the difference in two ROC areas, A1 − A2.

3. Estimation Procedure
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Without the ignorable verification bias assumption, we have to model the verification mechanism to

draw a valid inference about the ROC curves and their areas of two screening tests. Let W be a (p+1)

dimensional vector of covariates, derived from the test results T1 and T2. Zhou and Castelluccio (2002)

have proposed the following non-ignorable verification bias model:

logitP (V = 1 | T1, T2, D) = W ′β + αD, (3)

where β is a column vector of p + 1 parameters, and α is a scalar parameter.

Because of possible several local maximum likelihood estimates and boundary solutions, Zhou and

Castelluccio (2002) proposed a profile maximum likelihood method for finding the global ML estimates.

We next introduce this profile ML approach.

For the problem under consideration, the observed data consist of the two test results and true

disease status for a verified patient and only the two test results for an unverified patient. Denote

n =
∑K

j,l=1 njl, φ1 = (φ111, . . . , φ1(K−1)K)′, φ2 = (φ211, . . . , φ2KK)′, and φ = (φ′
1, φ

′
2)

′. Let Vi, T
(i)
1 ,

T
(i)
2 , Di be the values of V , T1, T2, and D for the ith patient, respectively. Let

∑
Vi=1 denote a sum

over all cases in which Vi = 1 and let
∑

Vi=0 denote a sum over all cases in which Vi = 0.

Without the ignorable verification bias assumption, a valid likelihood needs to be based on the data

V, D,W if V=1 and V,W if V=0, and the resulting log-likelihood function is given by

l(α,β, φ) =
K∑

j,l=1

[sjl log(ψ1jlφ2jl)+rjl log(ψ0jl(1−φ2jl))+ujl log((1−ψ1jl)φ2jl+(1−ψ0jl)(1−φ2jl))+njl log φ1jl],

(4)

where

ψ1jl = P (V = 1 | T1 = j, T2 = l, D = 1) = exp(W ′
jlβ + α)/(1 + exp(W ′

jlβ + α)),

and

ψ0jl = P (V = 1 | T1 = j, T2 = l, D = 0) = exp(W ′
jlβ)/(1 + exp(W ′

jlβ)).
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If we denote

l1(φ1) =
K∑

j,l=1

njl log φ1jl

and

l2(α,β, φ2) =
K∑

j,l=1

[sjl log(ψ1jlφ2jl)+ rjl log(ψ0jl(1−φ2jl))+ujl log((1−ψ1jl)φ2jl +(1−ψ0jl)(1−φ2jl))],

(5)

we can write l(α,β, φ) = l1(φ1) + l2(α,β, φ2). Therefore, maximizing l1(φ1) with respect to φ1, we

obtain the ML estimates for φ1jl as φ̂1jl = njl/n. We can obtain the ML estimates for the remaining

parameters, α, β, and φ2, by maximizing the log-likelihood l2(α,β, φ2).

By considering (V, D, W ) as complete-data, we can use the expectation-maximization (EM) algo-

rithm to find ML estimates. Because the log-likelihood may have the several local maxima and boundary

solutions, the direct use of the EM algorithm may fail to find the global ML estimates. If we knew the

value of α, it would be easier to estimate the remaining parameters, β and φ2. Therefore, we propose

to combine the profile method and the EM algorithm to find the global ML estimates for α, β, and φ2.

Specifically, we choose a set of α values. At each of the selected α values, we use the EM algorithm

to find the ML estimates β̂(α) and φ̂2(α), and we compute the profile likelihood for α as lP (α) =

l(α, β̂(α), φ̂2(α)), where l is given by Equation 4. Then, we find the value of α that maximizes the

profile likelihood with respect to α and the corresponding values for β̂(α) and φ̂2(α). See Zhou and

Castellucio (2003) for a detailed description on the profile EM method.

4. Likelihood-based inferences

After obtaining the ML estimators α̂, β̂, and φ̂ for α, β, and φ, we can derive the ML estimators

for the non-parametric ROC curves of the two tests by substituting the unknown parameters in (1) and

(2) with their ML estimators.
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We may also use the likelihood-based method for testing the null hypothesis that H0 : A1 = A2

and for constructing confidence intervals for the difference A1 − A2. By substituting the ML estimates

into (1) and (2), we obtain the ML estimators, Â1 and Â2, for the areas under the ROC curves of the

screening tests 1 and 2, respectively.

To find the asymptotic covariance matrix of Â1 and Â2, we first compute the expected Fisher in-

formation matrix for α, β, φ1, and φ2. Observe that we can write l(φ1, φ2) as the sum of l1(φ1) and

l2(α,β, φ2) and that the vectors φ1 and (α,β, φ2) are distinct. Therefore, the expected Fisher infor-

mation matrix for (α,β, φ1, φ2) is diag(I1(φ1), I2(α,β, φ2)), where I1(φ1) and I2(φ2) are the expected

Fisher information matrices for l1(φ1) and l2(α,β, φ2), respectively. Then, using the delta method

(Agresti, pp. 56-58, 1990) we find a consistent estimator for the covariance matrix of Â1 and Â2, and

denote its (k, j)th element by ν̂kl. Using the statistic,

Z = (Â1 − Â2)/
√

ν̂11 + ν̂22 − 2ν̂12,

we can test the null hypothesis that A1 = A2, basing the large-sample normal distribution of ML

estimators. Similarly we can derive a (1 − α)% confidence interval for A1 − A2 as

[Â1 − Â2 − z1−α/2

√
ν̂11 + ν̂22 − 2ν̂12, Â1 − Â2 + z1−α/2

√
ν̂11 + ν̂22 − 2ν̂12],

where z1−α is the (1 − α/2)100th percentile of the standard normal distribution.

5. Comparison of ML estimates with and without the ignorable assumption

From Section 3 we see that without the ignorable verification bias assumption, the valid log-likelihood

function is given by

lNonMAR(α,β, φ) =
K∑

j,l=1

[sjl log(ψ1jlφ2jl)+rjl log(ψ0jl(1−φ2jl))+ujl log((1−ψ1jl)φ2jl+(1−ψ0jl)(1−φ2jl))]+

K∑

j,l=1

njl log φ1jl], (6)
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where ψ1jl = P (V = 1 | T1 = j, T2 = l, D = 1) = ψ1jl(α, β), andψ0jl = P (V = 1 | T1 = j, T2 = l, D =

0) = ψ0jl(α, β).

If we assume the verification bias is ignorable (e.g. α = 0), we obtain the following valid log-likelihood

function,

lMAR(β, φ) =
K∑

j,l=1

[sjl log(φ2jl) + rjl log(1 − φ2jl)]+

K∑

j,l=1

[(sjl + rjl) log(ψjl) + ujl log(1 − ψjl) + njl log φ1jl], (7)

where ψjl = P (V = 1 | T1 = j, T2 = l).

From (6) and (7), we see that the ML estimate for φ1jl is equal to the same expression, njl/n,

with or without the ignorable verification bias assumption. However, the ML estimates for φ2jl’s will

be different, depending on whether we assume the ignorable verification bias. Under the ignorable

verification bias assumption, the valid log-likelihood can be written as three separate terms, the first

one involving only the parameters φ2jl’s, the second one involving only the parameters φ1jl’s, and the

third one involving only the verification mechanism parameters ψjl’s. Therefore, the ML estimates for

φ2jl’s under the ignorable verification bias assumption do not depend on ψjl’s, the parameters for the

verification bias mechanism. However, without the ignorable verification bias assumption, the valid

log-likelihood cannot be separated into a term that involves only the parameters φ2jl’ and a different

term that involves only the verification bias mechanism parameters. Therefore, the ML estimates for

φ2jl’s will depend on the estimated values of the parameters α and β in a non-ignorable model. Hence,

although the ROC curve area does not depend on model parameters α and β for the verification

mechanism and depends only on φ1jl’s and φ2jl’s, without the ignorable verification bias assumption,

the parameters α and β can still affect the ROC curve area through their effects on φ2jl; sometime their

effects can be dramatic. We will further discuss this point when we analyze our motivating data set.

6. Results on Screening for Alzheimer’s Disease Data

9

Hosted by The Berkeley Electronic Press



Let A1 and A2 be the areas under the ROC curves of the new screening test and the standard

screening test in a particular site (Indianapolis or Ibadan), respectively. We wish to know whether the

two screening tests are same in a particular site (Indianapolis and Ibadan).

We proposed the following model for the non-ignorable verification mechanism:

logitP (V = 1 | W, D) = β0 + β1I[T1=1] + β2I[T1=2] + β3I[T2=1] + β4I[T2=2] + αD, (8)

This model assumes that no interactions between T1 and T2 can affect the verification mechanism.

To apply the profile likelihood approach described in Section 3, we need to choose the set for α. We

chose this set to be between -8 and +8, with an increment value of 0.5; that is, α = −8 + 0.5 ∗ i, i =

1, . . . , 32. With this chosen set, we used the profile approach described in Section 3 to find the ML

estimates for α, β, and φ. To avoid a computational problem due to too many zero cells in the data, we

added a small number of 0.3 to the data given in Table 1 before we ran our profile likelihood algorithm,

and we summarized the resulting profile ML estimates for α, β, and φ in Table 3.

Table 3 goes here

Replacing unknown φ by their ML estimates in Equations 1 and 2, we obtained the ML estimates for

the ROC curve areas of the two screening tests, separately for Indianapolis and Ibadan sites. We then

calculated the associated covariance matrices by Fisher’s information matrix. We summarized those

results in Table 4, which also included 95% confidence intervals for the differences between two ROC

curve areas.

Table 4 goes here

For comparison purposes, we also included the inference results under the ignorable verification bias

assumption in Table 4.

To assess the goodness-of-fit of this non-ignorable verification bias model (8), we derived the following

Pearson’s goodness-of-fit statistic. We assume that our data, given in Table 1, follow a multinomial
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distribution with the cell probabilities, πjl1 = P (T1 = j, T2 = l, D = 1, V = 1), πjl2 = P (T1 = j, T2 =

l, D = 0, V = 1), and πjl3 = P (T1 = j, T2 = l, V = 0). Under the proposed non-ignorable verification

mechanism model, we see that the cell probabilities πjlk’s are functions of the parameters, α, β, φ1,

and φ2, and we can write them as πjlk(α,β, φ). The total number of unknown parameters in the model

is p + 2K2. Let π̂jlk = πjlk(α̂, β̂, φ̂) be the ML estimate of πjlk(α,β, φ), where α̂, β̂, and φ̂ are the ML

estimates of α, β, and φ, respectively, under the non-ignorable verification bias model. For a formal

goodness-of-fit test, we proposed the following Pearson’s test statistic:

χ2
obs =

K∑

j,l=1

[
(sjl − nψ̂1jlφ̂1jlφ̂2jl)2

nψ̂1jlφ̂1jlφ̂2jl

+
(rjl − nψ̂0jlφ̂1jl(1 − φ̂2jl))2

nψ̂0jlφ̂1jl(1 − φ̂2jl)
]+

K∑

j,l=1

[ujl − n(ψ̂1jlφ̂1jlφ̂2jl + ψ̂0jlφ̂1jl(1 − φ̂2jl))]2

n(ψ̂1jlφ̂1jlφ̂2jl + ψ̂0jlφ̂1jl(1 − φ̂2jl))
.

From Table 3 we see the non-ignorable verification mechanism operates slightly different in the

Indianapolis and Ibadan sites. From the values of the goodness-of-fit statistics, we concluded that the

proposed non-ignorable verification bias models fit the data well in both Indianapolis and Ibadan sites.

From Table 4 we also see that the ML estimates for the ROC curve areas can be dramatically

different, depending on whether the ignorable verification bias is assumed. For example, the estimated

ROC curve area for the first screening test in the Indianapolis site is 0.87 under the ignorable verification

bias assumption and is reduced to 0.69 under the non-ignorable verification bias model. Similarly, in

the Ibadan site, the estimated ROC curve area of the first screening test derived under the ignorable

verification bias assumption is much lower than the one derived under the non-ignorable verification bias

model. We also note that the variance and covariance estimates under the non-ignorable verification

bias model tend to be larger than the ones derived under the ignorable verification bias assumption;

this phenomena is what we expect since we have more parameters to estimate under a non-ignorable

verification bias model than under the ignorable verification bias assumption.

However, the conclusion on the significant difference between the two ROC curve areas is unchanged,
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regardless whether we assume the ignorable verification bias or use a non-ignorable verification bias

model. To assess the sensitivity of adding a constant to our data, we have tried to add different small

constants, and our results did not change.

7. DISCUSSION

In two-stage studies of Alzheimer’s disease, the verification bias is a serious problem in estimation

of the accuracy of screening tests.

In this paper, we analyzed a particular data set from a two-stage study of dementia in two different

sites under both the ignorable verification bias assumption and a non-ignorable verification bias model.

The goodness-of-fit statistics suggest that the proposed models fit the data well. From the data analysis

results, we concluded that the two screening tests for Alzheimer’s disease are not statistically significant

in both the Indianapolis and Ibadan sites. The accuracy of the standard screening test is higher in

Indianapolis than in Ibadan.

The current paper has one limitation due to the limitation of the available data. There are three

reasons why subjects did not have unverified disease status: (1) they were not selected to undergo

verification; (2) they were selected but were too frail to undergo verification; and (3) they were selected

but refused to undergo verification. Unfortunately, since we do not have information on which category

a unverified subject belongs to, we have lumped the three categories into one unverified group. It is

likely that the verification mechanism for those subjects who were not selected for verification would be

ignorable. If we had had such data, we would have build a better model for the verification mechanism

that would have specified a non-ignorable verification mechanism for unverified subjects who were

selected but either too frail or refused to undergo verification and would have specified a different

ignorable verification mechanism for unverified subjects who were not selected to undergo verification.

It is worth to note that the current paper jointly modelled the non-ignorable parameter α and out-
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come data, and the identifiability of α comes from the parametric model assumption for the verification

bias mechanism that is unverifiable. An alternative approach to deal with non-ignorable verification

bias is to apply the semi-parametric sensitivity analysis models proposed by Scharfstein et al (2002) for

non-ignorable drop-outs. It is a future research topic to compare these two approaches.
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Table 1: Cross-classification of two screening tests
Indianapolis Site

T1 = 1 T1 = 2 T1 = 3

T2 = 1 T2 = 2 T2 = 3 T2 = 1 T2 = 2 T2 = 3 T2 = 1 T2 = 2 T2 = 3

V=1 D=0 37 4 10 14 0 9 8 2 25

D=1 0 0 0 1 0 3 5 0 31

V=0 287 45 53 11 3 12 6 0 22

Total 324 49 63 26 3 24 19 2 78

Ibadan Site

T1 = 1 T1 = 2 T1 = 3

T2 = 1 T2 = 2 T2 = 3 T2 = 1 T2 = 2 T2 = 3 T2 = 1 T2 = 2 T2 = 3

V=1 D=0 33 17 25 3 5 38 2 3 111

D=1 0 1 1 0 0 2 0 0 17

V=0 146 85 119 4 3 37 1 1 47

Total 179 103 145 7 8 77 3 4 175

Table 2: Observed Data

T1 = 1 . . . T1 = K

T2 = 1 . . . T2 = K . . . T2 = 1 . . . T2 = K

V=1 D=1 s11 . . . s1K . . . sK1 . . . sKK

D=0 r11 . . . r1K . . . rK1 . . . rKK

V=0 u11 . . . u1K . . . uK1 . . . uKK

Total n11 . . . n1K . . . nK1 . . . nKK

Table 3: The ML estimates for α and β in the non-ignorable model and the goodness-of-fit

α β0 β1 β2 β3 β4 Goodness-of-fit

Indianapolis Site

-2.86 3.27 -4.59 -1.68 -0.58 -0.42 0.188

Ibadan Site

-2.84 2.14 -3.18 -1.43 -0.34 0.14 0.119
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Table 4: The ML estimates under the ROC curve areas of the screening tests in Indianapolis and Ibadan

sites

Verification model A1 Var(A1) A2 Var(A2) Cov(A1, A2) 95% Normal CI

Indianapolis Site

The ignorable

assumption 0.87 0.0036 0.78 0.0019 0.0011 (-0.022, 0.203)

The non-ignorable

model 0.69 0.0890 0.70 0.0414 0.054 (-0.303, 0.283)

Ibadan Site

The ignorable

assumption 0.68 0.0067 0.61 0.0032 0.0024 (-0.070, 0.210)

The non-ignorable

model 0.53 0.0295 0.54 0.0112 0.0096 (-0.297, 0.277)
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