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�� �������	�
��

The use of clinical and laboratory data to predict future patient events is a very popular idea in

medicine at present. Biomarkers are under development to detect cancer before onset of clinical

disease (Pepe et al, 2001). Gene expression profiles of tumor tissue promise to be predictive of

survival in cancer patients (Veer et al, 2002). Clinical scores, such as the Framingham Risk Score

(Wilson et al, 1998), are considered predictive of myocardial infarction and stroke. It is critical to

evaluate the sensitivity and specificity of such predictors or markers before adopting them for use

in clinical practice.

The literature on evaluating the accuracy of a marker, predictor or diagnostic test result, � ,

deals primarily with settings where � is measured concurrently with the gold standard disease

variable �. The True Positive Rate (TPR) and False Positive Rate (FPR) functions are:

TPR��� � pr�� � � � � � ��� FPR��� � pr�� � � � � � ���

where � � � indicates disease present, � � � denotes its absence and the threshold � is used to

define a positive test result as � � �. If � is continuous, an ROC curve that plots TPR��� versus

FPR��� for all possible values of � is often used to describe the discriminatory capacity of � .

The notions of true and false positive rates must be extended when the outcome is an event

time random variable � and the time at which � is measured relative to � can vary. Indeed, the

timing of the measurement, denoted by �, is likely to impact on the capacity of � ��� to predict

� . Measurements made closer to the event time are likely to be more predictive than those made

earlier. We define the time dependent TPR and FPR functions:

TPR������ � pr �� ��� � � � � � �� � FPR������ � pr �� ��� � � � � � �� � (1)

where � � � � � and � is some suitably chosen large time point. The FPR definition implicitly

assumes that subjects without events by � are an adequate control group against the cases which

occur over the time interval ��� � � are compared. These definitions are consistent with those used

by Balasubramanian and Lagakos (2001), Leisenring, Pepe and Longton (1997) and Etzioni et al

(1999). Heagerty, Pepe and Lumley (2000) define cumulative incidence based TPR and FPR func-

tions:

TPRCI
������ � pr �� ��� � � � � � �� � FPRCI

������� � pr �� ��� � � � � � �� 	 (2)
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However, the definitions in (1) lead to more straightforward regression modeling procedures and

are easier to interpret as functions of time than their cumulative incidence based counterparts

(Pepe, 2003). Moreover, we can calculate (2) from (1) with knowledge of the event time distribu-

tion. Thus we concentrate on (1) here initially, and return to (2) in the example.

In this paper we consider models for the time dependent �TPR�FPR� functions and procedures

to make inference about them from prospective cohort studies. The marker � may be measured

at multiple times for a subject, covariates � that affect the true and false positive rates may be

available and the event time � can be right censored. We extend the marginal regression modeling

approach of Leisenring, Pepe and Longton (1997) which deals only with binary markers � and

uncensored failure times. The models and assumptions are described in the next section. Inference

about unknown parameters and about the time dependent �TPR�FPR� functions is discussed in

sections 3 and 4. Simulation studies described in section 5 suggest that the procedures work well

in finite samples when the assumptions hold. In section 6 we apply the methods to data from the

Cardiovascular Health Study, a prospective cohort study of older adults (Fried et al, 1991). We

investigate the sensitivity (TPR) and specificity (1-FPR) of the Framingham risk score as a marker

for future cardiovascular events in this population. As expected, we show that the score is better at

discriminating short term than long term risk and works better in females than in males. However,

the score is not a very accurate predictor in any subgroup studied. We close in section 7 with a

discussion of alternative approaches to the evaluation of markers for event time data.

�� ���
�� ��� �������
���

Since the purpose is prediction, we only consider marker measurements made prior to the event

time, � ��� for � � � . The event time can be right censored and we assume random censorship,

where the observation time 
 � ��	����� for a censoring variable � that is independent of �

and � conditional on the covariates. The censoring indicator Æ � � if � is uncensored, i.e. � � � ,

while Æ � � otherwise.

Suppose that the data for analysis are organized as � data records for 
 subjects:

������ �������
�� Æ��� � � �� 	 	 	 ���� � � �� 	 	 	 � 
� �

where ��� is the biomarker value for the �th subject at the �th measurement time ��� and �� is the
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�� � covariate vector. Consider the following marginal probability models:

TPR����������� � pr���� � � � �� � ����� ���� � �
�
�������

��� ���� 
 ������� 
 �����
�
� � � ����� � �� (3)

FPR����������� � pr���� � � � �� � ����� ���� � ��
�
�������� 
 �

�
��� 
 �����

�
� (4)

where �, �� are specified inverse link functions, �� and �� are baseline functions of the threshold �

that are completely unspecified, and the dependence on time is through the parametric functions

�������� �� � ����������� ��, ������ � �
�
�������, where ��� and ��� are vectors of polynomial or spline basis

functions. One possibility for ������ �� is to specify it as a function of � � �, which is to say that the

sensitivity TPR������ of the marker depends only on the time lag between the marker measurement

and the event. However, in some applications the absolute time of the marker measurement from

the origin may also affect the TPR functions. Examples include settings where � � � denotes entry

into an intervention study or if � denotes the subject’s age which is associated with the marker

distribution. In the special case where ��� is a constant for all observations (e.g. ��� � �), we set

������ � �.

The non-parametric baseline functions of y, ����� and �����, essentially define the shape and

location of the sensitivity and specificity functions, while the parameters ���� and �� quantify co-

variate effects on them. When � is binary, we see that ����� and ����� are constants. The marginal

logistic regression models proposed by Leisenring, Pepe and Longton (1997) for binary � cor-

respond to (3) and (4) with logit link functions. Note that, when � is continuous, this type of

model corresponds to the marginal semi-parametric transformation model (Dabrowska & Dok-

sum 1988a, 1988b; Cheng, Wei & Ying 1995, 1997; Scharfstein, Tsiatis & Gilbert 1998; Cai, Wei &

Wilcox, 2000). That is, models (3) and (4) can be represented as:

������� � ��������
���� ����� ��� ���� 
 ���� if �� � ����� � ��

������� � ���������� �
�
��� 
 ���� if �� � ��

where pr���� � �� � ���� and pr���� � �� � �� ���.

In order to incorporate data from subjects who are censored before � , we need to model the

event time distribution. Suppose that a proportional hazards model holds:

��� � ��� � ����� ��
����
�
���� � (5)
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where ��� � ��� is the hazard function for the �th subject and the baseline hazard function ����� is

unspecified. It follows that

������ � pr�� � � � ��� � ��

�
������ ��
����

�
����

�
�

where ����� is the baseline cumulative hazard function. Other regression models for � can be

used. Our estimation procedure only requires a consistent estimate of ����� and does not rely on

the proportional hazards model assumption.

�� ���
���
�� ��
 ���
� ������
���

In this section, we derive estimation procedures for ���� �
�
����� � ������� ������

�� ���� � �������� ���
�
���

�
�

,

where ����� � ������� ���
�
��
�, ����� � ������

�
��
�. To this end, let �� �  �
� � ���� � Æ�� denote whether

the �th subject is censored before � and ��� � � �
� � ��� Æ����	�
�� ��� �������. Without loss of

generality, we index observations such that 
� � � and Æ� � � with � � �� 	 	 	 � 
�; 
� � � and

Æ� � � for � � 
� 
�� 	 	 	 � 
� ; 
� � � for � � 
� 
�� 	 	 	 � 
. We can think of the first and last groups

as the cases and controls, respectively, while the case/control status of the second group, i.e. those

censored in ��� ��, are unknown.

We base inference on the indicator variable  ���� � �� since models (3) and (4) essentially relate

the conditional expectation ����������� � ! � ���� � �� � ��������� to the parameters of interest ����.

To estimate �����, we mimic the score equation based on a binomial likelihood and consider the

following estimating equation:

��
���

���
���

��

��������� � ���� � ��� ����������� � � � for each � � ��� �� � (6)

where

��

��������� �
"�� 	

	�
����������

������������ � �����������
�

" is a pre-specified non-negative weight, and �, � are pre-determined constants such that pr�� �� #

�� and pr���� � �� are both positive. To estimate ����, we propose to solve

��
���

���
���

�
�

�

����
���������

�
 ���� � ��� ����������

�
$�%��� � � � (7)
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where

����
��������� �

"�� 	
	




����������

������������ � �����������
�

�%��� is some increasing function that can depend on the data but converges asymptotically to a

deterministic function %��� uniformly in � � ��� ��. The basic idea then is to solve (6) and (7)

simultaneously to estimate the parameters in the models (3) and (4).

The binomial probability ���������� depends on the case/control/censored status of the obser-

vation. To derive the form of ����������, we first note that pr���� � � � ���� � pr���� � � � ������ ����

for � � � � 
� and pr���� � � � ���� � pr���� � � � �� � ����� ���� for 
� # � � 
. If the �th subject

is censored at 
� � & # � , we write

pr���� � � � ���� �
pr���� � �� � � �� � & � ��� ���� 
 pr���� � �� �� � � � ��� ����

����&�

�
�
� �

�
pr���� � � � �� � ����� ����$������ 
 pr���� � �� �� � � � ��� ����

����&�
	

which involves the unknown function ������. It follows from the models (3) and (4) that

���������� �

�����	����

�
�
�����

'��� 
 ����
�
� � � � � 
�

�
� �
��

�
�



��


�
���
�� �����

�
���������� �




�
������������� ���

�������
� 
� # � � 
�

��
�
�������� 
 ����

�
� 
� # � � 


where

'��� �

������
�� ����

��


� � '�
��	
�� �

������(� ����
��


� � ��� �

����������
��


� 	

Observe that the estimating equations include a weighting factor " that dictates the extent to

which the censored observations in ��� �� enters into the analysis (we have "�� � � for known cases

and controls because �� � � for them). If " is set to 0, then censored observations are excluded

entirely from the analysis and the equations correspond to Leisenring et al (1997). Increasing

" allows censored observations to have more influence on estimation. A variety of values for

" are investigated in the simulation studies. For now note that, when " � �, an estimate of the

survivor function ������ is required in order to approximate the probabilities ���������� for censored

observations. As well, to obtain an estimate of the cumulative incidence based TPRCI function, one

needs to use an estimate of �����.

6
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We propose a three step approach to estimating ���� : 1) estimation of �����; 2) estimation of ����

when " � � and 3) estimation of ���� when " � �. We detail the three steps next.

3.1 Estimation of �����

Under the Cox proportional hazards model (5), we estimate ����� as

������ � ��
�������� ��
�����
�����

where ���� is obtained by maximizing the partial likelihood based on data �
�� Æ����� � � �� 	 	 	 � 
�,

and ������ is the Breslow estimate of the cumulative baseline hazard function ����� (Fleming and

Harrington, 1991).

3.2 Estimation of ���� when " � �

Let ���� �
������������ denote the solution to the estimating equations (6) and (7) when " � �, i.e.

when the censored observations � � 
� 
 �� 	 	 	 � 
� are ignored. We show in Appendix A that���� is a consistent estimator of ���� for � � ��� ��. An estimate of ����� is not required to obtain the

estimator ����. ������� ������ are estimated using only the cases, subjects � � �� 	 	 	 � 
�, and ������� ������

are estimated using only the controls, i.e. subjects � � 
� 
 �� 	 	 	 � 
.

3.3 Estimation of ���� when " 	� �

To include subjects � � 
�
�� 	 	 	 � 
� in estimating ����, we set " 	� � and approximate ���������� for

those censored subjects by estimating the unknown survivor function �����. Let ��, ���

�� , �����
�� be

�, ��

�� , ����
��, with ������ replaced with �������, respectively. In analogy with (6), we consider the

following estimating equation for���� at a given ���:

��
���

���
���

���

�����
����� � ���� � ��� ������������ � � � for any � � ��� �� 	 (8)

Let ����� ���� � ������ ���������� ������ denote the solution to (8) given � and let ������� �
������ ����� ���

�
. To

estimate ����, we use

��
���

���
���

�
�

�

�����
�����

������ ���� � ��� ������� ��������
�
$�%��� � � 	 (9)
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Observe that the weight functions ���

��������� and �����
��������� are evaluated at ��� � ���� and are not

updated with ������. This results in a much simpler Jacobian matrix and reduces the computational

requirements substantially.

In summary, the strategy for estimating ���� is to solve (6) and (7) with " set to 0 in order to

derive an initial estimate ����. This, together with an estimate of ������ is substituted into equations

(6) and (7) with " set to some positive value to incorporate the censored observations in ��� ��.

Then final estimates of ���� are calculated by solving (8) and (9).

�� ���
�
�	
 
� ����
 �����
�

4.1 Asymptotic properties of ����
Let ���� be the solution to (9), ����� � ���������� and ����� � ����������. The following results are shown in

appendices A and B

Theorem 1.
������������������ are unique for large 
 and are consistent.

Theorem 2. 

�
� ����� � ����� is asymptotically equivalent to


�
�
� �

��
���

������

��
���

��� (10)

where

��� �

�
�

�

�	
����������� 

���
���

���������)�����

��� $%����

������ *� �

���
���

*�����

� � �

��

�
�
������'�

��	
�� 
 �����

�
$���(�
����� 
 ��

�
��������� 
 �����

�
�����
�����

�
�

� is defined in (A.6), )����� �  ���� � ��������������, �
���
����� is defined in (B.7) and ���(� &� �� are defined

in (B.8).

The latter result is used to obtain interval estimates of specific components of ����. In particular,

note that (10) is a U-statistics (Serfling, 1980) with covariance matrix

��� � 
�

� �

�������
����

�����

����
�
��� 


�
�������

��� ������

����
�
��� 
 �

�
�������

����

�����

����
�
���

�
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Now, let �� and ���� be the matrices obtained by replacing all the theoretical quantities in � and ���

with their empirical counterparts. Then, the distribution of 

�
� ����� � ����� can be approximated by a

normal distribution with mean � and covariance matrix �� �� ������ �� .

4.2 Estimating the time dependent sensitivity and specificity functions

We now turn to inference about the TPR and FPR functions, which depend on time and on co-

variates �. Substituting
������������������ into the model forms (3) and (4) we propose estimates for

TPR�������� and FPR�������� as:

�TPR�������� � �
�
� ������� �� 
 ������
 ������ �

�FPR�������� � ��

�
������ 
 ����
 ������ 	

Asymptotic distribution theory for these functions is presented in appendix B where we prove the

following theorem:

Theorem 3. ���� �� �� �� � 

�
�

�����
��TPR��������

�
� ��� �TPR���������

���
�

��FPR��������
�
� ���

�
�FPR���������


� is asymptotically equivalent

to


�
�
�

���
������

��
���

�	
������ 


�������� ��� �� � �

� � ������� ��


� �
�����

��� �

where������ is defined in (B.9).

Theorem 3 allows us to approximate the distribution of the process���� �� �� �� using re-sampling

techniques (Parzen, Wei and Ying, 1994) in practice. A detailed description of the procedure for

constructing confidence bands based on the re-sampling method can be found in Cai & Pepe

(2002).

We mentioned earlier that alternative definitions for time dependent TPR and FPR are possible.

Estimators for the cumulative incidence based TPR and FPR functions can be derived from ours

9
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noting the following identities:

TPRCI
�������� � pr�� ��� � � � � � �� ��

�
�
� �

�
�
�
������(� �� 
 ������
 �����

�
$���(�

�� �����
�

FPRCI
�������� � pr�� ��� � � � � � �� ��

�
�
� �

�
�
�
������(� �� 
 ������
 �����

�
$���(� 
 �� ������� 
 �

�
��
 ����� �����

�����
	

Plugging in
������������������ for ����, we obtain consistent estimators for TPRCI

�������� and FPRCI
��������.

�� �
�����
�� ����

�

We performed a simulation study to illustrate the estimation procedure proposed in the previous

sections and to investigate the impact of " on their efficiencies. We simulated data as follows:

a covariate + with Uniform��� �� distribution was generated for each of 
 � ��� individuals.

Survival times were generated from a proportional hazards regression model with regression co-

efficient �� � ��	� and baseline hazard function being a mixture of two Weibull distributions,

Weibull��� �� with probability 0.3 and Weibull��� ��� with probability 0.7. We chose � � � so that

pr�� � �� � �	��. The censoring random variable � also had a mixture distribution being de-

rived from a Weibull��� �,�� with probability �� � �	� and otherwise � � ��. Thus about 28% of

subjects are censored before � of which most, 22% have � � � , and 50% of subjects remain under

observation and event free at � .

Two marker measurements were generated for each individual, one at ��� � � and one at a

random time ��� uniformly distributed in the time interval ��	�� �	��. We discarded observations ���

if they were measured at times beyond their event or censoring time. The marker measurements

themselves were generated for the cases (i.e. �� � � ) from the model

������ � �
�

�
��� � ����� +� 
 ��� �

with ���� � � ����� � �� � � and ����� ���� having a standard bivariate normal distribution with

covariance 0.2. For the controls (�� � � ) the model was

������ � �+� 
 ��� �

10
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with ���� � � ����� � �� 
 � and ����� ���� having a standard bivariate normal distribution with

covariance 0.2. These models correspond to the following time-dependent TPR and FPR functions:

TPR�������� � �� �

�
�

�
��� �� 
 - 
 � ����� � ��� �

�
�

FPR�������� � �� � �- 
 � ����� � �� 
 �� �

where � denotes the cumulative normal distribution function. These are shown in Figure 1. Thus

the parameters ���� ��� � ��� � �� and .� � � in this setting while the functions ���� �� � � � � and

���� � �. The inverse link functions are ���� � �� ��� � �� ����.

In Table 1 (a), we present the empirical bias and mean squared error of ���� estimated using

values of " � �� �	�� �	�� �	� and 5.0. In Figures 1 and 2, we present the sample average of the

estimated TPR and FPR for � ��� at event time � � � as functions of � and as functions of event

time � using the fixed threshold � � �. The results shown in Table 1(a) and the figures suggest that

our method provides reasonably unbiased estimates of both the model parameters and �TPR�FPR�

functions. The estimators have smaller standard errors when markers are measured at two time

points, � � �, than when only the baseline measurements at � � � are available, � � �. This

makes sense since we expect to gain efficiency by using more information.

The choice of " affects the efficiency of all parameters of interest, but seems to have most impact

on ��, less on �� and very little on �� in this setting. Recall that when " � �, censored observations

are ignored for estimation. By using " � �, we find that the estimates are almost always more

precise than those calculated with " � �. In particular, the efficiencies for estimating ��� �� .� of ����
which is calculated with " � � relative to ���� calculated using " � � are (0.98, 0.96, 0.79), respectively,

when � � �. The results vary across settings, however, with efficiency gained for one parameter

often accompanied by a loss for another parameter. We also found that the amount of efficiency

gain using " � � varies with the censoring pattern, but no general pattern appeared to emerge.

The small gain in efficiency for ���� and ���� by using " � � can in part be attributed to the low

percentage of censored subjects with � � � . In another simulation, we generated � from the Cox

model with ����� being the cumulative hazard function for the Weibull mixture of Weibull��� ��

with probability 0.5 and Weibull��� ��� with probability 0.5, and let � � ��� � � �� �� � �	�. This

configuration results in about 50% of subjects censored before � (of which 12% have � � � and

38% have � � � ), and 37% of subjects under observation and event free at � . There is more to be
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gained in this setting from including censored data in the analysis (Table 1(b)). For example, the

relative efficiencies for estimating ��� �� .� with " � � compared with " � � are (0.98, 0.88, 0.72).

How should the weight of censored data be chosen in practice? To select an optimal ", one

could use an “optimization procedure” to minimize the total mean squared error !�	������ � �����
��.

That is, one selects the value of " that corresponds to the smallest value for the estimated sum

of square errors. Using this criterion, in our simulations the weight of choice is " � � in both

configurations. Alternatively, one could minimize other quantities such as the total coefficient of

variation
��

���

�
var�����,���� , where / is the dimension of ��� and ��� is the 0th component of ����.

�� ��
 � � ����!

The Cardiovascular Heath Study (CHS) is a population based observational prospective study of

elderly adults (age � �� at enrollment) in the United States. A full description of the design of

CHS is reported in Fried et al (1991). The analysis here includes 3967 subjects (1531 males) who

were free of clinical cardiovascular events at enrollment.

The Framingham Risk Score (FR-score) is a widely used clinical prediction score used to quan-

tify risk for cardiovascular events (Grundy et al, 1998, 2001). It includes information on age,

cigarette smoking, blood pressure, diabetes mellitus, blood cholesterol and high density lipopro-

teins cholesterol. Separate score sheets are used for men and women. Here we consider the FR-

score as a predictor for cardiovascular events, defined as non-fatal myocardial infarction or death

due to coronary heart disease.

Subjects in this dataset were between 65 and 95 years old (mean 72.3 years) and free of clinical

cardiovascular disease at enrollment. There were 585 (14.7%) who experienced a cardiovascular

event. Follow up on subjects without cardiovascular events averaged 6.75 years (sd = 1.58 years).

The FR-score was evaluated for all subjects at enrollment, and we only include this baseline as-

sessment in this analysis. Although several other covariates were considered (including age and

race), our analysis indicated that gender and medication for hypertension were covariates that

had a substantial influence on the predictive accuracy of the FR-score. In particular we fit the
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following models for the time dependent TPR and FPR functions:

TPR������ � �� �����
 ���
� 
 ��+� 
 ��+� 
 ������

FPR������ � �� ��.�+� 
 .�+� 
 ������

where +� � � for subjects on medication for hypertension at enrollment and 0 otherwise, +� � �

for males and 0 otherwise, and we drop the subscript ’s’ relative to the general model forms (3)

and (4) because � , the FR-score, is measured only at baseline, � � �. We choose � � � years in

the analysis. That is, we investigated the predictive accuracy of the FR-score for events during the

� years subsequent to enrollment. Subjects without an event by the ��� year of observation after

the FR-score is measured are considered to be controls for the purposes of calculating the false

positive rate.

There is little loss to follow up in CHS. However, 487 subjects in the sample died from other

causes without a cardiovascular failure. Rather than censoring these survival times at death, we

censor them at the end of the trial. This is appropriate since � � ����� represents the marginal

probability of a cardiovascular events by time �, which is not estimated by censoring at competing

risk event times (Pepe and Mori, 1993).

The estimated regression coefficients and their estimated standard errors are shown in Table

2. The negative coefficient ��� in the TPR model indicates that for a given positivity threshold

�, medication use is associated with an increased TPR. That is, cases on medication had higher

values of the FR-score than did cases not on medication. The coefficient ��� � �	�� indicates that

male cases had lower values of the FR-score than did female cases. In contrast among the controls,

gender had little effect on FR-score, �.� � �	���. Medication use among controls, like that in

cases, was associated with higher FR-score values, �.� � ��	��, the effect actually being greater

in controls. Figure 3 displays the estimated TPR and FPR functions at � � � year and 5 years with

their 95% confidence intervals and confidence bands for female subjects who are on hypertension

medication. These curves indicate that for any positivity threshold �, the sensitivity of the FR-

score is higher for events that occur at 1 year after enrollment than at 5 years after enrollment. In

particular for these women, the threshold criterion FR-score � �� which identifies 45% of subjects

with events at 1 year, identifies only 36% at 5 years, while 30% of subjects who are event free by

7 years also meet this criterion. In Figure 4, we show ROC curves for different groups at � � �
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year and � � � years. Given the same false positive rate, the corresponding true positive rate

is substantially higher in females than in males. Although for any given threshold, medication

use is associated with increased TPR, it is not associated with increased accuracy of the FR-score.

The ROC curves for subjects on medication are close to (a little below) those for subjects not on

medication. This is because medication status affects the FPR functions to essentially the same

degree as the TPR functions.

We next calculate the cumulative incidence based TPR and FPR functions. The curves for

TPRCI
��� and FPRCI

��� are displayed in Figures 5 and 6. The definitions of the cumulative incidence

based TPR and FPR functions specify cases and controls at time � as subjects with � � � and

subjects with � � �, respectively. At any given positivity threshold, both the true and false positive

rates of the FR-score is also higher for events that occur within 1 year since enrollment than within

5 years since enrollment again indicating better discrimination for earlier events. In particular,

for female subjects who are on hypertension medication, the threshold criterion FR-score which

identifies 48% of subjects with events within 1 year, identifies only 39% of subjects with event

within 5 years, while 32% of subjects who are event free by 1 year and 31% of subjects who are

event free by 5 years meet this criterion.

"� #
���$�

Statistical models for the joint analysis of longitudinal biomarkers and time to disease onset have

been studied extensively in the past decade (e.g., Pawitan and Self, 1993; De Gruttola and Tu,

1994; Tsiatis, De Gruttola and Wulfsohn, 1995; Faucett and Thoams, 1996; Wulfsohn and Tsiatis

1997; Hogan and Laird, 1997; Hederson, Diggle and Dobson, 2000; Skates, Pauler and Jacobs, 2001;

Wang and Taylor, 2001; Henderson, Diggle and Dobson, 2002). See Hogan and Laird (1997) for

discussion of two broad classes of models, namely selection models and pattern mixture models.

Most of the existing methods in this area require parametric modelling of the marker process

over time and a joint parametric model for the distribution of the event time. To induce models

for the association between the marker and event time process, both mixture models and selection

models rely on specication of the distributional assumptions for random effects or latent stochastic

processes. In contrast, we use marginal semi-parametric models for the marker distribution given

the event time and for the event time distribution. The approach does not model marker processes
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and hence is more flexible. We estimate the regression parametere and the non-parametric baseline

functions simultaneously based on estimating equations and incorporate censoring by integrating

over time.

In this article, we are only concerned with the distribution of biomarkers measured prior to

diagnosis, the biomarker measured after ��	��� �� does not contribute to estimating the parame-

ters in model (3) and (4). We delete these observations from the data for analysis. However, the

methods could be extended to include biomarkers measured after � . In some settings, one may

be interested in using the biomarker to detect � as soon as possible after the event occurs.

The covariate effects are modeled separately for the TPR and FPR functions. Therefore, the

regression parameter, ��� in TPR or � in FPR, do not directly represent covariate effects on the ROC

curve of the biomarker for detecting disease. It would be interesting to investigate if one could

extend the regression models for time dependent ROC curves such as those proposed by Etzioni

et al (1999) and Cai and Pepe (2002) in order to incorporate censored data into the analysis.

�	$��%�
��
�
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(�
�
�� ��� ����
��
�	!

We first show that ���� is a consistent estimate of ���� for � � ��� ��. To this end, let

1������� �
�
����

���
���

�
 ���� � �� ��� ���������� 
 ���  ���� � ��� ��� ��� �����������

�
and let ������ ���������� ������ denote the solution to (8) at a given ���. It is easy to see that�� ����� ����

����� ����

� �

��argmax���� 1�������

argmax���� 1�������


� � and ���� � argmax
���

�2������

where �2����� �
�

�

�
1
�
������� ���������� ����� ���� $�%���. Suppose ���� lies in a compact set �
. To show that����, the maximizer of �2����� is strongly consistent, it is sufficient to show that �2����� converges uni-

formly to a deterministic function of ��� almost surely, which has a unique minimizer at ���� (Newey

and McFadden, 1994). To this end, let ���� denote the distribution function of � � � �
 �

��� Æ���	�
� ��� ����, 
�� � �� � ��� �� � $�%���,$� 	� ��, ����� � ���������� and ����� � ����������. Note

that, ��������������� � � � 
�������

� � argmax

��������
�	�

�
1�������$�%��� 	

It follows from strong law of large numbers that 
��
�

�

�
1�������$�%���� �

�

�
3�������$%���, where

3������� � ��

�
����������� ��� ���������� 
 ��� ������������ ��� ��� ����������� $������ �

and �� � �����	 
��
��

��� ���� ����. Since *��� � �� ������ 
 �� � ��� ����� � �� has a unique

maximizer � � �� for any �� � ��� ��, we have 3������� � 3�������� and the equality holds if and only

if ���������� � �����������, for � � 
� � �� � ��� �� � $%���,$� � �� and ��� � �� where �� is the

domain of ���. It follows from the monotonicity of ���� and �� ��� that

���� 
 �����
 �����&� �� � ����� 
 ������
 ������&� �� (A.1)

���� 
 ���
 ����� � 
���� 
 �
�
��
 ������ (A.2)

for � � 
� and any �&� �� �� in the subspace of �� restricting to � � �. Without loss of generality,

we assume that �� is not degenerate. It follows that (A.1) and (A.2) holds if and only if ��� � ����,
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���� � �����, and ���� � ����� for � � 
�. This ensures that the limit of �2�����, denoted by 3�����,

has a unique minimizer at ��� � ����. It is not hard to show that that �2����� is equicontinuous in ���,

therefore the convergence of �2����� � 3����� is uniform in ��� � �
. This concludes the arguments

for consistency of ����. The equicontinuity of 1��� ����� in ���� and ���� ensures the consistency of �����
and �����. The consistency of ����� and ����� is uniform in � � ��� �� since ���� and ���� are monotone

functions of �.

It remains to show the consistency of ����. Let��������� and������ denote the left hand side of (8)

and (9), respectively. It follows from the strong law of large numbers and the uniform consistency

of ������ that for any 4 � �, � � ��� ��, ��� � �� � ���� � ���� � ����� � 4�, and sufficiently large �,

����������� � � � ����������� # � (A.3)

where ���
� � �����
 �� ����. This, coupled with the monotonicity and continuity of � and �� ,

implies that there exists a unique ����� ���� such that

��

�
�� �������

�
� �� (A.4)

where ������� �
������ ����� ���

�
. Since (A.3) holds for any � � � only for the case that ��� � ����, ����� ������

�����, uniformly in � � ��� ��. To show the consistency of ����, we first note that 
��5������,5���� ��� �����, where

�� ����� � �

��
���

���
���

�
�

�

�����
�����

�������666������ ��������
�5

����� ����

5����

 �666���

�����
����
�

�

�
�

�666���������� � 	����
	�

�������, and �666���
��������� � 	����

	



�������. By differentiating both sides of (A.4) with

respect to ���, we obtain the identity

5 ����� ����

5����
� �

�
��
���

���
���

���

�����
������666������ ��������

�

���� ��
���

���
���

���

�����
������666�������� ��������

�
	 (A.5)

This, coupled with the consistency of ����, ����� �����, implies that 
��5�������,5���
� � � , where

� � �

�
�

�

�
�







���� �
�


���� �� ������

��
�
�


���

�
$%���� (A.6)

�






��� � !

�
�

���	
�� ��������

�
� �

�


��� � !
�
�

���	
�� ��������

�
�

�
����� � !

�
�

���	
�� ��������

�
� �

���	
�� ������� �

	���
	�

���������
�
	���
	




���������
��

������������ � �����������
�
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and we use the notations that for a vector �, ��� � �, ��� � � and ��� � ���. When '��� and

��� are non-degenerate, � is positive definite. Now, since 
��������� � �, by the standard inverse

function theorem, there exists a unique solution ���� to the equation ������ � � in a neighborhood of

����. This also implies that ���� is strongly consistent and ���������� � �����, almost surely, uniformly

in � � ��� ��.

) ����
 �����
 �
���
*��
�� �� ���� ��� �����

By the consistency of ���� and a Taylor’s series expansion of������� around ����, we obtain



�
� ����� � ����� � �

��

�
�������� 	

It follows from a Taylor’s series expansion of ����� ����� around����� and the uniform consistency

of ������ that


�
�
�������� � 
�

�
�

��
���

���
���

�
�

�

���������

�
)����� 


� �

��

�
�
������

'�
��	
�� 
 �����

�
$

�
����(�

����
��
�

�����(������
��

�


 ��
�
��������� 
 �����

�� ������

����
��
�

������������
��

��

where

��������� �����
����������� �

�


���� �� ����������

���������� 	 (B.7)

Recall that ������ � ��
�������� ��
�����
����, where ���� is the MPLE (maximum partial likelihood esti-

mate) of ���� and ������ is the Breslow estimate for �����. From standard theory for survival analysis,

it follows that for any & � ( � � :



�
�

�
���(�

���&�
�

����(�����&�
�
� 
�

�
�

��
���

���(� &� �� �

where

���(� &� �� �
���(�

���&�
��
��������

 
�
�(� ���
�&� ���� 1� 


� �

�

$7����

�������

!
� (B.8)
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����
������
�������
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�����
��
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����
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� �

�

�
������

��������
$ �����

�
�

1� �

� 	

�

�
�� �

�
����
�

�����
�

�
$7���� � 7���� � ������

� �

�
 �
� � ��)���

�
���$������

����� �
��
���

�����,
 �
��
���

 �
� � ��Æ�,
 � �
������ � ���

��	

��

��
���

 �
� � �� ��
���� ������
��
� 	

As a consequence,



�
� ����� � ����� � 
�

�
� �

��
���

������

��
���

���

To derive the large sample distribution of 

�
�

������������
�

, we take a Taylor’s series expansion

of ����� � ���������� around ���� and obtain



�
�

������������
�
� 
�

�
�

���
������

��
���

������
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������ �
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It follows that
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Table 1: Bias and mean squared error (MSE) of �� and �� at sample size 
 � ��� with � � � and
� � �. Results are shown for 1000 simulated data sets.

(a) Results for the first setting where about 50% of subjects have observations times 
 � � , and
28% of subjects are censored before � .

� � � � � �
" Bias MSE Bias MSE

� � 	� � � � . � � � � . � � 	� � � � . � � � � .
� .040 .085 .010 .026 .158 .039 .021 .036 .011 .014 .073 .024
	� .040 .087 .013 .026 .156 .033 .021 .036 .010 .014 .071 .020
� .040 .089 .016 .026 .154 .031 .021 .036 .010 .014 .071 .019
� .041 .094 .022 .026 .154 .032 .022 .037 .011 .014 .070 .020
� .044 .107 .036 .027 .164 .046 .024 .041 .014 .015 .075 .026

(b) Results for the second setting where about 37% of subjects have observation times 
 � � , 50%
of subjects are censored before � .

� � � � � �
" Bias MSE Bias MSE

� � 	� � � � . � � � � . � � 	� � � � . � � � � .

� .060 .119 .023 .060 .267 .049 .033 .063 .015 .020 .121 .033
	� .063 .118 .024 .060 .248 .038 .033 .065 .017 .020 .111 .024
� .064 .119 .027 .060 .239 .036 .034 .068 .019 .020 .107 .022
� .068 .122 .032 .061 .234 .038 .036 .072 .021 .020 .104 .022
� .080 .136 .040 .067 .258 .050 .043 .086 .023 .022 .118 .027
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Table 2: Estimated regression coefficients and their estimated standard errors for the TPR and FPR
models of the Framingham Risk Score as a predictor for cardiovascular events within 7 years.

�� �� �� �� .� .�
Estimate 0.190 -0.021 - 0.275 0.318 -0.390 0.012

" � � Std. Error 0.078 0.011 0.086 0.087 0.037 0.033

Estimate 0.190 -0.021 -0.274 0.317 -0.388 0.019
" � � Std. Error 0.078 0.011 0.086 0.087 0.039 0.035
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Figure 1: Sample averages (thiner curves) of the estimated true and false positive rate functions
for � ��� at time � � � as functions of the threshold � for positivity compared to the truth (thicker
curves). The covariate value - is chosen as 1. Solid curves are for incidence based TPR and FPR
and dashed curves are for cumulative incidence based TPR and FPR functions. The results are
based on 1000 simulated datasets with sample size 
 � ���, � � �, and the weight " is set at 1.
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Figure 2: Sample averages (thiner curves) of the estimated true and false positive functions for
� ��� using the threshold � � � as a function of event time �, compared to the truth (thicker curves).
The covariate - is chosen to be 1. Solid curves are for incidence based TPR and FPR and dashed
curves are for cumulative incidence based TPR and FPR functions. The results are based on 1000
simulated datasets with sample size 
 � ���, � � �, and the weight " is set at 1.
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Figure 3: Estimated TPR functions of the Framingham risk score for female subjects who are on
medication. The sensitivities (TPR) for events at � � � and � � � years after the FR-score is
measured are displayed. Shown also are their 95% simultaneous confidence bands.
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Figure 4: Plots of the ROC curve: the TPR function vs the FPR function at � � � year and � � �
years. Shown are plots for females (solid curves) and for males (dashed curves). Thicker curves
are for those on medication and thiner curves are for those not on medication.
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Figure 5: Estimated cumulative incidence based TPR and FPR functions of the Framingham risk
score for female subjects who are on medication. Shown also are their 95% simultaneous confi-
dence bands.
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Figure 6: Plots of the cumulative incidence based ROC curve at � � � year and � � � years. Shown
are plots for females (solid curves) and for males (dashed curves). Thicker curves are for those on
medication and thiner curves are for those not on medication.
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