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Summary. Kooperberg and LeBlanc (2008) proposed a two-stage testing procedure to screen
for significant interactions in genome-wide association (GWA) studies by a soft threshold on
marginal associations (MA), though its theoretical properties and generalization have not been
elaborated. In this article, we discuss conditions that are required to achieve strong control of
the Family-Wise Error Rate (FWER) by such procedures for low or high-dimensional hypoth-
esis testing. We provide proof of asymptotic independence of marginal association statistics
and interaction statistics in linear regression, logistic regression, and Cox proportional hazard
models in a randomized clinical trial (RCT) with a rare event. In case-control studies nested
within a RCT, a complementary criterion, namely deviation from baseline independence (DBI)
in the case-control sample, is advocated as a screening tool for discovering significant inter-
actions or main effects. Simulations and an application to a GWA study in Women’s Health
Initiative (WHI) are presented to show utilities of the proposed two-stage testing procedures in
pharmacogenetic studies.

Keywords: interactions; marginal effects; filtering; pharmacogenetics; randomization; case-
only estimator.

1. Introduction

With the advent of high-throughput biotechnologies, e.g., microarray, Single Nucleotide Polymor-
phism (SNP) chips, and whole-genome sequencing, high-dimensional hypothesis testing has be-
come a routine practice in exploratory biological or epidemiological studies. Statistical power in
this setting has been limited by stringent significance rules, e.g., Bonferroni correction of multiple
tests, that are required to guard against false positives arising from thousands or millions of tests.
While investigators strive to ascertain a large number of biological samples, this is often constrained
by cost and sample availability. Strategies on efficient design and analysis are therefore of critical
importance.

In genome-wide association (GWA) studies, multi-stage designs have been employed in which
all SNPs are screened first for suggestive evidence in a proportion of samples, and the most promis-
ing SNPs were tested in the next stage(s) (Satagopan et al., 2004; Prentice and Qi, 2006). Geno-
typing cost can be substantially reduced, yet with possibly little loss of power as compared to the
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2 J.Y. Dai, M. LeBlanc, C. Kooperberg, and R.L. Prentice

one-stage design, whether analysis is based on the replication data only (Satagopan et al., 2004), or
combines data from multiple stages (Skol et al., 2006). Efficient analysis of genetic association data
has also been extensively studied. Notable strategies encompass addressing local dependence of hu-
man genome by haplotype analysis (Lin and Zeng, 2006; Dai et al., 2009a), imputing unmeasured
SNPs so that data from different platforms can be combined in meta-analysis (Li and Abecasis,
2006; Browning and Browning, 2007), and exploiting gene-environment independence assumption

to gain efficiency (Chatterjee and Carroll, 2005; Dai et al., 2009b). Aside from the sheer number of
tests, features of genetic inheritance of complex diseases pose additional threat to adequate power,
e.g., multiple risk alleles, each having marginally weak associations, possibly interacting with other
alleles or environmental attributes (Kraft, 2009).

When gene-gene or gene-environment interactions are targets of inference, there are ideas scat-
tering in literature to filter out the majority of irrelevant SNPs upfront (Millstein et al., 2006; Kooper-
berg and LeBlanc, 2008; Murcray et al., 2008). The intuition is that, as long as the statistic used
in the filtering stage is independent of the statistic in the testing stage, we only need to correct for
the number of the tests actually passing the filtering, thus preserving power on features that are
most promising. The filtering criterion was largely formulated by biological premises, e.g., SNPs
with interactions are likely to have marginal effects (Kooperberg and LeBlanc, 2008), or gene-gene,
gene-environment independence in a case-control sample should be expected if there is no inter-
action (Millstein et al., 2006; Murcray et al., 2008). Theoretical justification of these procedures,
however, has not been elaborated.

In this article, we give a formal treatment of two-stage hypothesis testing procedures via in-
dependent statistics. We discuss in Section 2 the conditions that are required for such procedures
to maintain strong control of family-wise error rate (FWER) in both high-dimensional and low-
dimensional testing. Through use of estimating equation theory, we present in Section 3 a unified
approach to prove the asymptotic independence of various statistics previously suggested. We dis-
cuss the utility of such procedures through examples in Section 3, that have a broader scope of
hypothesis testing than just GWA studies. In Sections 4 and 5, we present simulations and data
application to show the benefit of two-stage testing procedures.

2. A class of two-stage procedures and their strong control of FWER

Consider data frome subjects drawn from a cohort based on a prespecified sampling plan. Let
Y; denote the outcome variable, and ®f = (X1, ..., Xi»,) denote a collection ofn features
measured foi*" subject. Occasionally, there is a low-dimensional variable of key interest, e.g., a
randomized intervention, denoted By. For different subjects, the random variab(&s, X;, Z;)
are independent and identically distributed. Bgtj = 1,...,m, denote the parameter of interest.
The goal is to test: null hypothesesty; : §; = 0 versusH,; : §; # 0.

The test statistic fof{; is often formulated byasymptotically linear estimato(ALE) (Newey
and Powell, 1990; Robins et al., 1994), scaled by its estimated standard error. An esfinodidr
is asymptotically linear if/n(6; — 6;) = 1/\/n>.1, Bij + 0,(1), E(B;) = 0, E(B;;Bij) < oc.
The functionB; is referred to as thénfluence functiorof ; in the sense of Casella and Berger
(2002). By the Central Limit Theorem and Slutsky’s theor@/ﬁ(éj —0;) is asymptotically normal

with mean 0 and variance(B/; B;;). Define a Wald test statistit; = 6;/1/Var(6;).

Now consider a different set hypothesis tesk§;; : ¥; = 0 versusk,; : 9; # 0. Letd,
denote an asymptotically linear estimatotigfas defined above. A Wald test statistic is formulated

similarly, 70 = 4, /\/ Var(d;).
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Two-stage testing procedures via asymptotically independent statistics 3

The following two-stage testing procedure is considered: denoteg layprespecified screening
factor in the first stage) < o < 1. The corresponding first-stage critical regiofs = {7} :
|TJQ| > Ci_ay)2}, WhereCy_,, /o is thel — /2 quantile of the standard normal distribution.
Suppose there are features falling in the critical region. Lét< « < 1, and define the second-
stage rejection region; = {7 : |T}| > C1_qa/2m, }, WhereCi _, /o, is thel —a/2mg quantile of
the standard normal distribution. We declare a test statistically significaitdf I') andT; € T';.

We show in the following theorems that with proper conditions, the two-stage testing proce-
dure will control the FWER in the strong sense, though Bonferroni correction is only applied to
the second-stage testing. Strong control of FWER means that for any set of null hypotheses, the
probability of having at least one false positive test is less than or equal to the prespecified level
(Holm, 1979). The proof is given in the Appendix.

THEOREM 1. If the asymptotic distribution of éj and ¥}, are multivariate Gaussian, and they
areuncorrelated, i.e.,

Cov (\/ﬁ(éj —9j),\/ﬁ(z§k—q9k)) )0 Y g kefl,..,m}

the proposed two-step procedure preserves FWER at the level o asymptotically in the strong sense,
i.e, for any non-empty indexset J C {1,2,...,m}

lim,,_ o Pr {UjEJ(TJQ c Fg n Tj S Fj)|H0j,K0j} < a.

Theorem 1 requires that the set of estimators in the first stage and the set of estimators in the
second stage are jointly asymptotically independent, under the joint null hypothgsi&;. This
is a rather restrictive condition. For mutually independent featitfgs this condition reduces to
uncorrelated); andd,;. WhenX,; are correlated, we show in Section 3 that there are situations
where two sets of estimators are jointly asymptotically independent,/¢;dgs on testing interac-
tions of X;; with a randomized treatment assignmeit andK; is on the marginal effect ok ;;.
Theorem 1 applies regardless of the scale of hypothesis testing. When testing is high dimensional,
the conditions can be relaxed as long as there is weak dependence Emong

THEOREM 2. In high-dimensional hypothesis testing, if the asymptotic distribution of @j and
0; are multivariate Gaussian and they are uncorrelated, i.e.,

Cov (\/ﬁ(ﬁj - 19]'), \/ﬁ(éj - HJ)) —p 0 vV je€ {1, ...,m},

and ¢ —,, vy, the proposed two-step procedure preserves FWER at the level o for large m and n
in the strong sensg, i.e., for any non-empty indexset J C {1,2,...,m}

limy,— osolim, oo Pr {Uje_](TJQ S F? NT; e Fj)|H0j,K0j} < a.

Theorem 2 requires marginal asymptotic independencé“]Bfande under the joint null hy-
pothesis, which is satisfied for numerous examples in Section 3. The conditions required to obtain
0 —, o are those required by the Law of Large Numbers (LLN) for correlated data. For instance,
if

Cov[I(T) € TYHY), I(T} € TR|HY)] — 0,
when|j — k| gets large, then the LLN for a sequencel¢f} € I'9|K?) holds asn — oo (White,
2001). This type of serial correlation is exactly the linkage disequilibrium pattern observed in
human genome (The International HapMap Consortium, 2005).
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4 J.Y. Dai, M. LeBlanc, C. Kooperberg, and R.L. Prentice

Note that both theorems indicate strong control of FWER under the joint null hypottiéses,
andK;. The reason is that under the joint null, the test statigtftandT} are the centered z-scores

\/ﬁ(éj —Gj)/\/VTQ, \/ﬁ(ék —ﬁk)/\/VTwhich are proved to be independentin the Appendix. Under
the alternative hypothesis, our simulations suggestijﬁaande are approximately independent
as well (results not shown).

With minor modification, we can show that when a fixed top features, rather than a fixed
rejection region, are selected for the second-stage testing, we still have strong control of FWER.
Details are omitted. Certainly for such two-stage procedures to be useful, they should have more
power than a Bonferroni correction for all features. One necessary requirement is that alternative
hypothesisi; should implyK, so that a true alternative should pass the first-stage filtering if the
sample size is sufficiently large. For example, a non-zero interaction would suggest a non-zero main
effect unless the subgroup effects exactly cancel out. Moreover, the screening Sl’;?t'sltiould
ensure that there is high power féf; to pass the filtering. We will discuss this point further in
simulation studies.

3. Asymptotically independent statistics

We now discuss asymptotically independent statistics and review a number of examples in two-stage
hypothesis testing. To establish the asymptjatict distribution ofd andé, it is necessary to study

their behaviour under (potentially) misspecified models, since the model index}enhby disagree

with the model indexed b@, e.g., a model is misspecified if it only includes marginal association
parameters when actually there are interactions. Maximum likelihood estimation under misspecified
models was discussed in White (1982). Bebbe the set of parameters in the model indexed by

and lety denote the set of parameters in the model indexed.dyet >, U;; = 0 be the set of
estimating equations solved fér and letd)""" , Uz, = 0 be the set of estimating equations to be
solved ford. Suppos# is the unique solution to the estimating equatiof§g] = 0, where E
denotes expectation under the true distribution. Similatly the unique solution to the estimating
equations HJ ;] = 0. Thend —,_,. ¥ andd —, ;. 6.

Let A; = E[&Ull/ae], Ay = E[aUgl/a’ﬁ], and By = E[UkiUk/i]y k, K = 1,2. With
suitable regularity conditions (White, 1982) it can be shown {Mﬁ(@ —60) and \/ﬁ(ﬁ —9) are
asymptotically equivalent td; 'n='/23"" | Uy, k = 1,2. For eachk, the random vectol/; is
i.i.d. with zero mean, but for the samel1; andU »; are possibly correlated. Theint distribution
of 9 and@ is established by the Cramer-Wold device. Lbt a vector of 2 scalars, andis.

6-0) ATtnm Y2 Uy,
ol A = tT( L ) ol
< V(9 —9) AyInT2NT Uy (1)
= BAT'TY2Y UL 4 1A T2 " Usi 4 0,(1)
=1 =1
—q N(0,12AT By AT + 1345 Bog Ay 4 26112 AT Bia Ay 1)

This leads to the conclusion that the limiting distribution(qf/ﬁ(g —6),/n(¥— 19)) is multi-
variate Gaussian with zero means and covariance matrix

AT'BL AT ATIBASY ] )

A7 Boi ATY AT 'Ban ALt
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Two-stage testing procedures via asymptotically independent statistics 5

To assess asymptotic independencé ahdd, we evaluate the off-diagonal element of their covari-
ance matrix,A; ' Bio A, L. This provides a unified approach to evaluate asymptotic independence
among examples as followed. We first consider marginal independence between two estimators.

3.1. Marginal independence

Example 1: Consider a simple random sample with a continugus.g., a quantitative trait such as
blood pressure, and a collection of high-dimensional featireEhe interest is to identify pairwise
interactions between two features, sgyand X5, onY in an ordinary least square regression,

E[Y[X1, Xa] =70 + 71 X1 + 72X + 13X1 Xo. )

There are(g*) pairwise interactions, which can be computationally infeasible to assessrwigen
large. Kooperberg and LeBlanc (2008) suggests filtering out features without evidence of marginal
association (MA) in a univariate regression,

E[Y[X1] = 8o + B1 X1 (3

Let X; denote the design matrix of (2) withx 4 dimension(1, X;, X5, X; X5). Let X5 denote
the design matrix of (3) with 2 columnél, X;). Let Y denote the vector of the outcome variable,
andg = (6o, 51), ¥ = (70,71,72,73)- Since the OLS estimatof$and4 have closed form,

¥ o= (XIX)7X(Y,
B = (Xng)_lX§Y,
we can directly compute their covariance
Cov(5, ) = (XX 1) X{ X (X3 X2) "6,

wheres? is the estimated residual variance under (2). Note that

(XTx ) 'xTx, =

oo o+
SO = O

becausé X? X,)"'XT X, = I and X, are contained ifX ;. Hence

XTX) X Xo(XTX) = | |
0 0

This implies that3; and~; are uncorrelated, and hence independent for a normally distriited
at any sample size.

Example 2a: Consider a case-control study for a binary outcorhe A collection of features

X were sampled retrospectively conditional ¥n The interest is to identify features that have
pairwise interactions, similar tBxample 1. The standard approach is to fit a logistic regression
with interactions,

logit{ E[Y | X1, Xo]} = 70 +mX1 + 72X + 13X Xo. (4)

Hosted by The Berkeley Electronic Press



6 J.Y. Dai, M. LeBlanc, C. Kooperberg, and R.L. Prentice

Similarly, Kooperberg and LeBlanc (2008) proposed to filter out features without much marginal
association in a univariate logistic regression,

logit{E[Y|X1]} = B0+ 81Xy, (5)

though the proof was not shown explicitly.
Let 3, v, X1 and X, be defined as ikExample 1. DenotelU ; the score functions for (4) and
U ,; the score functions for (5). Note that

U, = Xll‘(}/i_ED/;'XlivX?i])?
Uy = XY — E[Yi|Xu)).

In case-control sampling, the likelihood is the retrospective distributions of covariates conditional
on disease status. Remarkably, if a standard logistic regression is fitted to case-contrs)| ath,
A1, 42,3 are the semiparametric maximum likelihood estimators even though biased sampling is
ignored (Prentice and Pyke, 1979). The score functions for regression coefficients from the profile
likelihood are the same d$,; andU 5; except for the intercepts.

We evaluate the terms in the covariance matrix (1). Observe that

A = E{(XTX0EYIX)(1 - EYIX.)
By = E{(XquTi)(Yz' — E[Y;| X 1:]) (Vi — E[Yv:|X21'])} :
Ay = E{(X;.X%)E[WX%]U - E[Y71|X21'])}-

Thus by the Central Limit Theorem and Slutsky Theorem,

A1_1B12A2_1 = XTXQ)(XTXQ)

Z [Yi| Xi](1 E[YHXM])])

=1

3|'—‘

Z Y; — E[Yi| X 1)) (Y; — E[Yi|X2i])>

1

<.
3 |l

TJI'—‘

N TN N =
S|
3

E[Yi| X2:](1 E[WX%])]) +op(1).

=1

We have thus shown that

(XTX1) 7' XT Xo(X5X2) ' = 0 0
0 0
Therefore the lower half submatrix af ' B, A5 ! is 0. This implies that); and+; are asymptoti-

cally uncorrelated, and thus asymptotically independent.

Example 2b: A variation of Example 2a is to replace the standard estimators of interactions in
(4) by the so-called “case-only” estimators (Piegorsch et al., 1994; Umbach and Weinberg, 1997),

http://biostats.bepress.com/uwbiostat/paper3ee



Two-stage testing procedures via asymptotically independent statistics 7

when the disease is rare and the two covariates, such as a gene and an environmental variable,
are independent in the population. Despite the substantial efficiency gain, case-only estimators are
generally sensitive to departures from gene-environment independence assumption (Albert et al.,
2001). In genetic studies within randomized clinical trials (RCT), however, there exists indisputable
independence between the treatment assignment and baseline covariates, including genetic variants.
Henceforth, we focus on treatment-genotype interactions in a RCT.

Consider a randomized clinical trial witN subjects. Lef; denote the indicator variable of
whether thei*” subject acquires a disease= 1,..., N. Assume that R¥; = 1) ~ 0. Let Z;
denote the indicator variable of whether the treatment or the control assignment is received. Let
X = (Xy,...,X,,) denote a collection of high-dimensional features,> N, e.g., SNPs in a
whole-genome association study Xfwere to be measured for every participant, the joint density
(Y;, Z;, X;) is fromi.i.d. random variables. However only a proportion of cases and a proportions of
controls are sampled to colle’t. We consider two logistic regressions: one regression consisting
of Y on X, in cases and controls as in (5), the other consisting oh X; in cases only:

Following the same notations, for th& subject, the score functions can be expressed as followed:
Uia = Xu(Y:i— EYi| X)),
Ui = X1(Zi—E[Zi|X1:,Y; =1])1y,=1,

where X ,; is the design vectofl, z1;). Note thatU,;» = 0if Y; = 0. The covariance o;él and
01 can again be derived using estimating equation theoryslet(gy, £1) and~y = (4, J1). Note
that

Bu = E{XuXL(Y: - EVi|X1))(Z — EIZ| X1, Yi = 1)1pvima |
— Pry; = 1)E{XuX1Ti(1 —PHY; = 1/ X1])(Zi — E[Z)| X1, Y; = 1])}
= Pr(Y; = 1)EX1\Y:1 {XMX,{Z(l — Pr[Y; = 1|X1i])EZ\X1,Y:1 (Z7 — E[Z7|X1“Y; = 1])}
=0

The second to the last equation use the law of iterated expections. Hence the off-diagonal of the
covariance matrix is zero and the proof is complete.

Example 3: So far we assume that features that have interactions should also manifest some main
effects. Counterexamples can be constructed, e.g., two environmental groups with opposite signs
of genetic effects. Another set of screening statistics can be developed to avoid this problem. In the
rare-disease scenario considereBxample 2b, the association betweeghand a featureX; in the
combined case-control sample may reveal some clues on interactions. Let

|Og|t{E[Z|X1]} = 70+71X1. (7)
logit{E[Y'|X1,Z]} = o +mnX1+7Z +3X12 (8
The rationale is as followed: when the disease is rare, we expect tothav&’; in the controls. If

there is interaction between and X, Z and X; are dependent in the cases. Due to oversampling
of casesZ and X; are dependentin the combined case-control sample. Thus we can select the top
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8 J.Y. Dai, M. LeBlanc, C. Kooperberg, and R.L. Prentice

features from the regressigh~ X; for further interaction testing. This is somewhat similar to two-
step procedures previously proposed for gene-gene (Millstein et al., 2006) and gene-environment
interactions (Murcray et al., 2008), though confounding of the gene-gene or gene-environment in-
dependence is always an issue in observational studies. Intuitively, because we have not used the
disease informatioli” to guide the screening, we do not have to spend type | error in screening. The
formal proof can be pursued similarly by estimating equation theory.

Following the notations ifExample 2b, two sets of estimating equations are

Un = Xi1.(Z;— E|Z;| X)),
Uso = X1,V — EY:| X, Zi),

whereU ;; is the score function of (7) anld ;, is the score function of (8). So
By = E{X17X£(Z7—E[Z7|X11D(Y; —E[Y;|X177Z1])}

= Ezx {XMXE(Zi ~ E[Z|X1))Ey, 7 x (¥ - E[Yi| X1, Zi])}
= 0.

The derivation uses the law of iterated expectations, similar to thExample 2b. Hence the
off-diagonal of the covariance matrix is zero and the proof is complete. Interestingly, asymptotic
independence does not hold when we use the case-only estimators for interactions in the second
stage. The reason might be that the information of rare diseases and the independence has been
used in formulating the first-stage estimator (7), therefore it cannot be used again in forming case-
only estimators.

Note that asymptotic independence also holds betweemd4;. So it is possible to test for
main SNP effects in the control arm. Moreover, the same proof applies if (8) is replaced by any
regression model witlk; andZ as covariates, including

logit{ E[Y'| X1, Z]} = 1o + m X1 + m2Z. 9

so that the adjusted effect &f; could be the test of interest after being filteredrpyn (7). SinceZ
is the randomized treatment assignment, the adjusted effegproximates the marginal effeét
in (5). As7; essentially assesses deviation from baseline independence (DBI) befvamelX ; in
the case-control sample, we call it the “DBI” criterion hereafter. These results suggest thatin a RCT
with a rare outcome, we can use the criterigrz 0 in (7) to screen for SNPs with (adjusted) main
effects in (9) or (8), and SNPs with interactions with the randomized treatment in (8). In Section 5,
we show in a data example in which using DBI in screening led to some interesting discoveries in
adjusted SNP effects.

The utility of DBI can be extended to scenarios where the disease is not rare and there is a known
treatment effect. We state this in the following Lemma.

LEMMA 1. Suppose a case-control sample was drawn from a randomized clinical trial with a
binary disease outcome Y and a binary treatment assignment Z. Suppose either one of the follow-
ing two conditions holds: (a) the disease is rare; (b) the disease is common and Pr(Y'|Z, X) #
Pr(Y|X), i.e, thereis a treatment effect conditional on X. Denote by R the indicator of being
selected into the case-control sample. For a baseline predictor X, if we observe that

Pr(Z|X,R=1)#Pr(Z|R = 1),

then
Pr(Y|X,Z) #Pr(Y|2).

http://biostats.bepress.com/uwbiostat/paper3es



Two-stage testing procedures via asymptotically independent statistics 9

The proof is straightforward and left to Appendix. In Section 4, we compare the powers of two-
stage procedures using MA and DBI under both rare-disease and common-disease scenarios.

Example4: In RCTs, study endpoint is often time-to-event and primary inference is often based on
the Cox proportional hazard model by partial likelihood. The score functions for partial likelihood
take a specialized form and the arguments used to show independence in the previous examples do
not apply. When the endpointin a RCT is rare, however, we show below that the estimator for MA
in a Cox model is asymptotically independent of a case-only estimator for interaction.

We switch to survival analysis notations for this example. Under the proportional hazard model,
the hazard function for the failure tin}é associated with covariaté&, X, ZX) is

AY; Z, X) = Xo(y) exp(BoX + /1 Z + 22 X),

where S, is the main effect of genotyp&’, ; is the main effect of treatmerif, 3> is the in-
teraction, and\, is an unspecified baseline hazard function. WHhers subject to independent
right-censorship, we obserie= min(Y, C') andA = I(Y < C), whereC'is the censoring time.
Let (T3, A, Z;, X;), i = 1,...,n ben independent replicates. Then the partial likelihood function
for B = (5o, 1, 1) is

Ay
e exp(8' X))
1= E { Sy Ri(Ty) exp(B'X) } ’

whereX; is the3 x 1 design vectorR;(t) is the at-risk indicatod (7; > ¢). The corresponding
score function equals
" SW(B, X;)
=) Ay Xi— oA (e

whereS()(8,t) = 37| R;(t)exp(8'X ;) andSM(B8,1) = 7| R;(t)exp(8'X ;) X ;. If we

fit a Cox model with only the marginal effect &f, the model may be misspecified. Letienote the

MA parameter in the Cox model. Under misspecified Cox models, the robust variance-covariance
estimator fora is A~ (&) B(&)A~* (&) (Lin and Wei, 1989), wher&(a) = "7 | W;(a)W;(a)’,

W) Ai{Xi_M} ZAR( >exp<aX>{Xj_M},

5 (a, X,) 750 (a X,) SO0, X,)
~ a, Xi)  SW(a, X;)5W (a, X;)'
and A(a) = X_;Al{s(m 59 500 (0, X, )2 }

Let s (a, t) = E[ST) (a, )], r = 0,1, N;(t) = I{T; < t,A; = 1}, N(t) = 3 Ny(¢). Lin and
Wei (1989) showed that=1/2 """ | W;(«) is asymptotically equivalentto=1/2 """ w; (),

b sW (o, Xi) Ri(t) exp(a’X;) sW(a,t)) =
wte = [ = sy v [ e S e
whereF, (t) = N(t)/n andF(t) = E[F,(t)].

Now suppose one wishes to assess and compare the treatment hazard ratios stratified by the
genotypeX = z valued at0,1,2. The hazard rate at tim& = ¢ from randomization, may be
specified as

AMt; Z, X) = Moz exp(B1Z + 22X),

Hosted by The Berkeley Electronic Press



10 J.Y. Dai, M. LeBlanc, C. Kooperberg, and R.L. Prentice

so thatexp(/;) is the treatment hazard ratio for subjects with= 0, andexp((3;) indexes an
additive interaction for subjects with= 1, 2.
Observe that

P(Z=1T=t,X)  PHT=tZ=1X)P(Z=1z)
P(Z=0/T=t,X)  Pi(T=tZ=0,X)P(Z=0X)
PHT > t|Z = 1, X)P(Z = 1|z)
_ 7+ Bz X
PH(T > 112 = 0, X)PZ = 0|x) "I T+ hZX)
_ PHZ=1T >1,X)
= PZ=oT st x) P LT RIX).

Z and X are independent by design, the event is rare and censoring rates are equal in two arms, it

will follow that
PrZ =1|T > t,X) q

P(Z=0T>tX) 1—q

to an excellent approximation, wheyés the fraction of the trial cohort assigned to the treatment. It
follows that the; andgs can be estimated using logistic regressiowain X with log(q/(1 —q))

as an “offset”. Though estimated by a logistic regression, these estimators have a hazard ratio
interpretation in this context. Note that this version of case-only estimator allows for estimation
of treatment hazard ratio in each subgroup, not just the interaction parameter in “standard” case-
only estimators in logistic regression (Piegorsch et al., 1994). See Vittinghoff and Bauer (2006) for
related work.

Let u;(3) denote the estimating functions for this case-only estimator. Following the same
argument we used iBxample 2b, Efu;(8) w;(a)] = 0. Briefly, observe that;(3) is based on the
distribution of Z| X, A = 1 whenA = 1, and is zero otherwise. On the other haagl,is on the
distribution of X|A. This leads to zero asymptotic covariance foand 3. We thus show that in
RCT with a rare endpoint, the estimator of the marginal association in a Cox model is independent
of the case-only estimator of the interaction. This result can be extended to Cox-model marginal

association analyses based on such cohort sampling techniques as nested case-control and case-

cohort sampling.

3.2. Joint independence
For two sets of asymptotically linear estimators, for instar{qfﬁg,j =1,...,m}and{4sr, k =
1,...,m}, joint independence implies théij and#s are uncorrelatedj, k, since their joint dis-
tribution is multivariate Gaussian. This is a much stronger condition than no marginal correlation
betweenﬁlj and+s; for the samej. In fact, pathological examples can be constructed to show
that merely marginal independence in the two set of estimators could yield inflated FWER when
m is small. In randomized clinical trials, however, joint independence can be achieved for esti-
mators inExample 2a and 3 when the randomized assignmenitis involved, whether data are
from the full cohort or a case-control sample. Next we show the proof for joint independence of
{B1j,5 =1,...;m} in (5) and{%sx, k = 1,...,m} in (8).

Let Z denote the mean df;, and letX; denote the mean of;;. We consider logistic regres-
sions with centered versions &f;; andZ;:

logit{ E[Y;| Xit]} = Bok + Bue(Xix — Xi),
logit{E[Y;|X,;, Z]} Yoj +15(Xij — X)) + 725 (Zi = Z) +v35(Xij — X;)(Zi — 2).
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Again let3;, = (Bok, 1x) andvy; = (Y05, 715,725, 735)- Following the same notations Example

2a, whereU;; denote the score vector fet, U;, denote the score vector fgr. Denote byV the

covariance matrix of3;, and~v;, V.= Ay !B, A5t Forj # k, not every element 0By, is 0.

However, it is easy to see that the Iower half of this 2 matrix is 0. Denote byB, ;- the element
of By in thel*” row and the’t" column. Then

Biozi = E{ (Zi — 2)(Y; — E[Y;| X5, ])(Y7—E[Y1|X1k])}
= E[(Z - 2)[E{(Y; - E[Yi|Xi;, Z:])(Y: — E[Y;|Xu])} = 0,
Bia = E{(Zi—2)(Xi — X;)(Yi - E[Y}| X, Z,])(Yi — E[Yi| X)) }
= EZ - ZIE{(Xy; — X;)(Yi — E[Yi|Xy5, ZI)(Y: — E[Yi| Xu]) } =
Biag: = E{(Zi—2)(Xix — X3)(Yi — E[Yi|Xij, Z:]) (Y — E[Yi| X)) } = 0’
Biase = E{(Zi— 2)(Xir — Xp)(Xij — X;)(Yi — E[Yi| Xy5, Z:]) (Vi — E[Yi|Xix]) } = 0.

Similarly, we can show that the off-diagortak 2 submatrices ofi; are 0. A little matrix algebra
yields Va3 = Vs = 0. Thus we proved the asymptotic independencef and 35, Vi F#
k. We have shown previously the asymptotic independen({ﬁpﬁnd%j. This leads to strong
independence off,;,5 = 1,...,m} and{4sx, k = 1, ..., m}.

Note the same proof applies to the estimatorExample 3. As Theorem 1 stated, joint inde-
pendence establishes strong control of FWER by a two-stage procedure, regardless the number of
tests. As such, in a RCT where there are a number of baseline covariates, we could use both MA
and DBI to screen for interactions between treatment- and baseline covariates.

3.3. A counterexample

We review a counterexample in which the independence of two statistics does not hold, so that
an adaptive two-stage procedure would fail to preserve the type | error. This example pertains to
choice of the estimator for a gene-environment interaction in an observational study. The case-only
estimator is efficient, yet the required gene-environmentindependence is often subject to confound-
ing. A naive adaptive procedure is to first test the independence of gene and environment factors
in the controls, then use the case-only estimator or the standard interaction estimator when the first
hypothesis is not rejected (Albert et al., 2001). Following the notatioisxample 2b, let Z de-

note the environmental factor add denote the genetic factor. We note that in the following three
regression models,

logit{E[Z|X,Y =0]} = wvy+ 11Xy,
logit{ E[Y'| X, Z]} Yo +NnX +72Z + 13X Z,
logit{E[Z|X,Y =1]} = d+nX

v is independent of; since they use different data, yatis not independent of;. So using; to
decide whether to us®; or 4, will incur an inflated type | error (Albert et al., 2001).

4. Simulations

We first examine empirical correlations of various pairs of statistics in small samples by simulation.
We generated 20,000 simulated datasets from the logistic regression model (4), in which parameters
arey = (—1,0,0,~3) with varying levels of interactionss = 0,0.5, or 1. The sample sizes of

the simulated datasets were 200, 1000, and 5000and X, were generated as bivariate normal
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12 J.Y. Dai, M. LeBlanc, C. Kooperberg, and R.L. Prentice

Table 1. The empirical correlations for the marginal effect 1 and the interaction 43 in Example 2a
with simple random sampling among 20,000 simulated data. X; and X» have a standard bivariate
normal distribution with varying degree of correlation. The parameters are from the following
models: 31: logit{E[Y'|X]} = 8o + 81X, v3: 0git{E[Y|X, Z]} = y0 + 11X + 12 Z + 3 X Z.

n = 200 n = 1000 n = 5000
Estimator Z-score Estimator Z-score Estimator Z-scpre
v3 =0 conXi,X2)=0.0 -0.014 -0.014 —0.007 -0.008 —0.003 -0.004
cor( X1, X2)=0.4 —-0.019 -0.017 —0.006 —0.006 —0.001 -0.001
cor( X1, X2)=0.8 —-0.018 -0.015 —0.005 -0.006 0.001 0.001
3 =0.5 conX1, X2)=0.0 —0.007 -0.009 —0.007 -0.007 —0.007 -0.007
cor( X1, X2)=0.4 0.008 0.007 0.002 0.003 -0.010 -0.009
cor( X1, X2)=0.8 0.004 0.004 -0.011 -0.010 0.004 0.005
v3 =1 conXi,X2)=0.0 —0.001 -0.002 0.005 0.006 0.005 0.005
cor( X1, X2)=0.4 0.008 0.008 —-0.011 -0.011 —0.018 -0.018
cor( X1, X2)=0.8 0.003 0.005 -0.007 -0.007 -0.019 -0.019

distribution with means 0 and variances 1. We introduced geafcorrelation betweeli; and X,
from0t0 0.8. Table 1 shows the empirical correlation®fandys, and empirical correlation of their
corresponding centeredscores in various parameter settings. The centered z-score is the centered
estimator (estimator substracted by the mean), scaled by the sandwich variance estimator. Clearly
even with a sample size of 200, the asymptotic independence holds fairly well across different levels
of interactions and different levels of covariate correlations.

We also simulated case-control samples that are nested within a randomized clinicBxtrial (
ample 2b and3). A binary randomized treatment variable was generated Bam(0.5), the SNP
has minor allele frequency 0.2 and diploids were formed assuming the Hardy-Weinberg equilib-
rium. The logistic regression model (4) with= (—4.5,0, 0,3) was used to generate the disease
data forN = 2 x 10%,10%, 5 x 10°. The marginal disease probability is around 0.01. Again we
varied the size of interaction &t 0.5 and1. The sizes of the second-stage case-control samples
are approximately 400, 2000, 10000, with a 1:1 case-control ratio. Table 2 shows the empirical
correlations of various statistics in 20,000 simulated datasets. With sample size 400 and beyond,
the correlation of various pairs of statistics is fairly close to zero as theory predicts. The pair of
statistics in the counterexample display a consistent correlation areuigdconfirming that using
such statistics in an adaptive testing procedure would yield an inflated type | error.

In Table 3, we assess the empirical FWER over 1000 simulated datasets, each containing 10,000
SNPs for 1000 subjects. The minor allele frequencies were randomly generated from a uniform
distribution from 0.1 to 0.5. The SNPs are either independesrt (.5) or have a serial correlation
(p = 0.5). A binary treatment assignment was randomly generate@by(0.5). The binary
disease status was generated by the logistic model (8 ywwith(—4, 0,0, 0) or (—4, 0, log(1.5),0),
the latter assumes a mild treatment effect. Various two-stage procedufgarmle 2a, 2b and
3 were applied to screen for main effects or interactions wigk 0.001,0.01, or 0.1, anda =
0.05. For each pair of statistics, we alternated the screening statistics and the testing statistics. For
example, we could use interactions as screening criteria for testing main effects. Across all settings,
FWERs are controlled at the level of 0.05; as expected, none of them falls outside of 95% confidence
intervals of 0.05.

We study in Figure 1 and Figure 2 the power performance for the procedures in simulations
with half a million independent SNPs, one of which is true alternative hypothesis and the rest are
all nulls. The SNPs were generated based on Hardy-Weinberg equilibrium. The simulation was
designed with a case-control study nested in a randomized clinicalEsah{ple 2b and3). The

http://biostats.bepress.com/uwbiostat/paper3ee



Two-stage testing procedures via asymptotically independent statistics 13

Table 2. The empirical correlations of various statistics in Example 2a-3 with case-control sampling among
20,000 simulated case-control data.The parameters are from the following models: g:: logit{ E[Y | X]} =
6() + Ble Y3: |Og|t{E[Y|)(7 Z]} = Yo + ’le + ’YQZ + ’YJXZ, 01: |Og|t{E[Z|X,Y = 1]} = 0o+ 01 X; 11:
logit{E[Z|X]} = 70 + 1 X; v1i: logit{E[Z| X, Y = 0]} = vo + 1 X.

n = 400 n = 2000 n = 10000
Estimator Z-score Estimator Z-score Estimator Z-scpre
v3=0 [1:73 —0.004 -0.003 0.002 0.003 0.003 0.00B3
6161 —0.004 0.002 0.001 0.001 -0.001 -0.001
T Y3 —2e-4 —0.001 0.003 0.003 0.001 0.001
T M 0.001 0.002 —-0.004 -0.004 —0.003 -0.004
vy —-0.702 -0.703 —0.706 —0.706 —-0.709 -0.709
3 =05 (173 —0.008 -0.006 0.005 0.005 0.006 0.006
6101 —0.004 -0.004 0.002 0.003 0.008 0.008
T Y3 —-0.018 -0.019 2e-4 0.001 -0.004 -0.004
T M 0.016 0.019 -0.001 -0.001 0.007 0.007
Vil —-0.720 -0.722 -0.719 -0.726 -0.719 -0.719
v3=1 [1:7s —0.010 -0.005 0.005 0.006 —-0.016 -0.016
6101 —0.009 0.004 0.013 0.014 -0.012 -0.011
T Y3 -0.012 -0.011 0.005 0.005 —-0.004 -0.004
T Y1 0.006 0.010 0.004 0.005 0.002 0.002
Vil ys -0.701 -0.705 —0.705 -0.706 -0.701 -0.701

Table 3. The empirical FWER in 1000 simulations. 10,000 SNPs are simulated for 1000 cases and
1000 controls by case-control sampling. SNPs are generated either independently or with serial
correlation 0.5. The disease status is generated by the logistic model (8). The parameters are from
the following models: 51, I0git{ E[Y' | X ]} = Bo+ 81X 73, I0git{ E[Y| X, Z]} = yo+11 X +72Z+v3 X Z;
01, logit{E[Z|X,Y = 1]} = do + 61 X; 71, logit{ E[Z| X} = 70 + 1 X. S1 — 73 indicates using (3 for
screening, and ~s for testing.

v =(—4,0,0,0) v = (—4,0,log(1.5),0)
ap=0.001 a =001 a@=01 a=0001 a =001 a=0.1

p=0 (1 —3 0.037 0.045 0.050 0.050 0.046 0.043
vz — [1 0.043 0.036 0.042 0.048 0.045 0.0%4

b1 — 61 0.042 0.051 0.043 0.041 0.030 0.037

01 — (1 0.044 0.049 0.034 0.038 0.043 0.060

ar — 3 0.042 0.047 0.032 0.042 0.035 0.034

a1 —m 0.036 0.033 0.047 0.036 0.036 0.026

p=05 [1 — 3 0.044 0.046 0.046 0.053 0.040 0.0%9
vz — [1 0.046 0.048 0.050 0.043 0.040 0.047

B — 0 0.052 0.050 0.043 0.051 0.051 0.044

01 — (1 0.057 0.044 0.051 0.043 0.051 0.045

ar — 3 0.041 0.034 0.039 0.046 0.045 0.046

ar — M 0.047 0.037 0.048 0.045 0.043 0.040
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Fig. 1. Power to detect the treatment-SNP interaction using two-stage procedures in simulations.
Assuming one of 1 million SNPs carries disease risk, the risk model takes form of logit{ E[Y'| X, Z]} =
Yo + 11X 4+ 12Z + v3X Z. The parameters are from the following models: MA - 31, logit{E[Y' | X]} =
Bo + (1 X; Standard Interaction - vs, logit{ E[Y'| X, Z]} = v0 + 11X 4+ 72Z + 13X Z; CaseOnly - §1,

|Og|t{E[Z|X,Y = 1]} = 60 + 61X; DBI - 11, |Og|t{E[Z|X]} =71+ 71X.
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Fig. 2. Power to detect the SNP main effect using two-stage procedures in simulations. Assuming
one of 1 million SNPs carries disease risk, the risk model takes form of logit{E[Y'| X, Z]} = v +
v1X + 72Z 4+ v3XZ. The parameters are from the following models: MA - 31, logit{E[Y|X]} =
Bo + B1X; 3, Standard Interaction - logit{E[Y'| X, Z]} = v + 71X + 72Z + 73X Z; Case-Only -
01, logit{E[Z|X,Y = 1]} = do + 6:1X; DBI - 71, logit{E[Z|X]} = 70 + 1 X; Adjusted MA - 7,
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randomization ratio to the treatment arm and the control arm is 1:1, and the case-control sampling
ratio is also 1:1. The power was computed as the percentage of simulations where the SNP with the
signal was declared to be significant in 10,000 simulations. With almost half a million null tests, the
number of tests passing the first stage criterion would vary little fremg, so we used the second
stage cut-offC' _, /2ma,) as if it was fixed in every simulation. We devised various parameter
settings and a range af, to study the full spectrum of operating characteristics.

Figure 1 shows the power to detect an interaction between the signalSN\in(d the treatment
7. Denote byN the total sample size, the sample size for the case-control samplis,the minor
allele frequency of the target SN#,is the vector of parameters in the model (8) that generates the
data. Across 4 graphs, the red curve is the power of screening main effe;é;stmfore testing
interactions using the case-only estimatﬁr),(for ap valued from 0.00001 to 0.1; the black curve
is the power of screening by main effedisbefore testing interactions using the standard estimator
(43); the green line is the power of screening by DBlbefore testing interactiory). The red
horizontal dotted line is the power of testing for case-only interactions by Bonferroni correction for
half an million test; the black horizontal dotted line is the power of testing for standard interactions
by Bonferroni correction for half a million tests. These two dotted lines provide benchmarks for a
comparison of power.

In Figure 1(a),N = 50,000,n = 1000,p = 0.1, = (—4,0,0,log2). The marginal disease
probability is around 0.02. Clearly, the case-only estimator provides a substantial lift of power on
top of the standard interaction estimator. The two-stage procedure with MA and case-only estimator
yields substantial power improvement over other procedures. The two-stage procedure with DBI
and standard interaction estimators is slightly outperformed by first screening main effects. In Fig-
ure 1(b),N = 50,000,n ~ 1000,p = 0.2,v = (—4, —0.5log2, 0,log2), so that the interaction
between the treatment and the SNP is qualitative, i.e., the sign of the SNP effect differs in different
treatment groups. The main effect of the SNP is negligible, which lead to poor power performance
of the two-stage procedures using main effects for an initial screen. The two-stage procedure us-
ing DBI avoids the cancellation of opposite SNP effects, thus yields a noticeable power gain over
the two-stage procedures using main effects. The best procedure in this scenario is, however, the
case-only estimator with Bonferroni correction (the dotted red line), suggesting that in rare disease
settings, case-only estimators are preferable wherever possible. We sEaxample 3 that DBI
can be extended to settings with common diseases, as long as there is a treatment effect. In Figure
1(c), N = 50,000,n ~ 1000,p = 0.2,v = (—2,0,—1log1.5,log2). The disease probability is
roughly 10% and there is a mild treatment effect and a strong interaction effect. Case-only esti-
mators are no longer eligible, yet the two-stage procedure using MA to filter still performs better
than the two-stage procedure using DBI, both improving upon the standard interactions. In Figure
1(d), N = 50,000,n ~ 1000,p = 0.3,y = (-2, —log1.8,log 1.5,log2). There is a qualitative
interaction and thus a small marginal SNP effect, hence the two-stage procedure using MA to screen
has little power to detect the true interaction, while screening by DBI in this scenario yields much
better power.

Figure 2 shows the power to detect the SNP effect using two-stage procedures either using
interaction or DBI as the screening criterion. The labels for various procedures are similar to those
in Figure 1, except that the SNP effect, either marginal or adjusted for treatment, is of interest after
screening. In Figure 2(a}y = 50,000, n ~ 1000,p = 0.1,y = (—4,log1.5,0,log 1.5). Clearly
in this setting, the best procedure is to test the marginal effect directly, two-stage procedures using
either interaction or DBI in screening does not perform comparably. The reason is that testing for
interaction, even with case-only estimator, is more costly to sample size than testing for main effect,
therefore screening by interactions for marginal effects does not help when there is a moderate size
of interaction. In Figure 2(b)NV = 50,000, =~ 1000,p = 0.1,y = (—4, — log 1.8,10g 0.8, log 2).
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Since the marginal SNP effect is small and the interaction is fairly big, using interaction or DBI
to find marginal effect yields much better power than one-stage Bonferroni correction for MA or
adjusted MA.

Taking collectively, each of the proposed two-stage procedures has unique niche in power per-
formance. There are situations where none of them improves power upon the one-stage all-SNP
Bonferroni test, see Figure 1(b) and Figure 2(a). It is useful to screening by MA for interactions,
since testing main effect is generally more powerful than testing interaction, so that a SNP having
interaction is likely to have high probability to pass the filter. However when there are qualitative
interactions, which might be not common, the two-stage procedure using MA does not perform
well since the marginal effect is small. The DBI criterion offers an alternative screening procedure
which can improve power in this setting, see Figure 1d. It appears less useful to screen for marginal
effects by interactions or DBI, unless there are qualitative interactions (Figure 2(b)). In any case the
marginal effect is usually of primary interest, so we may well have good power to test all SNPs.

4.1. optimal «ag

Clearly in Figure 1 and 2, an optimal can be achieved, since more tests passing the first stage
will incur more penalty by Bonferroni correction. For simulations with half a million SNPs in
Figure 1 and 2, the optimal, for power performance is fairly small, in the range(o001 ~
0.001. Analytically, it is possible to find the optimaly for a hypothesized disease risk model and

a sampling plan, since power to detect a feature can be written out approximately,

PI’(TJQ S F?,Tj S Pj|H1j) ~ PI’(TJO > Cl_a0/2|H1j)Pr(Tj > Cl—a/(2ma0)|H1j)~

With prior assumptions on an alternative hypothesis, the asymptotic distributiﬁfl ahd7); un-
der Hy; can be derived for a fixed sample size, so that an optigatan be computed. Alter-
natively, power simulations can be conducted using our R-pagiager GAASI nt er act i on
from CRAN to obtain the optimal,. In any case, it is important to note that we need taxgdixed
before performing hypothesis testing. Data-adaptive selectiog @fill undermine error control.

5. Data application

The Women'’s Health Initiative (WHI), one of the largest studies of postmenopausal women'’s health
inthe U.S., is composed of four randomized clinical trials (CT) and an observational study (OS). An
elevated invasive breast cancer risk was found among women assigned to estrogen plus progestin,
with suggestive evidence of risk reduction among women assigned either to estrogen-alone or to a
low-fat dietary pattern. To discover the genetic variants that may influence the risk, perhaps jointly
with the interventions, WHI launched a genome-wide association study with a three stage design
(Prentice and Qi, 2006). In the third stage, a total of 9039 SNPs were selected from previous
stages or other studies, and were genotyped among 2,166 invasive breast cancer cases in the CT
and 1:1 matched controls. Primary analyses have been presented recently (Prentice et al., 2009,
2010). Seven SNPs in the fibroblast growth factor receptdf@HRJ met criteria for genome-

wide significance. Recognizing limited power in detecting interactions, the investigators focused
the search for treatment-genotype interactions to the top seven SNPs ranked by MA (Prentice et al.,
2009, 2010), as well as a number of SNPs that have been reported in the literature to be associated
with breast cancer (Huang et al., 2010). Since invasive breast cancer is a rare event in the study,
the investigators used the case-only estimators descriliexaimple 4. A number of SNPs showed
suggestive evidence of interactions with one or more interventions. The analyses presented here are
exploratory and supplementary to the findings from these primary analyses.
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Table 4. The results of two-stage procedures applied to the WHI GWAS, using DBI as a screen-
ing criterion. Four SNPs out of the top 50 SNPs ranked by the DBI criterion reach statistical
significance in testing the adjusted marginal SNP effect.
rs7705343 rs13159598 rs9790879 rs4415084 i
OR p-value OR p-value OR p-value OR p-valfe

E-alone &; 15823 0.0006 1.5217 0.0014 1.4701 0.0035 1.4269 0.0063
Alltrials 7 1.1672 0.0006 1.1653 0.0007 1.1649 0.0007 1.1695 0.J005
E-alone &, 15231 0.0298 1.4657 0.0444 1.3842 0.0907 1.3832 0.4936

Our results justified the focused search for interactions Bulaset of SNPs ranked by top
marginal association. In addition, we also explored the two-stage procedures using the DBI cri-
terion to look for significant marginal effects and interactidisgmple 3). This is done separately
for each of the 4 randomized trials. In the first stage, we ranked SNPs by p-values for DBI. We
tested for main effects and interactions for the top 50 SNPs ranked by DBI. Among the top 50 SNPs
ranked by DBI in the E-alone trial, there are four SNPs that pass the Bonferroni correction for 50
SNPs in testing for adjusted SNP effect. Table 3 shows the parameter estimates of these 4 SNPs.
The adjusted additive SNP effefit was estimated from case-control data for all 4 trials, adjusted
for matching variables, important baseline predictors and randomization indicators. The effect size
(odds ratio) is fairly modest around 1.16. In the E-alone trial, there seems to be a weak interaction
between the SNPs and the treatment. The effect sizes of the interactions (case-only est)mator
are around 1.4- 1.5.

Interestingly, these four SNPs are all located in Mi@PS30gene which have been shown to
have suggestive evidence of interaction with multiple clinical interventions (Huang et al., 2010),
though the findings there are guided by prior studies. None of them would reach the genome-wide
significance level for either marginal effect or interaction, yet they reach the FWER level of 0.05 for
marginal association by our two-stage procedure. The reason might be that these four SNPs have
weak main effects and weak interactions with the E-alone intervention. The DBI criteria seem to
synthesize these weak effects and prioritizes them for further testing. This data example suggests
that two-stage procedures can be used as data-adaptive tool, as opposed to candidate genes from
prior studies, for discovering novel genes affecting disease risk. Certainly this search strategy only
serves as a supplement to the standard one-stage Bonferroni test, since it missed the seven SNPs in
the FGFR2gene.

6. Discussion

We studied conditions that are required to maintain strong control of FWER for a class of two-
stage hypothesis testing procedures previously proposed. We provided a unified approach to prove
asymptotic independence by estimating equation theory. Two types of screening statistics are dis-
cussed, one is based on marginal association (MA) and the other is based on deviation from baseline
independence (DBI). In the majority of simulation settings, one or both of the proposed procedures
outperform the standard one-stage testing with Bonferroni correction.

The impact of these results is profound to discovering baseline features that influence treatment
effect in a RCT, whether they are low or high-dimensional. In randomized clinical trials, subgroup
analyses are heavily criticized as having low power to detect interactions in general, which could
be further exacerbated by data-adaptive procedures. Our results suggest that one could select pre-
dictors with evidence of MA or with evidence of DBI to test for interactions, without spending type
I error in finding these candidate predictors. We expect that the two-stage procedures will be most
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useful to discovering interaction in pharmacogenetic studies, where it is almost certain that these
studies have low power to detect interactions. In fact, we are involved in a GWA study within the
WHI clinical trials as part of the Genomics and Randomized Trials Network (GARNET) program
(ww. gar net st udy. or g) in which we plan to use this strategy. Using interactions or DBI to
screen for marginal effect appears less powerful in general, at most serving as exploratory supple-
ment to primary analyses. In any case, it is worthwhile to attempt these two-stage procedures and
the standard 1-stage Bonferroni test, while splitting FWER among them.

The asymptotic independence of the two-stage test statistics can be extended beyond the exam-
ples presented. Indeed, for any estimator of parameters in a generalized linear model (GLM), the
score function can be written in a form H(Y — E[Y|X]) = 0. The proof in Section 3 applies
immediately to the independence of estimators of MA and interaction. Thus the proposed two-stage
procedure can be applied to any GLM outcome, e.g., Poisson counts. We sEaaniple 4 that
approximation can be made for survival data in RCT with a rare event, so that the independence
can be carried over to Cox partial likelihood. For survival data with a common event, however, the
proposed two-stage procedures do not work in general. In future study, we intend to investigate the
possibility of asymptotic independence using parametric survival analysis.
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8. Appendix

8.1. Proof of Theorem 1
PrRoOF With mild regularity conditions, standard estimating equation theory imply that

\/ﬁ(ék_ﬁk:) —d N(Oavl)a
Vil —8) —a N(O,Va),

whereV; and V> are asymptotic variances which can be estimated by their respective empirical
averagesl; andV;. By the Law of Large Numbeifi/; andV; are consistent estimators.
Since

Cov (\/ﬁ(ék - 19](7)) \/ﬁ(éj - 9])) —0 asn — o0,
and
Vi(dx —9r) VA, — k) _ 0p(1)
vi VT e
ﬁ(é] — 9]) _ \/ﬁ(éj — 9]) —0 (1)
VVa Vs e
we derive that X
Vn(Vk—Vk)
N v(lo 10
Vi) | ’
o B (H )
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SinceT? = 9y /1/Vi/n andT; = 0, /1/Va/n, this impliesT? andT; are asymptotically indepen-
dentVvy, k under the global null hypothesis.

We now prove the main result. Observe thatis a random variable taking valuestat, ..., m.
LetI, denote a set of distinct integers fron{1, ..., m}, that index the hypotheses passing the filter
in the first stage. LeT;, denote the collection (set) of all possilile Note that

|imn_,DQPF{UjEJ(TJQ S F? NT; e Fj)|H0j, Koj}

= im0 > > Pr{[Njeann) (T} € THE)] N [Ujenn) (T; € T5|Hoy)] }

k=117

= lim, s Z Z Pr{ﬂje(Jmk)(TJQ S P(J)|K0J)]} Pr{Uje(Jmk)(Tj € Fj|H0j)} (20)
k=11y€Zy

< iMoo D Y PH{Njenno(TY € T Ko} ¢ D Pr(ITi = ChoayoxlHos) (11)
k=11y€Zy jG(JﬁIk)

< iMoo Y Y Pr{Njean,) (T} € TY|Ko))l} o (12)
k=1I,€Ly

< «a (13)

The equality (10) holds by the asymptotic independence, the inequality (11) uses the Bonferroni
inequality, (12) uses the fact that the size of the{getj € (J N 1)} is less than or equal tb, and
(13) holds because

>3 Pr{nje@nn) (TP € D9 Ky} =1
k=01, €Ty

if we denote byl the empty set. O

8.2. Proof of Theorem 2
PROOF The proof of asymptotic independenceflq?f andT; under the global null hypothesis
is same as that iftheorem 1. Observe that

mo =Y (I} € TYKY).

Jj=1

UnIessTst are independent,[.%o] is generally not equal tag. However if 72—, og, we can
prove the main result as followed:

|immﬁoo|imnﬂoopr{Uje_] (TJO S P(J) N Tj S Pj)|H0j, Koj}
J

< iy, oolimy, oo Y PH{(T) € TY N Ty € T;)|Hoj, Koj } (14)
j=1
J
= limp,_oolim,, oo " Pr (T} € T Ko;) Pr(T; € T;|Hoy) (15)
j=1
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J
1 mo
= lim,,_..lim, . —§ :Pr T e T9Kp:) » —
| l {mj—l ( ! j| OJ) mo
aoi (16)
Qo

= Q.

The inequality (14) uses Bonferroni inequality, (15) uses the asymptotic independeﬁﬁeaoﬂ
T}, (16) holds because

J
1
E ; PF{TJQ S F?|ng} < p,

and by Slutsky’s Theorem

8.3. Proof of Lemma 1

PROOF (a) If the disease is rare, | X,R = 1) # Pr(Z|R = 1) implies P(Z|X,Y = 1) #
Pr(Z|Y =1),hence P{Y|X, Z) # Pr(Y|Z).

(b) If the disease is common and(PiZ, X) = Pr(Y'|Z),

(Y|X, Z)Pr(X|Z)
PIY|Z)

PHX|Y, Z) = © = Pr(X|Z) = Pr(X).

This implies P(X|Y) = Pr(X). Now

Pr(Z,X|Y) =

HenceZ 1 X|Y. Since the sampling depends¥rsoly, this implies thaZ and X are independent
in the selected case-control samples, i.e.,

PZ|X,R=1)=PrZ|R=1).

Note that if P(Y| X, Z) = Pr(Y'| X), the same argument leads to the conclusion thahd X are
independent in the selected case-control sample. So we need the condti¢N PX) # Pr(Y|X)
to ensure that it is possible to observé¢AX, R = 1) # Pr(Z|R = 1). O
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