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Summary

In group sequential clinical trials, it is necessary to estimate the amount of information
present at interim analysis times relative to the amount of information that would be present
at the final analysis. If only one measurement is made per individual, this is often the ratio
of sample sizes available at the interim and final analyses. However, as discussed by Wu
and Lan (1992), when the statistic of interest is a change over time, as with longitudinal
data, such an approach overstates the information. In this paper, we discuss other problems
that can result in overestimating the information, such as heteroscedasticity and correlated
observations. We demonstrate that when using an inefficient estimator on unbalanced data,
the true information growth can be nonmonotonic across interim analyses.

Key Words: Unbalanced data; Inefficient estimators.
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1 Introduction

In many group sequential clinical trials, repeated measurements are made on continuous out-

comes for each individual over a specified follow up time period. Such longitudinal measures

may be used to evaluate possible treatment effects, such as time averaged measurement (area

under the curve), rate of change (slope), or difference between initial and final values, any of

which can be taken as specific cases of a weighted area under the curve approach (Kittelson

et al., 2005). For illustrative purposes, we consider when the outcome of interest is the rate

of change over time, such as when monitoring tumor growth, CD4+ cell counts, or cognitive

decline in Alzheimer’s Disease.

For ethical and financial reasons, it is usually necessary to perform interim analyses of

data from clinical trials before all study data have been collected. In order to maintain

the type I error rate, several methods are commonly used, including the stopping rules

proposed by Pocock (1977), O’Brien and Fleming (1979), Whitehead and Stratton (1983),

and the error spending function approach of Lan and DeMets (1983). However, in order

to be implemented in a flexible manner, all methods require an estimate of the amount of

statistical information present at each analysis time. This estimated information can then

be used to generate appropriate stopping boundaries at any particular analysis time.

In order to make correct statistical inference in a study, it is important that the true

information growth be accurately modeled. Failure to do so may lead to grossly incorrect

type I and type II errors. In settings where only one outcome measurement is obtained

on each individual, the proportionate information at a particular analysis time is often

calculated as a ratio of the number of measurements at the analysis time to the total expected
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number of measurements; in the case of survival data, the current information is the number

of events observed relative to the total expected. However, even when the proportionate

information can be correctly computed, problems can arise due to the need to estimate

nuisance parameters affecting the variability of measures of treatment effect. Burington

and Emerson (2003) noted that imprecision of the estimated nuisance parameters can lead

to error spending boundaries that do not reflect the true known proportionate information

available at each analysis, while boundaries constrained on other scales will not necessarily

adhere to the desired boundary shape function. Several authors have further conjectured

that the imprecision inherent in estimating within group variances or baseline event rates

at the earliest of interim analyses might lead to a spurious appearance of nonmonotonic

information growth during the monitoring of a study (Scharfstein et al., 1997; Burington

and Emerson, 2003) Such situations are likely rare in practice due to the relatively large

increments of information typically accrued between successive analyses: the monotonic

increase in available data overwhelms the potential nonmonotonicity in the estimates of the

nuisance parameters across the analyses.

Further complications arise when treatment effects are measured by a contrast across

study time in a longitudinal clinical trial. In that setting, the number of available measure-

ments relative to the final expected number of measurements overestimates the current sta-

tistical information, even when the true effect is linear in time and the data are homoscedastic

(Wu and Lan, 1992). This argues that a naive approach to estimating information based

solely on sample size is problematic. However, a larger concern would be settings in which

the true information growth might be nonmonotonic in that the variability of the estimated

treatment effect was higher at a later interim analysis than it was at one conducted earlier.

Were that to occur, standard stopping boundaries for group sequential trials would not be
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appropriate because the assumption of independent increments is violated.

Previous authors (Scharfstein et al., 1997; Jennison and Turnbull, 1997) showed that using

the efficient estimator leads to an independent increment structure in a group sequential

trial and that the information growth therefore must be monotonic. They note that using

an inefficient estimator does not preclude independent increments, but conjecture that it

may lead to nonmonotonicity in some circumstances. However, Scharfstein et al. (1997)

speculate that such nonmonotonicities are rare and only arise in practice due to estimation

of the information growth as discussed above. In this manuscript, we expand on their work

by presenting situations in which the information growth is nonmonotonic in truth.

For this paper, we restrict attention to the case where the statistic of interest is of

a linear contrast over time. First, we consider the case of independent longitudinal data

and investigate the consequences of inaccurately estimating the information growth in a

clinical trial. We then consider the case of correlated longitudinal data and discuss issues

regarding information growth when using generalized estimating equations (GEE) in this

setting including scenarios leading to nonmonotonic information growth.

2 Notation and Group Sequential Methods

In a group sequential trial testing a null hypothesis of H0 : θ = θ0 against a one-sided

alternative, a stopping rule is defined over a schedule of analyses, occurring at times t1, ...,

tJ , where J is the maximal number of analyses. These stopping rules are typically defined

in terms of a continuation set, Cj = (aj, bj] ∪ [cj, dj), with −∞ ≤ aj ≤ bj ≤ cj ≤ dj ≤ ∞. If

the test statistic, Sj is contained in the continuation set, Cj, the trial continues to the next
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analysis time, tj+1. By defining CJ as the empty set the trial is assured of having no more

than J analyses. These continuation sets are determined in part by the amount of statistical

information at each analysis time, relative to the amount of information expected at the end

of the trial. This will be referred to as the information growth over the course of the study,

which we compute as
1/V ar(θ̂j)

1/V ar(θ̂J )
and denote by πj for analysis time tj.

Using the unified family approach (Kittelson and Emerson, 1999), the boundaries are

determined by the following formula, with parameters A, P, and R specified to determine

the behavior of the boundaries at possible early termination points (the ∗ denotes a, b, c, or

d).

ν∗(π;A,P,R,G) = (A∗ + π−P∗j (1− πj)R∗)G∗ (1)

The parameter G is found by iterative search to obtain desired operating characteristics.

These operating characteristics usually focus on the type I and type II statistical errors as

well as some measure of “conservatism” at the early analyses. Specifically this conservatism

is often considered as testing for the treatment effect of interest with a smaller type I error

rate, such as 0.005 before continuing the study. We note that this conservatism could also

be thought of as increasing the size of the effect for which efficacy would be declared, i.e.

this early test has a boundary that would lead to a 95% confidence interval suggestive of a

larger effect than would the 95% confidence interval at the end of the study. In any case,

it is necessary to weigh the scientific and clinical implications of the stopping rules when

determining boundaries. If a trial were to stop early, additional information that might be of

interest, such as being able to characterize long-term effects or gaining increased knowledge

of potential safety issues, would not be obtained.
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In the unified family approach above, A∗ = 0, P∗ ≥ 0, R∗ = 0 corresponds to the Wang

and Tsiatis (1987) one-parameter boundaries. In this parameterization, increasing values

of P∗ lead to decreased early conservatism. In the special case P∗ = 0.5 these boundaries

correspond to the Pocock (1977) boundaries, if P∗ = 0, the boundaries correspond to those

of O’Brien and Fleming (1979), and if P∗ =∞, there is no early stopping.

In most trials where one outcome measurement is made on each individual accrued,

πj =
Nj

NJ
, the ratio of the number of measurements at the time tj to the number that would

be available at the end of the trial. If the primary outcome is survival, then usually πj =
Dj

DJ
,

the ratio of the number of events observed by time tj to the number expected at the end of

the study. However, neither of these holds in the longitudinal case, which is the setting for

this manuscript.

3 Information Growth with a Linear Model

We consider the case where the treatment effect of interest is the change over time, for

example the difference in rates of tumor growth between a placebo and a treatment group.

For now, we focus on the case where there is no correlation in the data. One example in

which this might occur is if the population being studied over time was a group of rats with

the same treatment and same starting point for the disease and then at each time point

a single rat was selected for analysis. Independent data are obtained when the analysis at

each time point cannot be performed on the same rat over time. In the case of the tumor

growth example, measuring the tumor at a particular time point requires an autopsy and

thus each rat is only measured once. In the models below, we use x to denote the time from
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randomization and we reserve reference to time to denote analysis times (tj) in the study.

For simplicity we restrict attention to a one-sample model; in a randomized controlled trial

both groups would be analyzed similarly.

Let the outcome measurement Yik be the observation for cluster i at some time xk from

randomization. We assume measurements are known to be independent across clusters.

The total number of measurements expected to be observed over the course of the study is

thus I ∗K where I denotes the number of clusters observed and K denotes the number of

observations that will be made on each cluster over the duration of the study. In the example

of tumor growth in rats, a cluster would be a single rat. Each observation Yik would be made

when one of the rats was sacrificed to measure the tumor growth. In other studies, a cluster

could simply be one participant measured at K time points from the time that participant

was randomized.

In this model the regression formula is:

E(Y |X = x) = β0 + β1 ∗ x. (2)

The parameter of interest β1 is the change in the outcome (Y ) over time from randomization

(x). Consider initially the case when the true treatment effect corresponds exactly to the

analysis method used; data are homoscedastic and the treatment effect (slope) is constant

over the length of the follow up time. In this setting the standard error of β̂1 can be

calculated exactly. For a particular analysis time tj, the standard error depends on the

number of measurements observed by that point in the study, the variance of the outcome at
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any fixed point in time, and the variance of the predictor variable (time from randomization):

V arj(β̂1) =
σ2
y|x

nj ∗ V arj(x)
. (3)

Thus, the estimate of the information growth (
1/V ar(θ̂j)

1/V ar(θ̂J )
) that relies only on the fraction

(
Nj

NJ
) of the total measurements made does not account for the fact that the variance of the

time from randomization (V ar(x)) is also increasing with study time (V arj(x) ≤ V arJ(x)).

Therefore, simply using the proportion of expected total measurements as a surrogate for

the information growth will overestimate the true information growth.

Figure 1 shows the fraction of information present as a function of study time for different

accrual periods. Here there are 10 observed time points (i.e., k=1,...,10) with measurements

taken at baseline and at each month thereafter, (i.e., x1 = 0, x2 = 1, ..., x10 = 9). The

accrual periods vary from nearly instantaneous (0.1 month accrual) to long relative to the

length of follow up (30 months). In all cases, using the proportion of expected measurements

as a surrogate for the amount of information (dashed line) overestimates the actual amount of

information present. Qualitatively, this overestimation is most problematic when the accrual

time is short relative to the length of follow up. If the accrual period is long relative to the

length of follow up on a cluster, the true information curve is close to the information curve

approximated by the relative number of measurements. Intuitively, this is reasonable. In an

extreme case where all measurements for the study are made on the last recruited cluster

prior to accrual of a new cluster, the increase in information would almost entirely be due to

the next measurement obtained, rather than increasing variability of the x measurements.

In this situation estimating the information growth using the model-based standard errors

yields correct estimates of the information at various analysis times; however simply using
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Figure 1: Plots showing the true information growth (solid line) relative to the information
growth that would be estimated from the fraction of the total number of measurements
(dashed line). In all cases, estimating the IG by the number of measurements overestimates
the true information.

the number of measurements made does not. Using the incorrect estimates of the information

to form boundaries can result in incorrect type I errors. This will be discussed in greater

detail in the next section.
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4 Impact of Incorrect Information Growth Estimates

4.1 Incorrect Type I Error

If the relative amount of information is overestimated at an interim analysis time tj, the type

I error will be inflated. This is a result of overstating the precision with which our parameter

of interest is known, thus setting the stopping boundaries too narrow for the analysis at time

tj. Therefore, under the null, the estimate at this time point is outside of these boundaries

more often than expected and the type I error is inflated.

To illustrate, consider 10 measurements taken at times 0-9, with an accrual period of 2

months (i.e., the calendar time for all subjects to complete the study is 11 months). Assume

that four analyses are planned to be evenly spaced in calendar time (i.e., every 2.75 months),

and analyses are to be conducted using either the stopping boundary shape described by

Pocock (1977) or O’Brien and Fleming (1979). We consider single boundary stopping rules

that allow for early stopping only under the alternative, and two boundary stopping rules

that allow for early stopping for futility as well. The designs are constructed to maintain

a fixed two-sided 0.05 type I error rate and to have 97.5% power for a specific alternative

when using the true information growth.

Table 1 shows the dramatic increase in type I error when using the naive information

growth estimates in this setting. The boundaries are constructed to maintain a fixed 0.05

error rate, yet the single boundary type I error is 0.34 using the Pocock boundary and

0.21 using an O’Brien-Fleming boundary. For two boundary designs, the type I errors are

0.31 and 0.20, respectively. In this case, the estimated information is greater than the
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Table 1: Stopping probabilities (SP) under the null and the alternative with 97.5% power
using Pocock and O’Brien-Fleming (OBF) stopping boundaries.

Naive IG

Single Boundary Two Boundary

Calendar Pocock OBF Pocock OBF

Time Naive IG SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

0.25 0.225 0.274 0.452 0.138 0.270 0.277 0.499 0.141 0.274

0.50 0.50 0.056 0.274 0.046 0.308 0.028 0.163 0.040 0.271

0.75 0.775 0.011 0.181 0.018 0.298 0.003 0.042 0.012 0.206

1.00 1.00 0.002 0.072 0.008 0.107 <0.001 0.003 0.003 0.047

Overall power 0.34 0.978 0.21 0.983 0.31 0.71 0.20 0.80

True IG

Single Boundary Two Boundary

Calendar Pocock OBF Pocock OBF

Time True IG SPnull SPalt SPnull SPalt SPnull SPalt SPnull SPalt

0.25 0.015 0.007 0.027 <0.001 <0.001 0.007 0.032 <0.001 <0.001

0.50 0.14 0.007 0.187 <0.001 <0.001 0.007 0.244 <0.001 <0.001

0.75 0.48 0.006 0.521 0.002 0.456 0.006 0.557 0.002 0.462

1.00 1.00 0.005 0.266 0.023 0.519 0.004 0.142 0.023 0.513

Overall power 0.025 0.975 0.025 0.975 0.025 0.975 0.025 0.975

true information, which causes the boundaries at interim analyses to be too narrow. This

results in some null trials being declared effective when they would not have been if stopping

boundaries constructed with the correct information had been used. This can be seen by

noting the difference in early stopping probabilities at each analysis under the naive estimates

of the information and under the true information when the null hypothesis is true. The

inflation of the type I errors is slightly less for designs with with both efficacy and futility

boundaries, as some trials are stopped prematurely early for futility, thus preventing these

trials from contributing to the type I error.
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4.2 Loss of Power

When using a single efficacy stopping boundary, there is a very slight increase in power under

the alternative because the interim boundaries are closer to the null and these make it more

likely for trials to be declared effective. When using both efficacy and futility boundaries,

in addition to the inflation of the type I error, there is also a loss of power due to the

overestimated information. Table 1 also shows that for the alternative with 97.5% power

under the true information growth, the power is only 71% using Pocock boundaries and

80% using O’Brien-Fleming. This is again due to the overestimated information causing the

interim boundaries to be too narrow; in this case the boundary for futility causes some trials

that would eventually reject the null to be stopped early for futility.

4.3 Nonmonotonic Boundaries

If the estimated information growth is nonmonotonic, the stopping boundaries can be non-

monotonic as well. In extreme cases, an estimated or true nonmonotonicity in the informa-

tion growth can lead to boundaries that preclude stopping at the interim analysis entirely.

This will be further explored in the next two sections that deal with heteroscedasticity and

correlated observations, respectively.

5 Information Growth and Heteroscedastic Data

We next examine the case in which the measurements are heteroscedastic, such as if the

measurements were becoming increasingly variable over time, but that the analysis model
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(erroneously) presumes homoscedasticity. This might occur if there were rigid entry criteria

for the study at baseline, such as a systolic blood pressure measurement between 130 and

140 and we were interested in measuring it over time. In one such case with increasing

variability, the data might be generated from a model such as the one below where x again

is the time from randomization.

Yix ∼ (µx, σ
2(x+ 1)γ) (4)

As a consequence of this increasing variability, both the true information growth and the

analysis model-based estimate of the information growth can be nonmonotonic (figure 2). If

the effect is truly linear but later measurements are much more variable than early ones, the

later measurements will detract from the precision with which we can estimate the slope.

However, even if this extreme case is true, there may be more pressing reasons to continue

with the later measurements, such as providing evidence that the linear trend exists (or does

not exist) over a longer range of time.

In figure 2 the accrual pattern and measurement schedule match those from the previ-

ous section (2 month accrual, measurements at baseline and months 1-9 thereafter). The

heteroscedasticity was generated as in equation (4), with σ2 = 1 and γ = 2. The analy-

sis model-based estimates of the information growth from ordinary least squares regression

assuming constant variance are different from the true information growth obtained by sim-

ulation. For the true information growth, when the first measurement that is more variable

occurs, the information may in fact drop. Then, as more measurements that are more vari-

able are accrued during this interval, the information increases, as would be expected with

increasing the number of observations. The initial drop in information is in part attributable
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Figure 2: Plot illustrating information growth when the data are truly heteroscedastic. The
solid line represents the true, nonmonotonic information growth, simulated empirically. The
dashed line represents the model-based estimates of the information growth. The above was
simulated assuming σ = 1 and γ = 2 in a model like that of equation (4).

to the amount of influence the first points can have on the estimated slope. As the first more

variable measurements are of high influence, the actual variability of the β̂1 parameter is

increased when these first points are added. When balance is achieved, such as at the end of

a study with no dropout and no missing measurements, heteroscedascitiy is less of a concern,

because no point is overly influential.

In contrast, the analysis model-based estimates of the information growth are constrained

by the assumption of constant variance. Thus, when adding points that are more variable,

the estimate of the constant variance is only slightly altered by a few measurements with

more variability. The estimate of the variance increases as more measurements with increased

variability are added, so the estimate of the constant variance is highest only after all the

http://biostats.bepress.com/uwbiostat/paper358



Estimates of Information Growth in Longitudinal Clinical Trials - 15

additional measurements have been taken. This is usually offset by gains in the number of

measurements leading to more typical behavior of the information growth curve. However, it

can lead to dramatic cases in which the estimated information is lowest after all of the more

variable measurements have been accrued if the later measurements are much more variable

than the earlier ones (e.g., if γ is extremely large in the above data generation model).

5.1 Consequences of Incorrect Information Growth Estimates

As before, overestimating the information growth at a particular analysis point (such as using

the model-based estimate of the information growth in this setting) can lead to incorrect type

I error. In the extreme cases where the true information growth is nonmonotonic, and the

estimated information at a planned analysis time is less than the information at a previous

analysis time (i.e., πj > πk; j < k), one obvious solution is to not do an analysis at this time

point. Certainly, the standard software available for conducting group sequential analyses

cannot be used in such a circumstance, and in the case of possible nonmonotonicity due to

heteroscedasticity, it is expected that the information will improve by the end of the trial

(when balance is again obtained). Therefore, if extreme heteroscedascity is a concern, it

would make sense to plan for interim analyses at times where as much balance as possible

will be attained.

6 Information Growth with Correlated Observations

We now turn attention to the case where multiple longitudinal measurements are correlated,

such as when measuring tumor growth in an individual over time. One approach to such
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data is to use generalized estimating equations (GEE) to estimate the treatment effect over

time (Liang and Zeger, 1986).

When GEE is used, a “working” covariance matrix structure is specified to use as weights

in the estimation of the parameters. Common choices for the specification of the working

covariance matrix W (ρ) include independence, exchangeable (Wij = ρ, i 6= j), and auto re-

gressive with order one (AR(1); Wij = ρ|i−j|). A completely unstructured working covariance

matrix can also be used; in this case all off diagonal elements of the matrix are estimated

separately. If the working covariance matrix is not independence, an iterative process is used

to solve for W (ρ̂) and β̂. In most cases, the estimates of β̂ will be unbiased regardless of the

choice of working covariance, however in certain circumstances with time-varying covariates,

the estimates may be biased if working independence is not used (Pepe and Anderson, 1994).

When the working covariance matrix is close to the truth, the estimates will be most efficient

(Wang and Carey, 2003). However, using simple forms of the working covariance matrix may

be justified in many situations due to a lack of knowledge of the true correlation structure, a

desire to be robust to possible misspecification of the correlation or the linear model, or the

convenience in estimation when a simple structure of the working covariance matrix is used.

In GEE, the regression parameter estimates are given by:

β̂ = (XTW−1X)−1XTW−1Y. (5)

The estimated standard errors then account for the correlation between observations made

on the same cluster, where V is the true correlation between clusters (usually estimated with
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the empirical version in GEE):

V ar(β̂) = (XTW−1X)−1XTW−1V̂ W−1X(XTW−1X)−1 (6)

If the correlation structure is known, then letting W = V makes the GEE and GLS estimates

equivalent, and this estimator is the best linear unbiased estimator by the Gauss-Markov

theorem. If the true correlation structure is unknown but the form of the working covariance

matrix is correctly specified such that W →p V , then this estimator will be asymptotically

efficient. If the working covariance matrix is independence, then the point estimates for β̂

match those that would be obtained using ordinary least squares regression (OLS) exactly.

If not, point estimates for β̂ will be like those that would have been obtained using GLS

with a similar correlation structure.

As noted previously, the amount of additional information obtained between interim

analysis times during a longitudinal clinical trial depends on several factors, including the

number of additional measurements and the increased variability in the predictor variable

(time since randomization). With correlated measurements the amount of additional infor-

mation will also depend on the degree of correlation between the new measurements and

the previous measurements. In the extreme case of nearly perfectly correlated data and

no new individuals (clusters), there is almost no new statistical information obtained, even

as additional measurements are collected, because the new measurements are almost com-

pletely determined by knowledge of the high correlation and the assumed linear model. If

the correlation between the new measurements and the old ones is not correctly accounted

for in the estimate of β̂, problems can arise, specifically nonmonotonic information growth

when the addition of measurements results in increased variability of the point estimate.
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Using GEE to estimate the longitudinal treatment effect can lead to nonmonotonic infor-

mation growth curves. This can occur even when everything is correctly specified: the linear

contrast is exactly correct, the data are homoscedastic, the clusters are correctly identified,

and the “robust” standard error estimates are derived using the sandwich estimator. One

situation in which this can occur is when the design is unbalanced. For instance, at an

interim analysis during the conduct of a clinical trial, some individuals may have had three

total measurements while other individuals have only had two. Previous authors have noted

that using an independence working covariance matrix can lead to relative inefficiency in this

setting compared to using a working covariance matrix that matches the form of the true

data (Wang and Carey, 2003) . We note that using an incorrectly specified working covari-

ance matrix (and thus inefficient weights) can lead to absolute inefficiencies as well. Such

absolute inefficiency can lead to nonmonotonic information growth curves: In certain situ-

ations there is more statistical information when everyone has just two measurements than

when everyone has two measurements and a handful of individuals have three measurements.

Intuition might suggest that the reason for this absolute inefficiency is due to the weight-

ing on the measurements when determining the estimate of β̂. For example, we noted

previously that if an independence working covariance matrix is used, the estimate of β̂1 will

match exactly the estimate that would have been obtained through OLS regression ignoring

the correlation within an individual. When all individuals have the same number of mea-

surements at the same time points from randomization, all subjects are weighted equally

and this does not generally result in a great loss of efficiency. However, this is not true

when a few individuals have more measurements than the others. Compared to the case of

all independent measurements, the line fit with just two observations on each subject when

those observations are highly correlated is much less variable (there is a gain in information
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due to the positive correlation within an individual). If only a handful of these highly corre-

lated subjects have measurements at a more extreme time point, these subjects have greater

influence on the slope (as if they were new, independent measurements), and the variability

of the slope increases due to chance selection of different measurements over hypothetical

repeated experiments. This can actually increase the true variability of the slope, unless

the correlation with other measurements is properly accounted for by downweighting the

additional observations (using the working covariance matrix) relative to the weights that

would be used in OLS regression.

Figure 3 shows the true information growth curves under situations where the true effect

is linear, the data are homoscedastic, and the correlation within individuals is high. To be

consistent with our prior setting, 10 measurements were made on each individual, one at

baseline, and one at each of nine follow up times. For an example of high within individual

correlation, we chose an AR(1) structure with ρ = 0.95. In an attempt to make the ex-

changeable correlation structure as equivalent as possible, ρ for the exchangeable case was

chosen such that the average correlation between all pairs of measurements on an individual

at the end of the study would be equal to that in the AR(1) structure (ρ = 0.8338). Finally,

to ensure comparability, the number of individuals in the AR(1) case was increased such

that the final amount of statistical information was equivalent between the AR(1) and ex-

changeable cases (2170 and 500 individuals, respectively). Four working covariance matrices

were used in each simulation: independence, exchangeable, AR(1), and unstructured. The

plots demonstrate the nonmonotonic behavior using the independence working covariance

matrix in this setting. The scaled plots show the relative loss of efficiency compared to

using the correctly specified form of the working covariance matrix. In this setting, using

an exchangeable working covariance matrix appears to be most desirable; it does lose some
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Figure 3: Plot illustrating information growth over time using GEE when the data are truly
linear. The true correlation structure is either exchangeable or AR(1) and the plots show
the information growth using each of four working covariance matrices. The scaled graphs
show the true information growth relative to the amount of information when the working
covariance matrix is exactly specified.

efficiency relative to using AR(1) when the truth is AR(1) (relative efficiency = 89%), but

does not become nonmonotonic. In contrast, when the true data are exchangeable, using a

working AR(1) structure leads to a dramatic drop in efficiency (relative efficiency = 50%).

Some authors have suggested the use of an “unstructured” working covariance matrix

with GEE to provide nearly efficient estimation without pre-specifying the form of the work-

ing covariance (Gange and DeMets, 1996). Others have suggested that using a working
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covariance matrix with consistently estimated parameters (even if misspecified) will lead to

nearly independent increments (Lee et al., 1996). Using an “unstructured” working covari-

ance matrix does lead to nearly efficient estimation when the design is balanced (when all

subjects have equal numbers of measurements), however in preliminary investigations, it

performs poorly when the design is markedly unbalanced, yielding results similar to using

an independence working covariance matrix (figure 3). These simulations were done using

the geepack package in R (Yan and Fine, 2004). When the design is unbalanced, some

estimated parameters in the working covariance structure appear to be quite variable due to

only a few observations contributing to those estimates. For this reason, using the unstruc-

tured working covariance can lead to many of the same problems as using the independence

working covariance, which suggests that in most circumstances the use of the exchangeable

working covariance matrix would be preferred. In addition, in a small number of simulations

(approximately 3%) using an unstructured working correlation matrix meant that the GEE

estimates did not converge. These cases were excluded from our estimates, and hence the

graphs underestimate the true magnitude of the problem.

As might be expected, the degree of correlation within measurements on the same indi-

vidual affects the true information growth when using an independence working covariance

matrix (figure 4). When the true data are exchangeable with low correlation (ρ = 0.3) and

the same study design as before (2 month accrual, 10 measurements per individual), the

information growth is nearly the same between the exchangeable and independence working

covariance matrices (figure 4A). As the correlation increases, using working independence

becomes less efficient at interim points in the trial and can lead to nonmonotonic information

growth (figure 4: A-C).
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Figure 4: Plots illustrating the effect of the within individual correlation and the accrual
pattern on the information growth over time using GEE. In all cases, the data are truly linear
the covariance within individuals has an exchangeable structure, and 10 measurements are
made on each individual (at baseline and months 1-9). For plots A-C, accrual was fixed at
2 months and for plots D-F the correlation was fixed at ρ = 0.8338.

When the design is completely balanced (as might occur at the end of a study with no

dropout), the estimates using independence and exchangeable working covariance matrices

are the same. Such balance may also be achieved during a study if the accrual period is

shorter than the time between consecutive measurements on an individual. In our example

where individuals are measured every month, this would occur if everyone were accrued

within one month (e.g., every individual has a first measurement before anyone has a second

as in figure 4D). However, when the design is far from balanced (as might occur during a long
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accrual period), working independence will be noticeably less efficient than exchangeable at

interim points in the study when the true data are exchangeable (e.g. figure 4F).

A long accrual period when using an independence working covariance matrix leads

to relative inefficiency, but does not tend to lead to noticeable nonmonotonic information

growth. Nonmonotonicity is most pronounced when the accrual period is short relative to the

follow up on each individual and if the correlation within an individual is high (figure 4D).

Consider a case of high within subject correlation (ρ = 0.8338) and short accrual (so that all

individuals have two measurements before anyone has a third). In this situation, the amount

of statistical information decreases when the first individual gets at third measurement, and

continues to decrease until slightly more than 10% of the study population has a third

measurement. The amount of information present when everyone had two measurements

but no one had a third is not surpassed until more than 50% of the new third measurements

are obtained. This becomes even more striking as the study continues. When everyone has

nine measurements but no one yet has ten, the amount of statistical information decreases

when the first person gets a tenth measurement and continues to decrease until approximately

30% have a tenth measurement. The amount of information is not greater than the amount

when no one had a tenth until 70% have a tenth measurement.

6.1 Consequences of Nonmonotonic Information Growth

GEE can have nonmonotonic information growth in truth, but the information growth is

well estimated in these cases by the so-called “robust” standard errors computed using the

sandwich estimator. However, some of the problems of nonmonotonic information growth

discussed in the previous section remain. Specifically, analyses should be planned to take
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place at points in the study where the design will have as much balance as possible to

avoid situations where nonmonotonic information growth may potentially occur. Using an

exchangeable working covariance will also be helpful in avoiding potentially nonmonotonic

information growth while preserving most of the efficiency even if the true correlation struc-

ture is AR(1).

7 Conclusions/Discussion

There are different considerations for the planning of analyses in a group sequential clinical

trial than for planning a trial with only one analysis time. In particular, for a group sequential

clinical trial the rules determining the schedule of analyses must be completely pre-specified

and the behavior and estimation of the information growth over the course of the study must

be considered. We have demonstrated that poorly estimated information growth can lead

to substantial inflation of type I error and loss of power, and we have also shown that when

using GEE in certain circumstances the true information growth may be nonmonotonic.

If nonmonotonicity were to occur in a trial, it could be ignored, by refusing to proceed

with the scheduled interim analysis. It could also be avoided by moving the interim analysis

time to the point in the trial where the maximum information thus far in the trial was

achieved. However, in both of these scenarios the planned interim analysis is not being

performed. In many cases, we may not truly believe that the data are exactly linear, and

may be interested in a linear contrast over time. If the planned analysis is not done due

to nonmonotonic information growth, the linear contrast intended to be estimated at that

time point is not assessed, and any ethical and efficiency concerns that motivated the use of
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a stopping rule are not being addressed. Furthermore, the nonmontonic information growth

is clear evidence of a violation of the independent increments assumption, and application

of stopping boundaries derived under that assumption may be problematic.

It should be noted that the pathological behavior of the information growth was ob-

served in extreme cases with unusually high correlation between observations. However, it

is nonetheless important to maintain the correct type I error by using the correct informa-

tion growth. In the case of GEE, using the exchangeable working covariance will tend to

avoid the possibility of nonmonotonic information growth and would seem to preserve most

of the efficiency, even when the true correlation structure is not exchangeable. This paper

has focused on the effects of poorly estimated covariance when the mean model is exactly

correct; future work will investigate the effects of model misspecification on the estimated

information growth in these longitudinal settings.
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