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A Bayesian method for finding interactions in
genomic studies

Wei Chen, Debashis Ghosh, Trivellore E. Raghuanthan, and Sharon Kardia

Abstract

An important step in building a multiple regression model is the selection of pre-
dictors. In genomic and epidemiologic studies, datasets with a small sample size
and a large number of predictors are common. In such settings, most standard
methods for identifying a good subset of predictors are unstable. Furthermore,
there is an increasing emphasis towards identification of interactions, which has
not been studied much in the statistical literature. We propose a method, called
BSI (Bayesian Selection of Interactions), for selecting predictors in a regression
setting when the number of predictors is considerably larger than the sample size
with a focus towards selecting interactions. Latent variables are used to infer
subset choices based on the posterior distribution. Inference about interactions
is implemented by a constraint on the latent variables. The posterior distribution
is computed using the Gibbs Sampling methods. The finite-sample properties of
the proposed method are assessed by simulation studies. We illustrate the BSI
method by analyzing data from a hypertension study involving Single Nucleotide
Polymorphisms (SNPs).
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A Bayesian method for finding
interactions in genomic studies

Abstract

An important step in building a multiple regression model is the selection of pre-

dictors. In genomic and epidemiologic studies, datasets with a small sample size

and a large number of predictors are common. In such settings, most standard

methods for identifying a good subset of predictors are unstable. Furthermore,

there is an increasing emphasis towards identification of interactions, which has

not been studied much in the statistical literature. In this article, we propose a

method, called BSI (Bayesian Selection of Interactions), for selecting predictors

in a regression setting when the number of predictors is considerably larger than

the sample size with a focus towards selecting interactions. Latent variables are

used to infer subset choices based on the posterior distribution. Inference about

interactions is implemented by a constraint on the latent variables. The posterior

distribution is computed using the Gibbs Sampling methods. The finite-sample

properties of the proposed method are assessed by simulation studies. We illus-

trate the proposed method by analyzing data from a hypertension study involving

Single Nucleotide Polymorphisms (SNPs).

Keywords: Bayesian variable selection; Conditional prior distribution; Constrained

Bayes inference; Gibbs sampling; Latent mixture modeling.
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1 Introduction

The selection of predictors is an important step in building a multiple regression

model. Given potential predictors, there are 2p possible regression models to consider.

When the number of potential predictors is larger than the number of samples, conven-

tional methods will yield unstable predictor subsets. The limited sample size undermines

the ability to explore all the models. When interaction terms are to be considered as

well, identifying predictors becomes even more problematic.

In practice, this problem occurs frequently in genomic epidemiology studies rang-

ing from high throughput microarray experiments to high-density genome scans. Fur-

thermore, the complexity of common diseases motivates more comprehensive studies

involving gene-gene interactions, gene-environment, and gene-risk factor interactions.

As an example, we consider hypertension. It is well-known that hypertension is the

consequence of interactions among many genetic and environmental factors. As part of

the Genetic Epidemiology Network of Atherosclerosis (GENOA) study, a large number

of single nucleotide polymorphisms (SNPs) were typed in individuals with and with-

out hypertension. Some SNPs were found to be associated with hypertension-related

traits when considered univariately (Barkley et al. , 2004). In our paper, we extend

this research to examine the impact of SNPs, risk factors, and their SNP-risk factors

interactions on age of hypertension onset in the non-Hispanic white population. The 57

SNPs from 15 genes on chromosome 2 and 9 risk factors in 342 unrelated individuals

were selected from the GENOA study. Therefore, the potential predictors in this analy-

sis consist of 123 main effects (114 dummy variables + 9 risk factors) and 1149 SNP-risk

factor interaction terms. Traditional variable selection procedures cannot identify sus-

ceptible SNP-risk factor interactions in this situation.

The identification of the predictors in the “large p small n” (West, 2000) setting
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has motivated a considerable amount of statistical research in recent years. Univariate

(individual gene) selection procedures are fairly common, such as those in Rosenwald et

al. (2002) and Beer et al. (2002). Such procedures must deal with the inherent multiple

testing issue, which may be avoided by reducing the dimension of the data. For example,

West (2000) applied the singular-value decomposition to the design matrix to reduce the

dimension of the problem in the Bayesian framework.

A Bayesian procedure for variable selection, the Stochastic Search Variable Selection

(SSVS), was proposed by George and McCullough (1993, 1997). It entails the spec-

ification of a hierarchical latent mixture prior and uses the posterior probabilities to

identify the more promising models. Lee et al. (2003) applied the SSVS method to the

problem of gene selection with microarray data. Similarly, Sha et al. (2004) utilized

the multivariate Bayesian variable selection method of Brown et al. (1998a, 1998b) to

the classifications of microarray data. These methods all focus on the issue of selecting

main effects. While some recent scientific research has focused on the importance of the

interactions in genetic studies (Longmate 2001; Culverhouse et al. , 2002; Devlin et al. ,

2003), identification of interactions has not been studied much in the statistic literature.

This paper addresses the issue of variable selection, primarily that of interactions

selection, when the number of variables greatly exceeds the sample size. We propose a

new method called Bayesian Selection of Interactions (BSI). It extends the framework

in SSVS and introduces novel priors for interactions. Section 2 specifies the model and

describes the prior distributions. In Section 3, we discuss how to implement it using

Gibbs sampling (Gelfand and Smith, 1990). Identification of candidate sets of variables

is discussed in Section 4. The performance of BSI is assessed using simulation studies in

Section 5. In Section 6, BSI is applied to the previously described hypertension study.

We conclude with some discussion in Section 7.

3
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2 Bayesian variable selection framework

2.1 Normal mixture model

We start with a linear regression model with normal errors:

Y |β, σ ∼ Nn(Xβ, σ2In),

where Y is an n-vector of response, Nn an n-dimensional multivariate normal distribu-

tion, X an n× p design matrix of predictors, β a p-vector of regression coefficients, σ2

a scalar, and In an n × n identity matrix. The central concept of the SSVS method

is to introduce γ , a p-vector of binary latent variable with components γ1, . . . γp. It

represents the importance of the corresponding regressors. For j = 1, . . . p, if γj = 1

then Xj is included in the model. If γj = 0 then Xj is excluded from the model. A

mixture normal prior for the coefficients β is conditioned on γ:

βj|γj ∼ (1− γj)N1(0, τ
2
j ) + γjN1(0, c

2
jτ

2
j ) (1)

In a matrix form, (1) can be written as: β|γ ∼ Np(0, D
2
γ), where Dγ is a p× p diagonal

matrix with the jth diagonal element equal to (1−γj)τj +γjcjτj. For simplicity, the prior

distribution assumes the components of β are a priori independent. Then the variable

selection problem is to make inferences regarding γ.

The choice of appropriate values of τj and cj is important. The recommendations

for choosing τj and cj are outlined by George and McCulloch (1997). The key point is

to introduce a “practical significance” δ . If |βj| < δj then γj = 0 and Xj would be

excluded. That is, δj is the intersection point of the densities of N(0, τ 2
j ) and N(0, c2

jτ
2
j ).

A value of cj determines the magnitude of the difference between the two mixture normal

distributions. Empirical evidence (George and McCulloch, 1997) has shown that cj

between 10 and 100 leads to an efficient computation. For a given δj and cj , τj is

4
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then obtained as τj ≡
[
2c2

j log(cj)/(c
2
j − 1)

]−1/2
δj. Note that the non-conjugate prior

distribution (1) of β does not depend on the unknown value of σ, so τj does not depend

on σ. When a “practical significance” δj cannot be meaningfully specified, one might

consider:

βj|γj ∼ (1− γj)I0 + γjN1(0, τ
2
j ),

where I0 is a point mass at 0. For this choice, δj ≡ 0 corresponding to the preference

that any βj 6= 0 be included in the model. This is the setup considered by Geweke

(1996), and Brown et al. (1998a, 1998b).

Similar to ridge regression, τj and cj will determine the degree of shrinkage for the

coefficients β through the posterior distributions. This shrinkage effect allows BSI to

handle the “large p small n” problem.

A conjugate Inverse Gamma prior is chosen for the residual variance σ2:

σ2 ∼ IG(ν/2, νλ/2).

This prior can be thought of as an additional likelihood from a dataset with sample

size ν and sample variance λ. In the absence of prior information, we suggest using an

uninformative prior by taking ν and λ close to zero.

2.2 Prior specification of γ in BSI

2.2.1 Prior choice for γ without interactions

We expect that only a small portion of candidates are associated with the outcome in

most high-throughput studies. Based on this prior knowledge, larger weights should be

assigned to more parsimonious models. This can be implemented via either of the two

different prior distributions for γ , which we call the Beta-Bernoulli and Beta-Binomial

prior.

5
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The Beta-Bernoulli prior is defined as follows:

γj|πj ∼ Bernoulli(πj),

πj ∼ Beta(a, b).

This prior allows each γj to have a different prior probability πj, and γi and γj are a

priori independent for i 6= j. If all the πj are same (πj ≡ π for j = 1, . . . , p), we call

this the Beta-Binomial prior. This specification assumes a priori marginal dependency

between γi and γj. The covariance of γi and γj is equal to the variance of the Beta

distribution.

To favor parsimonious models, hyperparameters (a, b) of the Beta distribution can

be chosen to force π to be small. For example, by specifying the mean and mode for

the Beta distribution and solving for (a, b) we obtain

a =
mean− 2×mode×mean

mean-mode
, b =

(1− 2×mode)× (1−mean)

mean-mode

Intuitively, the mode is the most likely proportion of all potential predictors to be

selected in the model. The mean corresponds to the expected proportion of all potential

predictors to be included in the model. The difference of mean and mode controls the

variation in the prior distribution. The smaller the difference, the more informative is

the prior distribution. For example, if our initial guess that the most likely number

of selected predictors is 10 for a dataset with 1000 potential predictors, we specify the

mode as 10/1000. If we specify the mean as 12/1000 (20% larger than the mode), then

the values of the parameters (a, b) are (5.88,484.12). The sensitivities with respect to

the choice of parameters (a, b) are assessed in the simulation studies described in Section

5.

6
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2.2.2 Prior choice for γ with interactions

In some studies, the interactions are of interest as well. We adopt the convention

that a model containing an interaction term should also contain the corresponding main

effects (Neter et al., 1996), since the interaction represents a deviation from an additive

model. The previously specified prior distribution for γ can be adjusted to manifest this

convention.

Without loss of generality, suppose that there are three main effects A, B and C. Let

the corresponding latent variables for the main effects and the pair-wise interactions

be (γA, γB, γC) and (γAB, γAC , γBC), respectively. The joint prior can be factored by

assuming that (γAB, γAC , γBC) are independent given π, and (γA, γB, γC) are independent

given all the interactions and π:

p(γA, γB, γC , γAB, γAC , γBC |π)

= p(γAB, γAC , γBC |π)p(γA, γB, γC |γAB, γAC , γBC , π)

= p(γAB|π)p(γAC |π)p(γBC |π)·
p(γA|γAB, γAC , γBC , π)p(γB|γAB, γAC , γBC , π)p(γC |γAB, γAC , γBC , π).

This can be further simplified by assuming that the importance of the main effect only

depends on the importance of its interaction terms. That is γA depends on (γAB, γAC , π)

but not γBC . Thus, the joint prior is

p(γA, γB, γC , γAB, γAC , γBC |π)

= p(γAB|π)p(γAC |π)p(γBC |π)

· (γA|γAB, γAC , π)p(γB|γAB, γBC , π)p(γC |γAC , γBC , π).

(2)

These two assumptions correspond to the commonly used principles for variable selec-

tion. The dependence between the main effect and the interactions is defined by the
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components of joint prior (2). For example:

p(γA = 1|γAB, γAC , π) =





1 if max(γAB, γAC) = 1

π if max(γAB, γAC) = 0

p(γAB = 1) = p(γAC = 1) = π (3)

π ∼ Beta(a, b)

We call this the Conditional-Beta-Binomial prior distribution. If π is different for each

main and interaction term, we call this the Conditional-Beta-Bernoulli prior. This prior

specification reduces the model space greatly. Note that the unconditional prior is a

special case of the conditional prior when there is no interaction term.

3 Gibbs sampling algorithm

When the number of predictors p is large, it is impractical to exhaustively evaluate

the posterior probabilities for 2p models. Indeed, most of the models have a very small

probability and will appear very rarely. These models can be ignored. We use a Gibbs

sampling algorithm to estimate the posterior distribution as used in SSVS focuing on

the models that have high probabilities.

The Gibbs sampler simulates a Markov chain β(1), σ(1), γ(1), π(1), β(2), σ(2), γ(2), π(2), . . .

from the full conditionals which converge to the joint posterior p(β, σ, γ, π|Y ) (Gelfand

and smith, 1990). It can be shown that the full conditional distributions for β and σ2

are normal and inverse Gamma, respectively. Their density functions are:

p(β|σ2, γ, π, Y ) = p(β|σ2, γ, Y )

= Np((X
T X + σ2D−2

γ )−1XT Y, σ2(XT X + σ2D−2
γ )−1)

p(σ2|β, γ, π, Y ) = p(σ2|β, Y )

= IG

(
n + ν

2
,
|Y −Xβ|2 + νλ

2

)
.
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Using Bayes rule, the full conditional distribution of γ using conditional-Beta-Binomial

prior is Bernoulli with probability

p(γj = 1|β, σ2, γ−j, Y, π) = p(γj = 1|β, γ−j, π)

=
p(γj = 1, β, γ−j, π)

p(γj = 1, β, γ−j, π) + p(γj = 0, β, γ−j, π)

where γ−j is a vector of the elements of γ except for the jth element . Define a p-vector

of indicator variables ξ ≡ (ξ1, . . . , ξp) as ξj = 0 if an interaction, and ξj = 1 if a main

effect, j = 1, . . . , p. Let Ωj denote the set that includes all the interactions related to the

jth main effect, and thus the full conditional distribution of γ is as follows (see Appendix

for the derivation):

p(γj = 1|β, σ2, γ−j, Y, π)

=





p(βj |γj=1)π

p(βj |γj=1)π+p(βj |γj=0)(1−π)
when ξj = 0 or ξj = 1 and

∑
γj′∈Ωj

γj′ = 0

1 when ξj = 1 and
∑

γj′∈Ωj
γj′ > 0.

Note that the final equation is a simple form given the independent prior for β in (1).

The full conditional distribution for γ using Conditional-Beta-Bernoulli prior is:

p(γj = 1|β, σ2, γ−j, Y, πj)

=





p(βj |γj=1)π

p(βj |γj=1)πj+p(βj |γj=0)(1−πj)
when ξj = 0 or ξj = 1 and

∑
γj′∈Ωj

γj′ = 0

1 when ξj = 1 and
∑

γj′∈Ωj
γj′ > 0.

The derivation is similar and thus omitted.

The full conditional distribution for π using Conditional-Beta-Binomial prior is:

π|β, σ2, γ, Y ∼ Beta(a +

p∑
j=1

γj − q, p−
p∑

j=1

γj + b),

where q ≡ ∑p
j=1 I{Pγj′∈Ωj

γj′>0, ξj=1} is the number of main effects that are forced to be

in the model due to the interactions (See the Appendix for the derivation). Note that

the first scale parameter of this Beta distribution is reduced by a quantity of q, since

9
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some main effects do not provide any information on π as in (3). Similarly, the full

conditional distribution for πj using Conditional-Beta-Bernoulli is

πj|β, σ2, γ, Y ∼ Beta
(
a + γj − I{Pγj′∈Ωj

γj′>0, ξj=1}, 1− γj + b
)

These conditionals are standard distributions which can be simulated by routine

methods. When p is large, the number of possible models 2p in the model space often

far exceeds the number of iterations of the Gibbs sampler. The convergence rate and

criteria of the MCMC algorithm become a critical issue. The correlation structure of

a design matrix can have a great impact on the convergence rate of MCMC methods

(Geweke, 1996). Making the explanatory variables orthogonal to each other can strongly

improve convergence and mixing (Clyde et al. 1996, Gelfand et al. 1995). Therefore, we

standardize each variable in the data set before we start the variable selection procedure.

There is much literature regarding convergence criteria of Markov Chain Monte Carlo

algorithms. A good review can be found in Mengersen et al. (1999). We use Rubin’s

R (Gelman et al., 1995), between and within sequence variance, to monitor the con-

vergence for each scalar estimate, such as σ and
∑p

j=1 γj. Ten independent sequences

were simulated simultaneously with starting points drawn from the overdispersed dis-

tributions. For example, for the initial value of β, ridge regression estimates were used,

given different shrinkage values. The shrinkage values are between zero and the smallest

eigenvalue of the matrix XT X . Here X is the design matrix.

4 Selection of predictors

Selecting the predictors under the joint posterior distribution is commonly used in

a Bayesian framework. However, when the number of predictors greatly exceeds the

sample size, the prior has a substantial impact on the posterior distribution. A joint

10
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prior distribution p(γ) which favors the models with few or no predictors leads the

posterior to favor such models. This property is observed in a simulation study as well

(data not shown). Furthermore, the model space is extremely large when p is large.

Most models will only appear once in the stochastic process.

A simple illustration of the prior probability of γ through a simple example with 2

main effects and 1 interaction is shown in Table 1. Under the unconditional prior, the

model space consists of 8 possible combinations. As stated in Section 2, Table 1 shows

that the model space is smaller when we impose the constraint due to the interactions.

We let w = a(a + b)−1 be the mean of the Beta distribution. The smaller the w, the

bigger the joint probability p(γ) of the null model. The null model is defined as no

variable selected. If we set w = 0.01, then the prior odds ratio of the null model to

a one variable selected model is (1 − w)/w = 99, to a two variables selected model is

(1 − w)2/w2 = 9801. This weighting scheme leads to the more parsimonious models.

While the joint prior probability varies according to the number of regressors in the

model, the marginal prior probabilities are invariant. Under the unconditional prior,

the p(γj) are the same. Under the conditional prior, the the p(γj) of the main effects

are higher but still identical to each other, and that of the interactions are same as

before. Extending this result, the marginal prior probability of a main effect selected is

1−(1−w)ν+1 and that of an interaction term is w, where ν is the number of interactions

that related to the main effect in question. As ν increases, the marginal prior probability

for that main effect increases. If only two-way pair-wise interactions are considered, then

ν = p− 1 .

We select the important predictors based on marginal posterior probabilities P (γj|Y ),

which is estimated by the occurrence of selection of a variable across the iterations of

the Markov Chain. The resulting list of predictors is referred to as an importance list.

However, a model with all the important predictors selected by the marginal posterior
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probabilities may never appear in the iterations of Gibbs sampling. For prediction pur-

poses, it is desirable to select under the joint posterior probability. In this case, we

propose a two-stage selection method. Stage I is for the variable selection. We perform

BSI on all the potential predictors and rank the predictors according to the estimated

P (γj|Y ). The top k interactions including the main effects are selected based on this

quantity. (Section 5 discuss the guidelines for choosing k). Stage II is for one model

selection or model averaging. BSI is conducted again on the selected terms, but we

rank the models according to the estimated P (γ|Y ). If one model is preferred in pre-

diction, we select the model with the highest posterior probability. If model averaging

is preferred, we keep all the visited distinctive models or a subset of models with high

posterior probabilities.

5 Simulation study

In this section, we evaluate the BSI through simulation studies. First, we compare

the performance of the Beta-Bernoulli prior versus the Beta-Binomial prior when inter-

actions are not considered. Second, we compare the performance of the Conditional-

Beta-Binomial versus the Beta-Binomial when interactions are considered. For each

comparison, the sensitivity of the hyperparameters is also studied.

Some factors that may affect the performance of the BSI are considered during

the study design, such as the possible sample circumstances, the method’s underlying

assumptions, and the choice of parameters in the hyperprior. For simplicity, we restricted

our attention to four factors: the correlation coefficient ρ among the potential predictors,

the prior distributions for γ , the hyperparameters of the Beta distribution, and the

cutoff value k in Stage I.

We constructed a sample of size n = 20 on p = 50 potential predictors by gen-

12
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erating z, z1, . . . , z50 i.i.d. ∼ N20(0, I20) and setting Xj = zj + z (ρ(1− ρ)−1)
1/2

for

j = 1, . . . , 50. This produced a pair-wise correlation of ρ among X1, . . . , Xp, and

ρ = (0.1, 0.3, 0.5, 0.7, 0.9). We drew Y ∼ N20(X1 + 1.5X2 + 3X3, σ
2I20)where σ = 1.

For each value of ρ, we fixed the simulation replications at 250. Two prior distribu-

tions were used for γ: the Beta-Bernoulli prior and the Beta-Binomial prior. For the

hyperprior Beta distribution, two sets of the (mode, mean) were used: (0.1, 0.12) and

(0.2, 0.22). At Stage I, we used different cutoff values k = (2, 4, 6, 8, 10, 12, 14) to obtain

subsets resulting from the rank of the P (γj|Y ).

The true and false positive rates of identifying the true predictors for various choices

of k were calculated. Receiver Operating Characteristic (ROC) curves were constructed

by plotting the true positive rate (sensitivity) against the false positive rate ( 1- speci-

ficity) for the different possible cut off values. The area under the curve measures how

well the method separates the true predictors and noise. In Figure 1(a), we provide

the ROC curves of sensitivity analysis of prior distribution: Beta-Bernoulli vs. Beta-

Binomial. The sensitivity analysis of the choice of the hyperparameters (mode, mean)

for Beta distribution is shown in Figure 1(b).

Both figures show the choice of the prior distribution or the parameters in hyper-

prior (even when we double the value of the mode) is not sensitive in our method.

Furthermore, an analysis of variance (ANOVA) test of four factors shows that the prior

distribution and parameters in hyperprior are not significant factors in terms of the true

positive rates (See Table 2).

As we expected, the higher the correlation among the potential predictors, the lower

the true positive rates. If high collinearity exists in the data, the selection of predictors

will be affected by the ‘dilution’ effect (George, 1999). This happens because the cor-

related predictors change the relative marginal posterior probability allocation to those

predictors. The sensitivity is also highly associated with cutoff value k. The higher the
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cutoff value k, the higher the true positive rate. The simulations presented in this paper

have the ratio of p/n equal to about 2.5. Higher ratios are studied for the power of BSI.

According to the empirical study we suggest a cutoff range for k, 3× mode ×p ≤ k < n.

The mode is the initial guess of the most likely proportion of all potential predictors to

be selected in the model. If the ratio of p/n is larger than 10, select k close to n.

We proceeded to evaluate the proposed conditional prior for variable selection with

interaction terms. A sample of size n = 20 on 10 main effects and 45 pair-wise interaction

terms was generated. We induced a pair-wise correlation of ρ = (0.1, 0.3, 0.5, 0.7, 0.9)

among the main effects in the same manner as in the previous sample. We drew

Y ∼ N20(X1 + X2 + X3 + X4 + X1X2 + X1X4, σ
2I20), where σ = 1. Again, for each

value of ρ, we fixed the simulation replications at 250. Two prior distributions were

used for γ: Conditional-Beta-Binomial and Unconditional-Beta-Binomial. For the beta

distribution, the (mode,mean) were set at (0.12, 0.14). We ran the Stage I variable

selection. For the main effects (Figure 2(a)) and the interaction terms (Figure 2(b)),

the proposed conditional priors always perform better than the unconditional prior in

terms of the true positive rate. The inclusion of the main effects whenever a related

interaction term is selected helps to identify the interaction term itself.

Different from the previous result for the main effects only simulation, an interesting

fact that we observed here is that high multicollinearity among the main effects helps in

the identification of the true predictors. For example, when the main effects A and B are

highly correlated, in part due to the surrogate effect of B, A and B both help identifying

the important interaction term, say AC. Therefore, there is a higher probability of

selecting AC. We also observed this phenomena in other simulation studies.

14
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6 Analysis of Hypertension Data

A detailed description of the GENOA sampling design and strategy are presented

elsewhere (O’Meara et al., submitted). The data consists of 342 unrelated, hypertensive

non-Hispanic white individuals from the Mayo Clinic field center of the GENOA study

who had complete SNP and risk factor data. The 57 SNPs (Table 3) were from 15 genes

on chromosome 2 where there had been previous linkage evidence of genes for hyperten-

sion (Province et al., 2003). The hypertension risk factors included in our study are age

(yrs), weight (kg), height (cm), BMI (kg/m2), family history of hypertension, fasting

plasma cholesterol (mg/dl), fasting plasma triglycerides (mg/dl), systolic blood pressure

(mmHg), and diastolic blood pressure (mmHg). Even though the BMI is correlated to

weight and height, we still include all of them and rely on the BSI method to select the

important effects and build a prediction model.

In this section, we illustrate the application of proposed method to the selection of

predictors for hypertension age of onset. Since each SNP is trichotomous by the nature

of the genotype, we code each of them into 2 dummy variables. Adopting the convention

of “all include” or “all exclude” (Neter et al., 1996), we assign a single latent variable

γj to a group of dummy variables. That is a many-to-one mapping (Chipman, 1996)

from the vector of regression coefficients to the vector of latent variables. This strategy

greatly reduces the model space in this data. Furthermore, Chipman (1996) discussed

that when a large group of variables is not important in terms of prediction, the chances

are large that one variable will appear important because of random variation. By only

considering the importance of the group instead of each variable in that group, the

chances of making such an error are reduced.

Only the SNP-risk factor interactions were considered in our hypertension data.

SNP-SNP interactions were not included because rarely do we have all combinations of
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genotypes from the data. For example, a 3 by 3 frequency table for any SNP pair often

shows that we have zero count in some allele combinations. This scenario is common

due to linkage disequilibrium (LD) and the rare relative allele frequencies.

To obtain the prior knowledge of the hyperparameters for the Beta distribution, we

used classical two-stage stepwise selection to identify the possible number of predictors.

Briefly, in stage one, we used stepwise selection to identify the main effects. In stage two,

we used the stepwise selection again on all the selected main effects and their SNP-risk

factor interactions, forcing the main effects to be included in the model. The selected

predictors showed in Table 5. Among 579 possible predictors, we have 7 predictors

chosen by the stepwise selection method. The ratio is about 0.012.

The two-stage stepwise method was chosen for the study purely for its simplicity in

implementation. However, it has disadvantages besides the well-known problem of the F

statistics. First, if the number of main effects to start with already exceeds the number

of samples, we cannot obtain a reasonable model without specifying a maximum number

of terms included. The selection of a maximum number of terms could be subjective

without cross-validation, which is computationally intensive. Second, SNPs without

strong association with the outcome will be eliminated in the first stage. Therefore,

some SNPs which may contribute through the SNP-risk factor interaction will not be

considered in the second stage.

We next performed Stage I of the selection procedure. The Conditional-Beta-Bionomial

prior was chosen for the latent variable γ. The mode and mean of the Beta prior were

set at (0.012, 0.018) according to the previous discussion. The trace of σ2 and
∑579

j=1 γj

from 10 independent chains are shown in Figure 3(a) and Figure 3(b), respectively.

Figure 4 shows the marginal posterior distributions of γ for 579 regressors. The

spike in the graph corresponds to age, which makes sense. The age would be expected

to be highly correlated to the age of onset of hypertension. We ranked the P (γj|Y ) at

16
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Stage I. Table 4 shows the top 20 main effects and the top 5 interaction terms associated

with hypertension. It is plausible that multiple hypertension genes are located in the

region examined. Thus, the present findings are suggestive and should be validated with

follow-up studies.

To find the “best” prediction model, we proceeded to the Stage II selection using the

main effects and the interactions in Table 4. The mode and mean of the Beta prior at

Stage II were set at (0.45, 0.50), which defines a uniform distribution for the probability

of γj = 1, where j = 1, . . . , 25. Table 5 shows the top 3 ranked models selected by Stage

II. Our preliminary analysis identified a “best” model with 2 risk factors: age and strong

family history; two SNPs: AUP1 cv11727841 and SLC20A1 CV9546434; and one in-

teraction term: strong family history × AUP1 cv11727841. Its estimated coefficients

and p-value are showed in Table6. Age, SLC20A1 CV9546434, AUP1 cv11727841, and

strong family history × AUP1 cv11727841 reached the statistical significance for age of

hypertension onset.

SLC20A1 is a sodium-dependent phosphate transporter with expression across tis-

sues, including the kidney. The protein encoded by AUP1 has been shown to bind to

the conserved membrane-proximal sequence of the cytoplasmic tail of integrin alpha(IIb)

subunits. These subunits play a crucial role in the integrin alpha(IIb) beta(3) inside-out

signaling (http : //www.ncbi.nlm.nih.gov). Future studies should attempt to replicate

these findings in other populations. The adjusted R-square of this model is 0.3161, which

is similar to 0.3191 from a model selected by stepwise selection method (See Table5).

We notice that BSI method achieves comparable predictive accuracy through a more

parsimonious model.
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7 Discussion

BSI is quite general and can be applied in many variable selection or model building

problems, especially the challenging problems such as limited sample size and related

predictors. The same idea of constructing the prior for interactions can be extended to

exploring the functional terms of predictors. For example, the lower order polynomials

are included if a higher order one is selected. BSI also can be applied in a variety

of scientific disciplines. For instance, it can be applied in the epistasis (the interaction

between two or more genes to control a single phenotype) in genetic study, the interaction

effects of the biomarkers in pharmacogenomic study, and the gene selections in high-

throughput microarray analysis.

To force the inclusion of the main effects when the interaction term is selected, we

imposed a constraint on γ. An alternative method is to impose constraints on β. The

general idea is that if a predictor is important, the magnitude of its coefficient is large.

Consider the same example with 3 main effects in section 2.2.2. Mathematically this is

accomplished by modifying the equation (1) to:

p(βA|γj) = (1− γA)(1− γAB)(1− γAC)N(0, τ 2
A)

+ [1− (1− γA)(1− γAB)(1− γAC)] N(0, c2
Aτ 2

A)

Since our primary interest is in the posterior distribution of γ, we chose imposing con-

straints directly on γ due to its computational efficiency using MCMC.

To select a “best” model, we proposed a two-stage selection. If a subset of important

predictors is desired instead of a predictive model, the importance list provided by stage

I selection is sufficient.

Although variable selection in the linear regression model is discussed in this paper,

we expect that the method can be extended to handle the generalized linear model

(McCullagh and Nelder, 1989) or proportional hazard model (Cox, 1972). For example,
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using the idea of data augmentation(Tanner and Wong, 1987), the probit regression

model for binary outcomes has an underlying normal regression structure on latent

continuous data. The method can also be generalized to multinomial response models

with more than 2 categories (Albert and Chib, 1993). This data augmentation can also

be used in proportional hazard model for censored survival times. We are currently

exploring this area.

ACKNOWLEDGEMENTS

The first author would like to thank Dr. Sara Hamon, Dr. Dawei Xie, Albert Levin, and

Dr. Val Johnson for the discussion. Funding for this project came from NH grants(s):

HL54457 and HL68737. We also kindly acknowledge Dr. Stephen Turner at the Mayo

Clinic who collected the participants used here, and Drs. Barkley and Boerwinkle who

performed the genotyping in the GENOA study.

Appendix

.1 Full conditional distribution of γ using conditional-Beta-

Binomial prior

Using Bayes’ rule, the full conditional distribution of γ is Bernoulli

p(γj = 1|β, σ2, γ−j, Y, π) = p(γj = 1|β, γ−j, π)

=
p(γj = 1, β, γ−j, π)

p(γj = 1, β, γ−j, π) + p(γj = 0, β, γ−j, π)
,

where γ−j is a vector of the elements of γ except for the jth element γj. Let U ≡ p(γj =

1, β, γ−j, π), we have

U = p(γj = 1, β, γ−j, π)
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= p(β|γj = 1, γ−j, π)p(γj = 1, γ−j|π)p(π)

= p(βj|γj = 1)p(β−j|γ−j)p(γj = 1|γ−j, π)p(γ−j|π)p(π).

Let V ≡ p(γj = 0, β, γ−j, π), we have

V = p(βj|γj = 0)p(β−j|γ−j)p(γj = 0|γ−j, π)p(γ−j|π).

Define a p-vector of indicator variables ξ ≡ (ξ1, . . . , ξp) as ξj = 0 if an interaction, and

ξj = 1 if a main effect, j = 1, . . . , p. Let Ωj be the set that includes all the interactions

related to the jth main effect. Substituting U and V back into the full conditional

distribution and simplifying the equation, we have

p(γj = 1|β, σ2, γ−j, Y, π) = U
U+V

=
p(βj|γj = 1)p(γj = 1|γ−j, π)

p(βj|γj = 1)p(γj = 1|γ−j, π) + p(βj|γj = 0)p(γj = 0|γ−j, π)

=
p(βj|γj = 1)π

1−I{Pγj′∈Ωj
γj′>0, ξj=1}

p(βj|γj = 1)π
1−I{Pγj′∈Ωj

γj′>0, ξj=1}
+ p(βj|γj = 0)π

1−I{Pγj′∈Ωj
γj′>0, ξj=1}

=





p(βj |γj=1)π

p(βj |γj=1)π+p(βj |γj=0)(1−π)
when ξj = 0 or ξj = 1 and

∑
γj′∈Ωj

γj′ = 0

1 when ξj = 1 and
∑

γj′∈Ωj
γj′ > 0

.2 Full conditional distribution for π using conditional-Beta-

Binomial prior

The derivation of the full conditional distribution for π follows from the following

fact. If IA and IB are two binary indicator variables, x is any real number, and IB = 1

when IA = 1, then
(
1− x1−IA

)1−IB = (1− x)(1−IA)(1−IB) . The proof of this fact is

straightforward and is omitted.
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The full conditional distribution for π is

p(π|β, σ2, γ, Y ) = p(π|γ)

∝ p(γ|π)p(π)

∝
p∏

j=1

(
π

1−I{Pγj′∈Ωj
γj′>0, ξj=1}

)γj
(
1− π

1−I{Pγj′∈Ωj
γj′>0, ξj=1}

)1−γj (
πa−1(1− π)b−1

)

=

p∏
j=1

π

�
1−I{Pγj′∈Ωj

γj′>0, ξj=1}

�
γj

(1− π)

�
1−I{Pγj′∈Ωj

γj′>0, ξj=1}

�
(1−γj) (

πa−1(1− π)b−1
)

= π

Pp
j=1 γj−

Pp
j=1 I{Pγj′∈Ωj

γj′>0, ξj=1}
(1− π)p−Pp

j=1 γj
(
πa−1(1− π)b−1

)

= Beta(a +

p∑
j=1

γj − q, p−
p∑

j=1

γj + b),

where q ≡ ∑p
j=1 I{Pγj′∈Ωj

γj′>0, ξj=1} is the number of main effects that are forced to be

in the model due to the interactions.
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Figure 2. ROC curves for comparing Conditional vs. Unconditional prior with (mode, mean)=(0.12,
0.14), n = 20, main effects=10, interactions=45, and replicates=250.
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Table 1. The joint and marginal prior probability for γ

Joint prior probability
γA γB γAB Beta- Conditional-

Binomial Beta-
Binomial

0 0 0 (1− w)3 (1− w)3

1 0 0 w(1− w)2 w(1− w)2

0 1 0 w(1− w)2 w(1− w)2

0 0 1 w(1− w)2 0
1 1 0 w2(1− w) w2(1− w)
1 0 1 w2(1− w) 0
0 1 1 w2(1− w) 0
1 1 1 w3 w

Marginal Beta-Binomial w w w
Prior Conditional-

Probability Beta-binomial 1− (1− w)2 1− (1− w)2 w

w is the mean a(a + b)−1 of the hyperprior Beta distribution

Table 2. ANOVA test of sensitivity
Est. is the true positive rate

Effect Level Mean (se) p-value
Rho 0.1 0.773 (0.213)

0.3 0.776 (0.216)
0.5 0.771 (0.213)
0.7 0.756 (0.209)
0.9 0.716 (0.194) < 0.001

Prior bernoulli 0.759 (0.208)
binomial 0.758 (0.208) 0.793

Hyperprameter (0.1, 0.12) 0.757 (0.208)
(0.2, 0.22) 0.76 (0.208) 0.173

Cutoff 2 0.327 (0.003)
4 0.602 (0.017)
6 0.782 (0.038)
8 0.852 (0.034)
10 0.892 (0.029)
12 0.918 (0.023)
14 0.935 (0.020) < 0.001
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Table 3. SNP look-up Table
Gene Gene description Locuslink SNP
Name ID
ALMS1 Alstrom syndrome 1 7840 cv11541174, cv167406,

cv221633, cv8884674,
cv9517435

AUP1 ancient ubiquitous protein 1 550 cv11727841
C2ORF6 chromosome 2 407654 cv1137486

open reading frame 6
DQX1 DEAQ box polypeptide 1 165545 cv2630842

(RNA-dependent ATPase)
MGC10955 hypothetical protein MGC10955 84762 cv1137462, cv1137467,

cv1137468
MTHFD2 methylene tetrahydrofolate 10797 cv339864, cv9517519

dehydrogenase (NAD+ dependent),
methenyltetrahydrofolate
cyclohydrolase

SLC4A5 solute carrier family 4, 57835 rs4853018, CV1137521,
sodium bicarbonate CV1137522, CV1137528,
cotransporter, member 5 CV1137534,CV1137535,

CV1137538, CV1137542,
CV11727981, CV197439

PRSS25 protease, serine, 25 27429 cv2294084
SCN7A sodium channel, voltage-gated, 6332 cv2161217, cv356958

type VII, alpha
SLC4A10 solute carrier family 4, sodium 57282 cv1300937, cv1300974

bicarbonate transporter-
like, member 10

WBP1 WW domain binding protein 1 23559 cv2630862
ADD2 adducin 2 (beta) 119 CV11184, CV11464892,

CV2634640, CV2634654,
CV2634655, CV2805331,
CV2805332, CV2805339,
CV9987151

ADRA2B adrenergic, alpha-2B-, receptor 151 hx2173, hx2767, hx4699
ATP6B1 ATPase, H+ transporting, 525 CV2308451, CV2673636,

lysosomal 56/58kDa, CV2673637, CV2673638,
V1 subunit B, isoform 1 (Renal CV2673639, rs1024764,
tubular acidosis with deafness) rs1024765, rs2239484,

rs2239487, rs2266917
SLC20A1 solute carrier family 6574 CV11888001, CV248672,

20 (phosphate transporter), CV478858, CV9546434,
member 1 CV9546587, rs1061254
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Table 4. The partial importance list from stage I for hypertension data
Variable Name Rank Marginal

Main Posterior
All Effect Interaction Probability

age 1 1 . 1
BMI 2 2 . 0.19
systolic BP 3 3 . 0.17
height 4 4 . 0.16
diastolic BP 5 5 . 0.15
triglyceride 6 6 . 0.14
cholesterol 7 7 . 0.11
weight 8 8 . 0.11
strong family history 9 9 . 0.07
SLC20A1 CV478858 10 10 . 0.07
SLC20A1 CV248672 11 11 . 0.07
MGC10955 cv1137467 12 12 . 0.06
BMI × SLC20A1 CV478858 13 . 1 0.06
NBC4 CV1137542 14 13 . 0.06
NBC4 CV11727981 15 14 . 0.06
SLC20A1 CV9546434 16 15 . 0.05
WBP1 cv2630862 17 16 . 0.05
ADD2 CV2805332 18 17 . 0.04
diastolic BP × SLC20A1 CV248672 19 . 2 0.04
SLC20A1 rs1061254 20 18 . 0.04
DQX1 cv2630842 21 19 . 0.04
AUP1 cv11727841 22 20 . 0.04
strong family history × AUP1 cv11727841 25 . 3 0.03
triglyceride × NBC4 CV11727981 28 . 4 0.03
cholesterol× WBP1 cv2630862 31 . 5 0.03
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Table 5. The adjusted R-squares for selected models
Model Regressors Adj.

Covariates SNPs Interactions Rsq.
Two Stage ∗ Age, AUP1 cv11727841, strong family history 0.3161
Bayessian strong family SLC20A1 CV9546434 × AUP1 cv11727841
Variable history
selection ∗∗ Age, AUP1 cv11727841, strong family history 0.2898

strong family × AUP1 cv11727841
history

∗ ∗ ∗ Age, AUP1 cv11727841, strong family history 0.3022
strong family WBP1 cv2630862 × AUP1 cv11727841,
history, cholesterol ×
cholesterol WBP1 cv2630862

Two stage Age, ALMS1 cv167406, Age × 0.3191
stepwise strong family MGC10955 cv1137467, SLC20A1 CV9546434
selection history ADD2 CV2805339,

SLC20A1 CV9546434
∗ The model with the highest joint posterior probability in Stage II.
∗∗ The model with the second highest joint posterior probability in Stage II.
∗ ∗ ∗ The model with the second highest joint posterior probability in Stage II.

Table 6. Parameter Estimates
Variable Est. (se) p-value
intercept -5.32 (5.50) 0.3342
age 0.59 (0.05) < .0001
strong family history 18.95 (9.96) 0.0580
AUP1 cv11727841

AA 9.69 (3.84) 0.0120
AC 6.88 (3.95) 0.0823
CC reference -

SLC20A1 CV9546434
AA 9.96 (2.84) 0.0005
AG 7.69 (2.93) 0.0091
GG reference -

strong family history × AUP1 cv11727841
AA -23.49 (10.04) 0.0199
AC -16.72 (10.15) 0.1005
CC reference -
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