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Multiple Imputation For Interval Censored
Data With Auxiliary Variables

Chiu-Hsieh Hsu, Jeremy Taylor, and Susan Murray

Abstract

We propose a nonparametric multiple imputation scheme, NPMLE imputation,
for the analysis of interval censored survival data. Features of the method are that
it converts interval-censored data problems to complete data or right censored data
problems to which many standard approaches can be used, and the measures of
uncertainty are easily obtained. In addition to the event time of primary interest,
there are frequently other auxiliary variables that are associated with the event
time. For the goal of estimating the marginal survival distribution, these auxiliary
variables may provide some additional information about the event time for the
interval censored observations. We extend the imputation methods to incorporate
information from auxiliary variables with potentially complex structures. To con-
duct the imputation, we use a working failure-time proportional hazards model
to define an imputing risk set for each censored observations. The imputation
schemes consist of using the data in the imputing risk set to create an exact event
time for each interval censored observation. In simulation studies we show that
the use of multiple imputation methods can improve the efficiency of estimators
and reduce the effect of missing visits when compared to simpler approaches. We
apply the approach to cytomegalovirus shedding data from an AIDS clinical trial,
in which CD4 count is the auxiliary variable.
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SUMMARY

We propose a nonparametric multiple imputation scheme, NPMLE imputation, for the analysis of
interval censored survival data. Features of the method are that it converts interval-censored data
problems to complete data or right censored data problems to which many standard approaches can
be used, and that measures of uncertainty are easily obtained. In addition to the event time of primary
interest, there are frequently other auxiliary variables that are associated with the event time. For
the goal of estimating the marginal survival distribution, these auxiliary variables may provide some
additional information about the event time for the interval censored observations. We extend the
imputation methods to incorporate information from auxiliary variables with potentially complex
structures. To conduct the imputation, we use a working failure-time proportional hazards model to
define an imputing risk set for each censored observation. The imputation schemes consist of using
the data in the imputing risk sets to create an exact event time for each interval censored observation.
In simulation studies we show that the use of multiple imputation methods can improve the efficiency
of estimators and reduce the effect of missing visits when compared to simpler approaches. We apply
the approach to cytomegalovirus shedding data from an AIDS clinical trial, in which CD4 count is
the auxiliary variable.

Key Words: Auxiliary variables, Interval censored, Multiple imputation.

1. Introduction

There is a large literature on statistical methods to estimate the survival function for interval-
censored data. For example, Peto [1] and Turnbull [2] proposed the nonparametric maximum
likelihood estimator (NPMLE) to estimate the survival function. Frydman [3] modified
Turnbull’s method. Finkelstein and Wolfe [4], Satten [5], and Goggins et al. [6] used a Cox
proportional hazards model to analyze interval-censored data. Most of these methods used
intensively iterative computation to obtain measures of uncertainty, i.e. the standard error of
the estimator.

In survival analysis, the event times for interval censored observations can be regarded
as missing event times (Heitjan [7]); hence multiple imputation, a tool for handling missing
data, can be applied to handle interval-censored observations. After imputation, the interval-
censored data will be simplified to complete or right-censored data. Then standard statistical
methods can be performed on the imputed data sets. As a result, estimates and measures of
uncertainty can be easily obtained by following well established rules described in Rubin and
Schenker [8]. Examples of imputing event times for interval censored observations can be found
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in Brookmeyer and Goedert [9], Law and Brookmeyer [10], and Pan [11, 12]. Brookmeyer and
Goedert [9] and Law and Brook [10] imputed the AIDS infection time by the midpoint of the
censored interval. Pan [11] drew imputed values derived from a nonparametric distribution.
Pan [12] imputed failure times using the data augmentation technique (Wei and Tanner [13])
based on a Cox regression model iteratively fitted to the imputed data.

A common situation where interval censored data arises is in a screening study where
participants are observed for the presence of a characteristic at scheduled visits. The censored
interval for a subject is the time interval during which the characteristic changes from negative
to positive. If the scheduled visits are widely spread or if participants miss visits then the width
of the censored interval could be considerable. It is also typically the case that some subjects
will be right censored in such a study, if they remain negative at all visits.

Besides the interval-censored data, in many studies there is other information obtained about
subjects, and such data are often informative about the health condition of the subjects.
Some examples of this are CD4 counts and viral load in studies of HIV and AIDS. These
markers are often associated with the event times and, therefore, may be treated as auxiliary
variables that can help recover some of the lost information, due to the uncertainty about
the event times, for interval censored subjects. In this paper, our interest is in estimating
the marginal survival distribution; thus the relationship between the auxiliary variable and
the event time is not of primary interest, but it will be used to provide some additional
information on endpoint occurrence times for interval censored observations. Therefore, while
we try to simplify interval censored data problems to right censored data problems, at the
same time, we are also interested in recovering information for interval-censored observations
using the auxiliary variables.

The published work on interval censored data is either concerned with estimating the
marginal survival distribution (Peto [1], Turnbull [2], Law and Brookmeyer [10], Frydman
[3], and Pan [11]) or focused on discovering the association between the event times and
the auxiliary variables (Finkelstein and Wolfe [4], Brookmeyer and Goedert [9], Satten [5],
Goggins et al. [6], and Pan [12]), but does not consider incorporating auxiliary variables into
the estimate of the marginal survival distribution. In addition, most of the methods have used
either parametric or partially parametric models. We will focus on nonparametric techniques
to handle and analyze interval censored data that incorporate the auxiliary variables.

Taylor et al. [14] and Hsu et al. [15] have studied multiple imputation for right censored
data in the one sample case [14] and with additional covariates [15]. Taylor et al. [14] showed
how imputation schemes can reproduce the standard Kaplan-Meier (KM) estimates, thus
providing a theoretical foundation for nonparametric imputation of event times. Hsu et al. [15]
considered the situation of possibly multiple time-independent or time-dependent continuous
covariates. In Hsu et al. [15] two risk scores derived from two working proportional hazards
(PH) models, one for the failure time and one for the censoring time, were used to define a
neighborhood for each censored case. Then the event time was drawn from a nonparametric
distribution based on this neighborhood. By incorporating predictive auxiliary variables into
the multiple imputation method one can both increase efficiency and reduce bias due to
dependent censoring of the marginal survival distribution. Hsu et al. [15] showed conditions
under which the nonparametric imputation enhanced estimate is consistent and reproduces
the weighted Kaplan-Meier estimator (Murray and Tsiatis [16]), a method for incorporating
categorical auxiliary variables.

In this paper we adapt and generalize the ideas in Taylor et al. [14] and Hsu et al. [15] to
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handle the case of interval censored data. We propose fitting a working failure-time PH model
to combine the auxiliary variables into a single scalar index of risk that is a combination
of the auxiliary variables. This index is then used to define the imputing risk set for each
case of interval censoring. Based on the imputing risk set, nonparametric multiple imputation
methods are then conducted. If the auxiliary variables used to define the imputing risk set are
predictive of the event times, the analyses based on the multiply-imputed data should be more
efficient than the analyses based on the data without imputation.

This paper is organized as follows. In Section 2, we review the NPMLE of the survival
function for interval censored data. In Section 3, we describe the imputation procedures. In
Section 4, we study properties of imputation procedures for survival analysis in finite sample
sizes through a simulation study. In Section 5, we apply the techniques to cytomegalovirus
(CMV) shedding data. A discussion follows in Section 6.

2. The NPMLE for Interval Censored Data

A key component of multiple imputation is to draw a value for each missing observation from
an appropriately chosen distribution. For right censored data, Taylor et al. [14] selected an
event time using a Kaplan-Meier estimator of the distribution of event times among those still
at risk for each censored subject. For interval censored data, we propose to select an event time
using a NPMLE of the distribution of event times, analogous to the KM estimates derived
from right censored data, among those with similar risk to the censored subject. This section
thus provides a review of the NPMLE of the survival distribution for interval censored data.

Let T denote time to the outcome of interest, with c.d.f. F'(¢). T is said to be censored into a
non-zero interval, if we only know that T falls in some interval (L, R), where L < T' < R. Right
censoring is equivalent to R = co. Let S(t) = 1 — F(t), where S(¢) is the survival function for
T. Let (L;, R;) denote the observable random interval and (I;,r;) denote the observed time
interval for each subject under study. The observed data are thus Y = {(l1,7r1), ..., ln,™n)},
from a random sample. Under the survival function S, the likelihood for the " observation
is {S(L;) — S(R;)} and the likelihood for all the data is L(S) = [;—,{S(L:) — S(R;)}. Peto
[1] used a two-step procedure to obtain the NPMLE, i.e. wv of S, which is the maximizer of
L(S). In the first step, the support of S is characterized as a finite number of disjoint intervals.
The endpoints of these intervals are elements of the set {l1,l2,....ln, 71, .., 7}, thus there
are at most 2n + 1 disjoint intervals. The set of probabilities associated with these disjoint
intervals determines S. In the second step, a constrained Newton-Raphson (NR) method is
used to compute S.In contrast, Turnbull [2] proposed a self-consistency algorithm, a special
case of the EM algorithm, to compute S. The associated variances of S are given by the
inverse of the matrix of second derivatives of log L(S). The dimension of the matrix increases
as the number of observations increases. Hence it needs intensive computation to obtain
measures of uncertainty of the survival estimator. The computational algorithms and large
sample properties of the NPMLE can be found in Groeneboom and Wellner [17].

3. Imputation Procedures

In this section, we describe how to calculate risk scores, how to select the imputing risk set
using the risk scores, and two strategies for nonparametric multiple imputation with censored
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survival data.

3.1. Calculating risk scores

Let Z = {z1, ..., zn} denote the values of auxiliary variables for the n subjects. For imputation
methods, these auxiliary variables are only used to define the imputing risk set. We propose
to combine the auxiliary variables into a scalar summary variable (risk score) that measures
an individual’s risk of disease or death. This is done by fitting a working proportional hazards
(PH) model that gives risk scores summarizing the association between the auxiliary variables
and the failure time. For the purpose of fitting the working PH model we modify the data
to make it right censored. Right censored subjects remain right censored at [;. For interval
censored subjects, we use the midpoint (m;) of the observed time interval as the hypothetical
failure time, i.e. m; = (I; + r;)/2. The modified data set is then used to fit the working PH
model. Because the PH model uses auxiliary variables as covariates, each risk score is then a
linear combination of Z.

We fit this working PH model to the available data to obtain a risk score defined as
RSy = m ¢+ 7, where m ¢ denotes the estimates of the parameters of the PH model for failure
times. Each risk score is centered and scaled by subtracting the mean and dividing by
the standard deviation of the risk scores. The centered and scaled risk score is denoted
as RS} = {B;Z — mean(B;Z)}/SD(F;Z). This strategy summarizes the multi-dimensional
structure of the auxiliary variables into one dimension. We note that in the case with one
auxiliary variable the risk score is equivalent to the covariate itself. Therefore, there is no need
to fit this working model.

3.2. Defining the imputing risk set

The scale-free risk score is used to measure the distance between subjects. The distance, based
on the original data, between subject j and k is defined as

d(j, k) = {RS}(j) — RS}(k)}*.

For each censored subject 7, this distance is then employed to define a set of nearest neighbors.
The neighborhood consists of all subjects who have a distance from the censored subject j
smaller than d. Note that we did not include in the definition of nearest neighbor a condition
that the neighbor k had to survive longer than censored subject j, e.g. ri > [;, because this
would have created a selection bias problem since an individual with a wider interval is more
likely to be selected. This nearest neighborhood for the censored interval, (I;,7;), is defined
as the imputing risk set R(j,d). Instead of specifying d to be the same for each interval, we
choose NN, the size of the nearest neighborhood, to control the closeness between subjects.
For example, R(j, NN = 10) consists of ten subjects who have the 10 nearest distances from
the censored subject j. In the rare case where all subjects in the nearest neighborhood are
interval censored earlier than [;, we recommend increasing the number in the neighborhood to
ensure some individuals are at risk in a way that overlaps subject j’s risk interval.

3.3. Imputation schemes

We propose two multiple-imputation schemes to impute the event time for an interval-censored
observation. Once the new data set is created, the procedure can be independently repeated
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M times to obtain multiple imputed data sets for use in estimation. In this paper, the survival
estimates for each augmented data set are computed using the KM method and combined
to give final estimates. The methods for analyzing multiply imputed data sets follow well
established rules as described in Rubin and Schenker [8].

3.3.1. Uniform imputation (UNII) For each of the censored intervals, (I;,r;), the UNII
method simply imputes a event time drawn at random from Uniform(l;,r;). For the right
censored observations, the UNII method doesn’t impute event times, they remain as right
censored. Hence for each censored interval, (I;,r;), the UNII method doesn’t use an imputing
risk set based on the available auxiliary variables.

3.3.2. NPMLE imputation (NPMLEI) An alternative method that does use the information
in the auxiliary variables draws an event time utilizing the NPMLE of the distribution of
event times among those in the imputing risk set. The NPMLE is defined on the whole line,
but for interval censored subject j we are only interested in the portion between [; and r;.
Thus we draw an event time from the NPMLE conditional on ¢ € (l;,7;). As mentioned in
Pan [11], the NPMLE based on interval-censored data tends to have a smaller number of
jumps and hence larger jump sizes than the empirical distribution function based on complete
data. Therefore, we propose to use a linear interpolation of the NPMLE to impute for interval-
censored observations. Specifically, for each censored interval, (I;,r;), a NPMLE survival curve

A~

(right continuous), S(j,t), is estimated from among those individuals in R(j, NN) with the
linearly interpolated version denoted as S* (j,t). Then the NPMLEI method imputes a value
t7, which satisfies [; < t7 < rj, from the corresponding linearly interpolated cumulative
distribution function 1—S*(j,t). We note that if there are no jumps in the time interval (I;,7;),
ie. w@.v = wAJ\Y for $(j,t), then the NPMLEI method just randomly draws an event time
from Uni form(l;,r;). If there are no individuals at risk in the imputing risk set for the censored
subject j, the NPMLEI method will randomly draw an event time from Uniform(l;,r;). For

a right censored subject j, there is a probability E that the NPMLEI method will treat
S*(4,15)

the subject j as right censored at Rys, where Ry = max(r1,72, ..., 7). There is a probability

HI % that the NPMLEI method will impute a value ¢}, which satisfies [; < 7 < R,
b

from the corresponding linearly interpolated cumulative distribution function 1 — S*(j,1).

When there are no auxiliary variables, the NPMLE for imputation is estimated by using the

whole dataset with no need to define the nearest neighborhood.

3.8.3. Bootstrap imputation procedure Procedures for imputing event times, such as the
NPMLEI by themselves do not incorporate the full uncertainty in the imputes, because they do
not include a first stage corresponding to an initial parameter draw. Therefore they would not
be viewed as proper multiple imputation schemes. The NPMLEI procedure can be enhanced
by including a Bootstrap stage in the procedure, which is designed to make it proper (Rubin
and Schenker [8]). Consider the bootstrap sample {(I;,r1)®), ..., ((I,,7,) )} selected with
replacement from the original data set. A HuEAEvoam_ mow failure time is fitted to this bootstrap
B 5(B
;o=b

sample. Based on this model, a risk score, RS ZB) can be obtained. After centering

and scaling, it is denoted as mmva*. The distance between the censored subject 7, we want to
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impute for, in the original data and the subject k in the bootstrap sample is defined as
. */ - B)x*
dP)(j,k) = {RS}(j) = RS} (k).

A nearest neighborhood R(P) (j, NN) consists of NN subjects who have the NN nearest
distances from the censored subject j in the Bootstrap sample. Then the imputing risk set for
the censored interval, (I;,r;), is this nearest neighborhood. For the censored interval, (I;,7;),
the NPMLEI method incorporating the bootstrap method, hereafter denoted as the NPMLEIB

method of imputation, imputes a value &.E* from the smooth estimated distribution function,

{1 — 8(B)*(4,1)}, from the risk set R(®)(j, NN) conditional on the interval (I;,r;). Multiple
imputations are created by independently repeating the bootstrap stage for each of the M
data sets. The inclusion of a Bootstrap stage has been shown to improve the properties of
multiple imputation procedures (Rubin and Schenker [8], Heitjan and Little [18], and Taylor
et al. [14]).

4. Simulation Study

We perform several simulation studies to investigate the properties of the multiple imputation
based procedures under a variety of parameter combinations. First, we consider situations
without any auxiliary variables, which is aimed at comparing the KM estimates from the
imputation based analyses and the NPMLE. Second, we consider the situation with several
time-independent continuous auxiliary variables. In both situations, for the survival estimates
we investigate bias, variance and coverage rates of confidence intervals, and how these are
affected by the probabilities of missing four follow-up examinations, and by the inclusion of
the bootstrap stage in the multiple imputation procedure. In addition, the effect of the size
of the nearest neighborhood on survival estimates is investigated in cases with continuous
auxiliary variables.

4.1. Data Generation

A subject is enrolled at the admission time 75 (0). For each enrolled subject, the first post-
baseline examination is conducted at time 77, treated as random. After the first post-baseline
examination, there are four follow-up examinations, i.e. 7, = 71 + (k — 1) xlen, k = 2,3,4,5.
To mimic the pattern of the CMV shedding data described in the next section, the time
interval between two adjacent examinations is considered to be constant, e.g. len = 0.25. An
enrolled subject may miss any of the four follow-ups with some probability, but will not miss
the admission time at 7y and the first visit at 7. Specifically, a random interval-censored
sample is generated as follows: Step 0: Specify the probabilities of missing each of the four
follow-up visits, e.g. 0.1, 0.1, 0.2, 0.2. Step 1: For i = 1 to n repeat Step 2 to Step 4. Step
2a: Generate auxiliary variables (Z;) from some specified distributions, e.g. U(0, 1), and then
linearly combine them such that the hazard function of the event time is a function of auxiliary
variables (Z), e.g. $1Z1 + B2Z>. Step 2b: Generate the event time T; from some specified
distribution, which could be a function of auxiliary variables (Z). Step 3: Generate the first
post-baseline examination time 7;; from some specified distribution. Step 4: Calculate other
Tir. (k = 2,...,5) as described above and let 7,6 = 0o. We then obtain an interval-censored
observation (L;, R;), where L; = 7;; and R; = 7, for some 0 < j < k < 6 and (75, 73) is
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the shortest interval covering T; such that the subject did not miss the examinations at 7;
and 7. The distribution of 751 (i = 1,...,n) is Uniform(0,«), where « is chosen such that
about 25% of subjects are right censored at their last visits. For the probabilities of missing
visits, we consider two settings. One is (0,0,0,0), i.e. each subject will not miss any of the four
follow-ups. One is (0.1,0.1,0.2,0.2), i.e. a subject may miss any of the four follow-ups and is
more likely to miss a latter visit.

4.2. Imputation and Analysis

For the “Fully-Observed” (FO) analysis (the gold standard), we apply KM estimation to each
data set before any censoring is applied. For the “Partially-Observed” (PO) analysis, we apply
NPMLE to each data set with random interval censoring. For the multiple imputation methods,
for each simulated data set, we multiply impute times for each censored subject as described in
Section 2. We then compute Kaplan-Meier estimates for each augmented data set and combine
the results to give final estimates. We focus on S(t) at two fixed time points, chosen so that
S(t) is equal to, or close to, 0.5 or 0.35.

4.83. Results

4.8.1. Without covariates Table I shows the survival estimates at the two time points
and their associated operating characteristics. For the situation with no missing visits at
the four follow-ups, the results indicate that the FO, NPMLEI, and NPMLEIB methods
produce point estimates very close to the true values, sometimes closer than the PO analysis
gets. The coverage rates for both the NPMLEIB and the PO method tend to be slightly
lower than the nominal level. The NPMLEI method without the inclusion of the bootstrap
stage produces a low coverage rate. There is no difference in efficiency, as measured by SD,
between PO, NPMLEI and NPMLEIB. The UNII method produces biased point estimates
and a substantially lower coverage rate than the other methods. These trends also manifest
themselves as the probabilities for missing visits at the four following times increase, although
the bias of the UNII method is more apparent than before.

Overall, the results in Table I for the case without covariates show that NPMLEIB estimates
target the point estimate a bit better, but with a slightly lower coverage rate than the
PO estimates. As the sample size increases, the similarity in results (Table II) between the
PO (NPMLE) approach and the NPMLEIB approach mimics that seen when comparing
nonparametric imputation based methods in Taylor et al. [14] and Kaplan-Meier estimation.

4.8.2. Continuous time-independent covariates We primarily focus on the effects of the sizes
of the nearest neighborhood (NN) and sample size. To have better understanding of these
effects, we conduct more than one set of simulations. The general results are similar across
different scenarios. We, therefore, only report one of the simulation studies in Table III. The
results, as expected, indicate that the biases of the UNII method are consistently greater than
that of other methods (FO, PO, NPMLEI, NPMLEIB) in all situations. The bias results in low
coverage rates for the UNII method. In both situations, i.e. sample size 100 and 200, when the
size of the NN is small, e.g. 10, the NPMLEI and NPMLIEIB methods both produce a small
degree of bias that is corrected for large sizes of NN. This implies that a reasonable size of the
NN is needed to provide a good NPMLE for the distribution of event times for imputation.
However, as the size of the NN increases from 20 to 50, the coverage rate for the NPMLEIB
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method decreases a little due to lost efficiency in estimation. For example, the coverage rate
(n=200) decreases from 95.8% to 91.4%. This indicates that the nearest neighbors are not
being identified well for very large sizes of NN, which are too inclusive. When these issues
relating to the choice of NN are balanced appropriately, the NPMLEIB can improve efficiency
in estimation compared to the PO method. For example, at the 50th percentile of the survival
function, the NPMLEIB (NN=20) gains about 50% of efficiency compared to the PO method
in terms of the standard deviation (SD). In addition, we also note that the big difference in
bias between the NPMLEI method and the NPMLEIB method decreases as the size of the NN
increases. For example, these two produce comparable point estimates as the size of the NN
increases to 50.

5. Application to CMV shedding Data

ACTG-181 clinical trial (Goggins et al. [6], Finkelstein et al. [19]) was a substudy of ACTG-081
(Bozzette et al. [20]). In this trial, each patient was tested at regular intervals to determine
whether he/she was shedding CMV in their urine. Urine samples were taken every four weeks.
Therefore, the time of onset of CMV shedding for each patient is only known to fall in some
interval. In addition, for each patient, several baseline characteristics (e.g. gender and race)
were measured and CD4 counts were measured at two different time points, i.e. the beginning
and end of the trial. We apply the nonparametric multiple imputation schemes to the interval-
censored urine samples. We are interested in obtaining the distribution of CMV shedding-free
survival. Since CD4 count is a critical aspect of the immune system, with low values indicating
more severe immune deficiency, we incorporate CD4 count at the beginning (C'D4;) and end
(CD4,) of the trial as auxiliary variables for estimating the distribution of CMV shedding-
free survival. The two CD4 counts are used as time-independent covariates in the working
PH model. For patients who had at least one positive test for CMV virus in the urine, their
last CD4 counts were measured at the end of the trial after their events have occurred. In
this situation, directly incorporating a patient’s last CD4 count into survival analysis gives
regression coefficients that are hard to interpret. However, in this paper, we only incorporate
a patient’s last CD4 count to help define a set of nearest neighbours for each interval censored
observation, thus the lack of interpretation of the regression coefficients is less of a concern.

There were 210 patients (out of 232 randomized to the trial) who were tested for CMV
shedding at least once before or during the trial. Of these, 127 were interval censored or right
censored based on their urine samples. Since our approach is designed to handle interval-
censored or right-censored data, we restrict our analysis to these 127 patients. We fit the
working model, A\(t) = A\g(t)ef1CP4+620D4 " for the failure times to calculate risk scores to
choose 20 subjects who have the 20 nearest distances from the censored subject. The event
time is drawn from the NPMLE based on the 20 subjects.

The results at two fixed time points, six months and one year, are shown in Table IV. This
table provides the NPMLE from the partially observed (PO) analysis, that is the analysis of
the observed interval-censored event time data using the NPMLE method, and also provides
the KM estimates from the multiple imputation analyses, including UNII, NPMLEI, and
NPMLEIB using the earliest and latest observed CD4 counts as the auxiliary variables. As
can be seen in this table and Figure 1, the PO and NPMLEIB methods produce comparable
estimates of survival. The results indicates that about 81% of patients will remain CMV
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shedding-free after six months and 67% of patients will remain CMV shedding-free after one
year. The UNII and NPMLEI methods produce a little lower survival estimates than other
methods, especially in the tail.

6. Discussion

The research in this paper provides a direct approach, nonparametric multiple imputation,
to handle interval censored data. This approach converts interval-censored data problems to
complete data or right censored data problems to which standard methods can be applied.
This is an attractive feature of multiple imputation approaches. Another attractive feature is
that the measures of uncertainty can be easily obtained using well established rules described
in Rubin and Schenker [8].

The idea of imputing event times for interval censored data was discussed in Pan [11].
However, our method differs because we impute for right censored observations and also
incorporate auxiliary variables into the imputation schemes to improve analysis. When
there are no auxiliary variables, our approach behaves similarly to Pan’s. When there are
auxiliary variables, our approach does recover information for interval-censored observations
by incorporating the auxiliary variables into the imputation. As can be seen in the simulation
studies, the use of this nonparametric multiple imputation method can lead to improved
performance of estimators when auxiliary variables exist. In general, the NPMLEI and
NPMLEIB multiple imputation point estimates are closer to the truth than are the estimates
produced by randomly imputing event times (UNII) from the censored intervals without using
the auxiliary variables. The NPMLEIB has the most attractive operating characteristic of the
imputation methods studied. To the extent that the risk scores correctly identify appropriate
nearest neighbors, these methods also reduce the effects of dependent censoring on estimation.
These methods can also be extended to allow the choice of nearest neighbors to depend on a
second working PH model for the censoring distribution as Hsu et al. [15] described for the
right censored case.

In the situations with auxiliary variables, we use the midpoints of the censored intervals
as the event times in order to fit a working model. The midpoint is only used as a
convenience in calculating the risk score to choose the imputing risk set. More sophisticated
and computationally intensive approaches for fitting the working model could be used, but
we suspect would only lead to marginal improvement in the final estimate. Once the risk
set is defined, the event time distribution is obtained using nonparametric methods. Then
imputations are conducted using separately calculated event time distributions appropriate
for each censored observation. Therefore, the strategy we use in this paper inherits the
feature of computational simplicity from midpoint imputation, but not the bias, which is
the major concern for midpoint imputation. In addition, parametric assumptions connected
with statistical models are only employed to define the imputing risk set. As a result, the
reliance on the statistical model is weaker for our nonparametric multiple imputation schemes
than that of parametric multiple imputation schemes. Due to this weak reliance on a model,
the potential gains due to the multiple imputation will be largest when the auxiliary variable
is strongly associated with the event time. The estimated event time distribution from which
the imputes are drawn is derived from the NPMLE. Hence, the performance of imputation
procedures will highly depend on the performance of the NPMLE. In small sample size, the
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NPMLE can be biased. This creates a small bias for the imputation methods in a case with a
small nearest neighborhood. Simulations also suggest the size of NN is very important. Future
research could focus on this issue.

In addition to its robustness in this application, the general approach of multiple imputation
methods has features that make it attractive. One such feature is that after imputation the
data analyst is now free to choose and can easily perform any analysis appropriate for the
goals of their study. Conditions for the appropriateness of this philosophy are discussed in
Meng [21].
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Figure 1. Comparison of CMV shedding-free curves based on the interval censored data (No
Imputation) and based on NPMLEIB method using the baseline and last CD4 counts as the auxiliary
variables.
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Table I. Monte Carlo Results without Covariates: Survival estimates. The event times ~ exponential
with mean 4.0. Results based on sample size 50, 500 replications, M=10, and NN=50.

Missing visit probabilities=(0.0, 0.0, 0.0,0.0)
Method true value average  bias SDe SE® CR*

FO 0.50 0.496  -0.004 0.0699 0.0700 94.2
PO 0.519  0.019 0.1510 0.1450 91.0
UNII 0.639  0.139 0.0458 0.0863 70.2
NPMLEI 0.499  -0.001 0.1549 0.0848 68.0
NPMLEIB 0.502  0.002 0.1540 0.1446 88.0
FO 0.35 0.349  -0.001 0.0667 0.0667 954
PO 0.363  0.013 0.1293 0.1240 95.0
UNII 0.495  0.145 0.0502 0.0887 68.8
NPMLEI 0.337  -0.013 0.1327 0.0779 73.2
NPMLEIB 0.330 -0.020 0.1212 0.1169 86.0
Missing visit probabilities=(0.1,0.1,0.2,0.2)

FO 0.50 0.502  0.002 0.0694 0.0700 93.8
PO 0.531  0.031 0.1466 0.1474 93.6
UNII 0.644  0.144 0.0458 0.0864 66.8
NPMLEI 0.503  0.003 0.1474 0.0859 72.2
NPMLEIB 0.506  0.006 0.1447 0.1484 90.2
FO 0.35 0.351  0.001 0.0674 0.0667 94.8
PO 0.369  0.019 0.1310 0.1276 92.0
UNII 0.503  0.153 0.0496 0.0885 65.0
NPMLEI 0.341  -0.009 0.1357 0.0790 73.6
NPMLEIB 0.332 -0.018 0.1255 0.1206 86.4

®empirical standard deviation.

bestimated standard error based on Greenwood’s formula for FO,
UNII, NPMLEI, and NPMLEIB and standard error estimated
from 500 bootstrap samples for PO.

coverage rate of 95% confidence interval calculated as estimate

H&\o.ﬁmv standard error.
?hased on NPMLE.
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Table II. Monte Carlo Results without Covariates: Survival estimates. The event times ~ exponential
with mean 4.0. Results based on sample size 200, 500 replications, M=10, and NN=200.

Missing visit probabilities=(0.0, 0.0, 0.0,0.0)
Method true value average  bias SDe SE® CR*

FO 0.50 0.500  0.000 0.0341 0.0353 954
PO 0.515  0.015 0.0744 0.0736 94.0
NPMLEI 0.510  0.010 0.0716 0.0452 77.0
UNII 0.640 0.140 0.0226 0.0434 2.2
NPMLEIB 0.511  0.011 0.0735 0.0746 91.6
FO 0.35 0.349  -0.001 0.0327 0.0336 95.6
PO 0.351  0.001 0.0675 0.0654 93.2
NPMLEI 0.348  -0.002 0.0675 0.0417 78.0
UNII 0.494 0.144 0.0251 0.0444 1.6
NPMLEIB 0.348  -0.002 0.0668 0.0647 90.6
Missing visit probabilities=(0.1,0.1,0.2,0.2)
FO 0.50 0.501  0.001 0.0361 0.0353 944
PO 0.505  0.005 0.0801 0.0755 914
NPMLEI 0.501  0.001 0.0790 0.0449 74.8
UNII 0.643  0.143 0.0238 0.0435 1.6
NPMLEIB 0.504  0.004 0.0771 0.0751 90.0
FO 0.35 0.352  0.002 0.0350 0.0337 93.2
PO 0.354  0.004 0.0711 0.0662 92.0
NPMLEI 0.351  0.001 0.0705 0.0416 74.6
UNII 0.499 0.149 0.0254 0.0449 1.6
NPMLEIB 0.352  0.002 0.0675 0.0663 91.0

®empirical standard deviation.

bestimated standard error based on Greenwood’s formula for FO,
UNII, NPMLEI, and NPMLEIB and standard error estimated
from 500 bootstrap samples for PO.

coverage rate of 95% confidence interval calculated as estimate

H&\o.ﬁmv standard error.
?hased on NPMLE.
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Table III. Monte Carlo Results with Covariates: Survival estimates. The event times ~ F(t) =
1 — exp[—t * (0.3Z; 4+ 0.25Z3)], where Z; and Z, are from U(0, 1). Results based on 500 replications,
M=10, and missing visit probabilities at the four follow-ups (0.1,0.1,0.2,0.2).

Sample size=100
Method  true value average bias SDhe SE*  CR°

FO 0.50 0.504  0.004 0.0501 0.0497 934
PO? 0.527  0.027 0.1115 0.1108 91.6
UNII 0.665  0.165 0.0304 0.0604 9.0
NPMLEI  (NN=10) 0.525  0.025 0.0841 0.0566 784
NPMLEIB 0.574  0.074 0.0555 0.0752 88.2
NPMLEI = (NN=20) 0.484 -0.016 0.1051 0.0569 69.6
NPMLEIB 0.512  0.012 0.0782 0.0915 96.2
NPMLEI  (NN=50) 0.502  0.002 0.1149 0.0605 68.4
NPMLEIB 0.501 0.001 0.1061 0.1053 93.0
Sample size=200
Method true value average bias SD SE CR
FO 0.50 0.501 0.001 0.0364 0.0353 93.6
PO 0.516  0.016 0.0832 0.0808 93.2
UNII 0.662  0.162 0.0225 0.0431 0.2
NPMLEI  (NN=10) 0.521 0.021 0.0573 0.0403 81.0
NPMLEIB 0.571 0.071 0.0400 0.0534 78.2
NPMLEI  (NN=20) 0.479  -0.021 0.0727 0.0406 72.2
NPMLEIB 0.506  0.006 0.0563 0.0640 95.8
NPMLEI  (NN=50) 0.495 -0.005 0.0801 0.0432 71.8
NPMLEIB 0.492  -0.008 0.0743 0.0712 914

®empirical standard deviation.

bestimated standard error based on Greenwood’s formula for FO,
UNII, NPMLEI, and NPMLEIB and standard error estimated
from 500 bootstrap samples for PO.

coverage rate of 95% confidence interval calculated as estimate

H&\o.ﬁmv standard error.
?hased on NPMLE.
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Table IV. Estimates of CMV shedding-free survival probabilities and estimated standard errors based
on interval-censored data (NPMLE) and multiply-imputed data (UNII: Uniform imputation, NPMLETI:
NPMLE imputation, NPMLEIB: NPMLE-Based imputation using Bootstrap, NN=20, and M=10.

Method mﬁHwon A%mHmOVo %Awmmv A%MMwamv

PO* 0.818 0.0360 0.674 0.0448
UNII 0.805 0.0382 0.580 0.0543
NPMLEI 0.792 0.0394 0.589 0.0677
NPMLEIB  0.813 0.0391 0.650 0.0531

KM survival estimate of remaining CMV shedding-free
at six months.

bestimated standard error based on Greenwood’s formula
for UNII, NPMLEI, and NPMLEIB and standard

error estimated from 500 bootstrap samples for PO.
“based on NPMLE.
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