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A Bayesian Mixture Model Relating Dose to
Critical Organs and Functional Complication

in 3D Conformal Radiation Therapy

Tim Johnson, Jeremy Taylor, Randall K. Ten Haken, and Avraham Eisbruch

Abstract

A goal of radiation therapy is to deliver maximum dose to the target tumor while
minimizing complications due to irradiation of critical organs. Technological ad-
vances in 3D conformal radiation therapy has allowed great strides in realizing
this goal, however complications may still arise. Critical organs may be adjacent
to tumors or in the path of the radiation beam. Several mathematical models have
been proposed that describe a relationship between dose and observed functional
complication, however only a few published studies have successfully fit these
models to data using modern statistical methods which make efficient use of the
data. One complication following radiation therapy of head and neck cancers is
the patient’s inability to produce saliva. Xerostomia (dry mouth) leads to high sus-
ceptibility to oral infection and dental caries and is, in general, unpleasant and an
annoyance. We present a dose-damage-injury model that can accommodate any
of the various mathematical models relating dose to damage. The model is a non-
linear, longitudinal mixed effects model where the outcome (saliva flow rate) is
modeled as a mixture of a Dirac measure at zero and a gamma distribution whose
mean is a function of time and dose. Bayesian methods are used to estimate the
relationship between dose delivered to the parotid glands and the observational
outcome – saliva flow rate. A summary measure of the dose-damage relationship
is modeled and assessed by a Bayesian x2 test for goodness-of-fit.



A Bayesian Mixture Model Relating Dose to Critical
Organs and Functional Complication in 3D Conformal

Radiation Therapy

Timothy D. Johnson1∗ Jeremy M. G. Taylor1

Randall K. Ten Haken2 Avraham Eisbruch2

1Department of Biostatistics
School of Public Health

2Department of Radiation Oncology
School of Medicine

University of Michigan
Ann Arbor, MI 48109

Abstract

A goal of radiation therapy is to deliver maximum dose to the target tumor while
minimizing complications due to irradiation of critical organs. Technological advances
in 3D conformal radiation therapy has allowed great strides in realizing this goal,
however complications may still arise. Critical organs may be adjacent to tumors or in
the path of the radiation beam. Several mathematical models have been proposed that
describe the relationship between dose and observed functional complication, however
only a few published studies have successfully fit these models to data using modern
statistical methods which make efficient use of the data. One complication following
radiation therapy of head and neck cancers is the patient’s inability to produce saliva.
Xerostomia (dry mouth) leads to high susceptibility to oral infection and dental caries
and is, in general, unpleasant and an annoyance. We present a dose-damage-injury
model that can accommodate any of the various mathematical models relating dose
to damage. The model is a non-linear, longitudinal mixed effects model where the
outcome (saliva flow rate) is modeled as a mixture of a Dirac measure at zero and a
gamma distribution whose mean is a function of time and dose. Bayesian methods
are used to estimate the relationship between dose delivered to the parotid glands and
the observational outcome—saliva flow rate. A summary measure of the dose-damage
relationship is modeled and assessed by a Bayesian χ2 test for goodness-of-fit.
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1 Introduction

3D conformal radiation therapy, (Lichter, 1991), is a general term used to describe the plan-

ning and delivery of radiation where the dose at every point in a three-dimensional target

field is calculated and the alignment and position of the radiation source is chosen to opti-

mize the dose distribution, within the target field, according to certain criteria. 3D conformal

radiation therapy has enabled radiation oncologists to deliver higher, more accurate and ho-

mogeneous doses of radiation to a defined region of cancer. Despite these advances, adjacent

normal tissue and organs may also receive high doses of radiation resulting in impaired func-

tioning of that organ. Furthermore, the dose distribution to healthy tissue/organs can be

highly heterogeneous. As is the case with advances in the technology of many medical de-

vices, these advances have preceded the quantitative understanding and statistical evaluation

of the relationship between the dose to healthy tissue/organs and the observed functional

complications due to the damage caused by ionizing radiation.

Radiation therapy is given in a series of daily small fractionated doses (typical dose frac-

tion sizes are 1.5-3 Gray (Gy), with the most common values begin 1.8 and 2.0 Gy) delivered

to the target five days per week over approximately a six week period. The total dose de-

livered to the tumor is typically on the order of 60 to 75 Gray and is quite homogeneous.

The fractionated dose distribution may differ from one day to the next due to designed

field size changes and technique changes. However, in practice only one or two changes are

made during the course of treatment. 3D treatment planning software calculates the dose

to every voxel (volume element) at every fractionation in the path of the radiation beam

based on volumetric data sets typically obtained by computed tomography (CT). The goal

of the treatment plan is two-fold. First, to deliver the prescribed overall dose of radiation

homogeneously to the target (typically a malignant tumor). Secondly, to minimize the dose

delivered to the surrounding healthy tissues and organs and to those in the path of the

radiation beam. The development of 3D conformal radiation therapy treatment has allowed

radiation oncologists to meet these goals to a larger extent than previously possible.
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The dose distribution to a specified region is typically summarized by the dose volume

histogram (DVH) based on the total delivered dose to that region. The DVH is analogous

to the survivor function—it is one minus the distribution function of the total dose over the

region of interest. Throughout this paper, the dose distribution function to the region of

interest (in our case a critical, healthy organ) will be denoted by F .

The model we consider in this article can be broken down into two parts. The first part

relates the DVH, or equivalently F , to the damage suffered by a specific healthy organ.

The damage to the organ is unobserved. The second part of the model relates damage to

injury incurred by the organ. Injury is the observed outcome. Several biomathematical

models relating dose to damage incurred have been proposed, e.g. Chappell, Nondahl, and

Fowler (1995), Dawson et al. (2002),Deasy et al. (2002),Jackson et al. (1995),Lyman (1985)

and Seppenwoolde et al. (2003). However, few of these have been fit to data using modern

statistical methodology as pointed out by Shultheiss, Orton, and Peck (1983). Some analyses

of data from 3D conformal therapy have been published (Boersma et al., 1998; Chao et al.,

2001; Jackson, Kutcher, and Yorke, 1993; Jackson et al., 1995; Kwa et al., 1998; Roesink

et al., 2001; Scrimger et al., 2004; Theuws et al., 1998). In these papers the authors have

attempted to estimate the relationship between the DVH and complications. However, the

analyses, for the most part, have not been very sophisticated from a statistical point of view.

Although the current usage of statistical methods in the field of 3D conformal radiation

therapy is limited, there have been some improvements in recent years. Maximum likelihood

estimation is used (Roberts and Hendry, 1993), profile likelihood confidence intervals have

been advocated (Schilstra and Meertens, 2001), the use of simulation to assess goodness-

of-fit has been suggested (Stavrev and Stavrev, 2000) and the Bootstrap has been used to

obtain confidence intervals (Chao et al., 2001) and generalized linear models/generalized

estimating equations (Eisbruch et al., 1999). Shultheiss (2001) lists a number of problem

areas in modeling normal tissue radiation injury. The list includes (i) too few data for

analysis; too few events, (ii) assigning values to parameters that should be estimated, (iii)
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using inappropriate statistical methods, ad hoc methods, univariate analysis and (iv) ignoring

model validation.

In this article we address the aforementioned issues. We use an empirical measure of

damage and concentrate on modeling the relationship between damage and injury to critical

organs, the parotid glands (the major salivary producing glands), that occurs in head and

neck cancer patients. The data come from an ongoing study being conducted in the depart-

ment of Radiation Oncology at the University of Michigan’s Comprehensive Cancer Center.

This article lays the foundation for future work where we will use the proposed model to

compare, and develop, different biomathematical models that relate dose to damage.

The paper is organized as follows. The data set is described in Section 2, while our

model is presented in section 3. Details of the MCMC estimation procedure are detailed in

section 4. Results of the data analysis are given in section 5 along with an analysis of the

goodness-of-fit of the model. We conclude with a discussion of future work in section 6.

2 The Parotid Data Set

The data set is comprised of 87 head and neck cancer patients. The outcome of interest is

saliva flow rate from the parotid glands. Saliva flow rate (ml/min) was obtained by placing a

suction cup over the secretory duct of the parotid gland (Heft and Baum, 1984). Saliva was

collected for 2 minutes for each of the two parotid glands under two stimulatory conditions:

normal and stimulated. Saliva flow rate was then estimated by taking the volume collected

(ml) and dividing by time (120 sec). The parotid gland was stimulated by citric acid (lemon

juice) place on the tongue. Subjects began the study prior to radiation therapy, typically

1 to 3 weeks prior to therapy (month 0). The subjects were also scheduled to return for

saliva flow rate measurements at 1, 3, 6, 12, 18 and 24 months after termination of radiation

therapy. We note here that many of the saliva measurements at each post radiation follow-

up are zero. Computed tomography (CT) treatment planning software was used to develop

the treatment plan for each subject. Each parotid gland from each subject was outlined
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on the CT by a radiation oncologist and the treatment planning software computed the

cumulative DVH for each of the parotid glands. Examples of 8 DVHs from 4 patients are

shown in Figure 1. Sixty-three of the 87 subjects have DVHs for both parotids. The other

24 subjects had one of their parotid glands surgically removed due to disease involvement

and thus have a DVH for only one parotid (the contralateral side). As is the case with most,

if not all, longitudinal studies, there are missing observations. In this study, 23% of the data

are missing. We assume that the data are missing completely at random (MCAR), (Little

and Rubin, 2002). We will have more to say about this assumption in Section 4. Percentages

of missing data at each time point are given in Table 1

Table 1: Percentages of missing data by month.

Month 0 1 3 6 12 18 24
% Missing 0 13.33 15.33 16.00 24.67 48.00 45.33

We found from the goodness-of-fit summary (section 5.1) that a transformation of the

data was necessary. The GOF summary suggested that there were too many larger than

expected observed values. Since all but two observations were less than two, we transformed

the data by squaring the observed values divided by two. That is, if y is an observation, we

took y∗ = (y/2)2.

3 The Dose-Damage-Injury Model

A radiobiologically based model that is central to the field of radiation therapy and that

is amenable to statistical data analysis is the dose-damage-injury model (Jackson, Kutcher,

and Yorke, 1993; Jackson et al., 1995; Niemierko and Goitein, 1992; York et al., 1993). Con-

ceptually, the model is based on the premise that radiation causes damage to tissue/organs

at the cellular level which, for the most part, is unobservable. A consequence of this damage

is injury, which is observable. The radiation dose distribution is known and well character-

ized by 3D treatment planning software. Damage can be conceptualized as the surviving

5
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fraction of critical cells, or functional subunits. More generally, damage can be thought of as

a continuous single number summary that is solely responsible for determining the clinically

observed outcome. We assume that damage is monotonically related to dose in the sense

that a uniform increase in dose results in an increase in damage.

We present a dose-damage-injury model and focus on the relationship between damage

and injury. We take a Bayesian approach to estimating model parameters. This part of

the model assumes that the injury incurred by the parotid gland is measured by saliva

flow rate. Saliva flow rate is assumed to be a smooth, monotone decreasing function of

damage. Random effects for model parameters are used to account for overdispersion. Before

introducing this part of the model, we first discuss the dose-damage relationship.

3.1 Dose-Damage Relation

The first part of our model relates dose (observed) to damage (unobserved). In general

damage will be a functional g(F ) of the dose distribution F to the parotid. As mentioned

in the introduction, several biomathematical models that relate dose to damage have been

proposed. However, in this article our focus is on the relationship between damage and injury

and not on validating the previously proposed dose-damage models. To this end, we take an

empirical approach to estimating the damage from the dose distribution. In particular, we

use the inverse cumulative distribution function (inverse cdf),

d = F−1(p), p ∈ [0, 1],

to specify the relationship between dose and damage. Formally d is the dose at which 100p

percent of the parotid received dose d or less . We take d to be a measure of damage, thus d

can take values from 0 to the maximum possible dose in this study, 81.5 Gray. We estimate

the posterior distribution of p from the data. A relatively large value of p suggests that the

dose to a majority of the parotid gland is important in assessing overall damage. Whereas

a relatively small value of p suggests that the dose to only a small portion of the parotid

gland is necessary. This could have implications as to whether an attempt should be made
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to reduce the overall dose distribution to the parotid gland, or to attempt to spare a portion

of the gland and not worry about the rest. We assign the quantile p, which we assume to

be the same for all subjects, a U [0, 1] (uniform) prior distribution. To estimate the inverse

cdf at any quantile p ∈ [0, 1] we first estimate the dose density with the density function

in R1 at 101 equally spaced points from 0 to 81.5. From this we have estimates of damage

at intervals of 0.01 from 0 to 1. Then for any p ∈ [0, 1] not a multiple of 0.01, we linearly

interpolate to estimate the inverse cdf.

3.2 Damage-Injury Relation

The second part of our model relates damage to the injury incurred by the parotid gland.

Specifically, the (transformed) expected saliva flow rate is modeled as a smooth, monotone

decreasing parametric function of damage. In our particular application saliva flow rate is

used to determine the extent of injury to the parotid glands. This part of the model is a

non-linear mixture model with both fixed and random effects. As mentioned in section 2,

there are numerous outcome measures of zero. To account for these zero saliva flow rates, we

model saliva flow rate at a given level of damage and at each time, as a mixture of a Dirac

measure (point mass) at zero and a gamma distribution. This type of mixture model (a

point mass at zero mixed with a standard distribution function) is reminiscent of Lambert’s

(Lambert, 1992) zero-inflated Poisson regression model. The parotid glands are indexed by

k (= 0 for ipsilateral and = 1 for contralateral), time is indexed by j and the stimulation

condition is indexed by ` (= 0 for normal and = 1 for stimulated). Subjects are indexed by

i. dik will denote the damage incurred by parotid k of subject i.

Let Zijk` be a latent allocation variable taking values in {0, 1} such that p(Zijk` = 1) =

πj`(dik). Let, N(µ, σ2) denote the normal distribution with mean µ and variance σ2 and

G(µ, ν) denote the gamma distribution with mean µ and shape parameter ν. Thus, if

X ∼ G(µ, ν) the density of X is given by (ν/µ)νxν−1e−νx/µ/Γ(ν). Then saliva flow rate Yijk`

1The R Project for Statistical Computing. http://www.r-project.org/
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conditional on the allocation variable has the following distribution:

Yijk`|Zijk` = 0 ∼ N(0, 0) (Dirac measure at zero)

Yijk`|Zijk` = 1 ∼ G(µj`(dik), νj`).

Marginalizing over Zijk`, Yijk` is a mixture of a point mass at zero and a gamma random

variable:

Yijk` ∼ [1− πj`(dik)]N(0, 0) + πj`(dik)G(µj`(dik), νj`).

We model the mixing parameters, πj`, as a smooth, monotone decreasing functions of

damage allowing for the possibility that the mixing proportion at a damage of zero is less than

one (πj`(0) < 1). This allows subject to have zero saliva flow at baseline, prior to radiation

therapy, due to xerostomia (dry mouth)—a condition that is not uncommon among the

elderly. πj`(dik) can also be interpreted as the probability of non-zero saliva flow rate for

a subject that has incurred damage level dik to parotid k under stimulation condition ` at

time j. In particular we model the logit of πj` as a linear function of damage:

logit[πj`(dik)] = θ` − φjdik. (1)

The intercept, θ` > 0, is indexed by stimulation condition and the slope, φj > 0, is indexed by

time. Indexing the intercept by stimulation condition allows for differing baseline proportions

of subjects with no saliva flow between the stimulated and normal conditions. Indexing the

slope by time allows for the probability of non-zero saliva flow to change over time at a given

level of damage, thus allowing for the possibility that the parotid recovers from damage over

time. θ` and φj are assigned vague, proper exponential priors with rates 0.01 (E(0.01)).

At baseline, prior to radiation therapy, we set φ0 ≡ 0 since no radiation has been given,

no damage has occurred due to radiation exposure. Therefore we estimate the posterior

distribution of φj only at the six post-treatment times j = 1, 2, 3, 4, 5, 6 corresponding to

1, 3, 6, 12, 18 and 24 months post radiation therapy, respectively.

When Z = 1 we require that the conditional expected outcome, µj`(dik), to be a

(parametrized) smooth monotone decreasing function of the damage to the parotid: µj`(dik) :
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[0,∞] → [0,∞]. Let αik`, βij`, γik` > 0. We use a scaled version (scaled by γik`) of the in-

complete gamma function

µj`(dik) = γik`

β
αijk`

ij`

Γ(αijk`)

∫ ∞

dik

tαijk`−1e−tβij`dt︸ ︷︷ ︸
incomplete gamma function

(2)

(Here we have taken a bit of notational liberty. Technically we should have shown the condi-

tional dependence of µj` on the parameters αijk`, βij` and γik`. Henceforth, this conditional

dependence will be implicit.) µj` achieves its conditional maximum, γik`, at dik = 0 and has

an asymptote of zero as dik ↑ ∞. We chose this function because of it flexibility in shape. It

takes three parameters, γ, which scales the range and α, β which together control location

and shape. It has a sigmoid shape and inflection point at α(α−1)/β for α > 1, is exponential

when α = 1 and is supra-exponential for α < 1. One could also choose the survivor function

of any distribution with non-negative support in lieu of the incomplete gamma function, for

example, the Weibull distribution.

We model the priors for the parameters of the mean function, µj`, in a hierarchical

fashion, thus accounting for some of the correlation within subjects across parotid glands,

stimulation condition and time. In particular, let γi = (γi00, γi01, γi10, γi11)
T, all i. Further,

let Wd(S) denote the Wishart distribution with d degrees of freedom and symmetric, positive

definite scale matrix S for which the dimension will be obvious. To satisfy the positivity

constraint on γi we use a lognormal prior:

ln(γi) ∼ N(ln(γ), Φ)

ln(γ) ∼ N(g, V )

Φ−1 ∼ W5(R)

where g = ln(0.1, 0.1, 0.1, 0.1)T, V = 100 I4, R = .01 I4 and Id is the d × d identity matrix.

This gives a rather vague, but proper prior on both the random effects and their mean. To

account for overdispersion, random parotid and stimulation effects within each subject, γi,

are centered about the population mean, γ, with covariance Φ. Φ accounts for correlation

9
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within subjects between and across parotids and stimulation conditions at baseline. Apriori,

we assume the components of the random effects vectors are uncorrelated as well as the

components of the population mean vector.

Lognormal priors are also place on the other two parameters of the mean function. Specif-

ically, let αij = (αij00, αij01, αij10, αij11)
T, all i and j. Let βi` = (βi1` . . . βi6`)

T for all i, `.

Then

ln(αij) ∼ N(ln(α), Θ)

ln(α) ∼ N(a, U) (3)

Θ−1 ∼ W5(T )

where a = ln(3, 3, 3, 3)T, U = I4 and T = 2I4; and

ln(βi`) ∼ N(ln(β), Ψ)

ln(β) ∼ N(h, W ) (4)

Ψ−1 ∼ W7(S)

where h = (0.3, . . . , 0.3)T, W = I6 and S = 2I6.

Θ accounts for post-treatment correlation between stimulation conditions and parotid

glands. We assume this correlation is constant over time. Ψ accounts for correlation over

time within a subject. We assume that this correlation is the same for both normal and

stimulated conditions. We note here that the prior specifications for the mean of the random

effects, the prior distributions in (3) and (4) are somewhat informative. These priors were

chosen, however, in combination to give a broad range of shapes (Figure 2) for the prior

mean function µj` which is of particular interest to this study. Thus, we believe that this

prior specification does not overly influence the posterior distribution of the mean function.

Finally, the shape parameters, νj`, are given an exponential prior distribution with rate 0.1.

This completes our model specification.

Accounting for correlation over time within a parotid gland , between parotid gland and

across stimulation conditions, along with numerous outcome measures of zero and any po-
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tential overdispersion requires one of two solutions: 1) Either make simplifying assumptions

and ignore some or all potential correlation within the data or 2) fit the data with a neces-

sarily complex model that accounts for the various forms of correlation, numerous outcome

measures of zero and included random effects to help account for overdispersion. The latter

choice is preferred from a statistical point of view.

4 MCMC Estimation

Because of the complexity of the model, the posterior distribution of the model parameters

is not analytically tractable and so we estimate the posterior distribution through Markov

Chain Monte Carlo (MCMC) simulation. The MCMC simulation is a hybrid Metropolis-

Hastings and Gibbs algorithm. For those parameters whose full conditional posterior distri-

butions are analytically tractable (Ψ, Θ, Φ, γ, α, β) we perform a Gibbs update and perform a

Metropolis-Hastings step for all other parameters. Let p(θ | ·) denote the full conditional pos-

terior distribution of a generic random variate θ. We update parameters in the following or-

der: θ`, ` = 0, 1; φj, j = 1, . . . , 6; γik, i = 1, . . . , N, k = 0, 1; Φ; γ; βi`, i = 1, . . . , N, ` = 0, 1;

Ψ; β; αi, i = 1, . . . , N ; Θ; α; νj`, j = 0, 1, . . . , 6, ` = 0, 1; and p.

A complication arises in estimating the mean function µj`(dik) for a particular parotid

gland from a specific subject under a distinct stimulation condition at a given time in that

the observation is obtained at only one level of damage, dik. However, we would like to

obtain a smooth, monotone decreasing estimate of saliva flow rate as a function of damage

incurred. And we would like to have this estimate for each parotid under both conditions.

To circumvent this complication, we use the baseline observation as a second point, which

corresponds to the observed saliva flow rate at dik = 0. This assumes that saliva flow

rate is not a function of time when no radiation has been delivered, which we believe is a

reasonable assumption. A third observation can be obtained as a latent variable evaluated at

the estimated damage incurred by the opposing parotid gland within the particular patient of

interest. This is accomplished by drawing the latent observation from its posterior predictive

11
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density. These draws are easily obtained at each step of the MCMC simulation. First draw

Z∗ij`k from a Bernoulli distribution with parameter πj`(dik∗), where k∗ = |k − 1| (i.e. at

the damage received by the other parotid gland). Then if Z∗ij`k = 0, set Y ∗
ij`k = 0 and if

Z∗ij`k = 1 draw Y ∗
ij`k from a gamma distribution with mean µj`(dik∗) and shape parameter νj`.

Here, πj`(dik∗), µj`(dik∗) and νj` are the current draws from the posterior distribution of the

parameters. By the hierarchical structure placed on the parameters of the mean function and

assuming that the covariance matrix Θ is constant over time and Ψ is the same regardless

of stimulation condition, we borrow strength over time, across stimulation conditions and

between parotid glands when drawing these latent variables from the aforementioned gamma

distribution.

Missing data are treated as missing completely at random (Little and Rubin, 2002). Since

this is an ongoing study, missing data can occur because patients have not completed the

study, missed appointments, loss to follow-up and even death. However, complications to the

parotid glands are most likely not the cause of death and so we feel that this assumption is

valid. Further, in a related analysis on a subset of this data, Eisbruch et al. (2001) found no

relationship between xerostomia questionnaire scores and patterns of missing data. Missing

observations are also treated as latent variables and the values are drawn from the posterior

predictive distribution as above. Drawing the missing data gives us a complete balanced

data set which simplifies computation for some of the model parameters. In particular it

allows us to easily draw the precision matrices Φ−1, Θ−1 and Ψ−1 from their conjugate full

conditional distributions.

We ran the simulation for 250,000 iterations with a burn-in of 50,000 iterations. We

assessed convergence graphically and ran the chain from several different initial states. The

posterior distribution was estimated by saving every 10th iteration after burn-in for a total

of 20,000 draws from the posterior.

5 Data Analysis Results
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Damage, as we have modeled it, is a function of a random parameter p. As such, damage

has a posterior distribution and can cause difficulty in interpreting results of the model,

especially for radiation oncologists who are interested, among other things, the probability

of non-zero saliva flow at a specified level of damage. That is, at a point estimate of damage.

The estimated marginal posterior density of p is shown in Figure 3 and has a median of 0.341.

The estimated 95% Bayesian credible interval (equal tail area) for p is (0.295, 0.381). We

can see that this distribution is fairly tight around its median value and roughly symmetric.

Therefore, we reran our simulation, conditional on p = 0.341. Results of the unconditional

simulation and the conditional simulation are virtually indistinguishable. Hence, we report

results conditional on p = 0.341.

Two summary measures of interest are the probability of non-zero saliva flow at each

time point under both conditions, πj`(d), and the marginal population mean saliva flow rate

as a function of damage for each condition and parotid gland, µj`(d). The first of these is

obtained from equation (1). The second can be obtained by equation (2) evaluated at the

median values of αik`, βij` and γik`. We concentrate on the 12 month results.

The median probability of non-zero saliva flow rate is displayed in Figure 4 for both

stimulation conditions along with the Bayesian 95% point-wise credible intervals (Wahba,

1983). For normal saliva flow rate the damage with a fifty percent chance of a zero saliva flow

rate at 1 year is estimated to be LD50 = 26.8 Gy. Let θ̃` and φ̃j denote the median values

of the estimated marginal posterior distributions of θ` and φj, respectively. An estimate of

the LD50 at time j for stimulation condition ` is θ̃`/φ̃j. Under stimulated conditions, the

estimated LD50 = 48.3 Gy at 1 year. The estimated LD50 at each of the post-radiation

therapy follow-up times are tabulated in Table 2. We see that there is an increase in the

LD50 up to 18 months and then a slight drop-off. The increase indicates that the parotid

glands recover from radiation induced damage, to some degree. The slight drop-off may be

due to chance variation or may be due to the pattern of missing observations shown in Table

1.
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Table 2: Estimated LD50 for each follow-up time with the 95% Bayesian credible intervals.

Stimulation Condition
Normal Stimulated

Month LD50 95% Credible Int. LD50 95% Credible Int.
1 19.08 (16.42, 22.11) 35.05 (30.43, 39.95)
3 19.31 (16.54, 22.44) 35.45 (30.75, 40.47)
6 22.03 (19.15, 25.29) 40.42 (35.79, 45.36)

12 26.39 (23.04, 30.07) 48.33 (43.44, 53.62)
18 29.91 (25.95, 34.61) 54.85 (48.90, 61.77)
24 28.09 (24.38, 32.54) 51.57 (45.69, 58.21)

The median of the estimated marginal population mean saliva flow rate posterior dis-

tribution for each condition by parotid gland is shown in Figure 5 along with the Bayesian

95% credible bands. In this figure, the gray shaded area represents the range of values of

damage estimated from the observed data for that particular parotid gland. The solid black

dots represent sample means from the observed data at 12 months. The observed data were

first grouped into the lower, middle and upper third quantiles of their estimated damage

evaluated at the median value of p. Then for each grouped set of data, the mean saliva flow

rate was plotted against the mean damage. The sample baseline mean saliva rate is also

depicted in the graphs as a solid dot at a damage of 0. The ‘Xs’ represent the mean saliva

flow rate of the means of the latent observations evaluated by grouping the latent observa-

tions according to the grouping performed on the observed observations from the opposing

parotid gland. From Figure 5 is appears that our model does a decent job at modeling the

marginal mean saliva flow rate. Note the similarity in shapes of the predicted marginal mean

saliva flow rates in the four figures. Especially the similarity in shape between the ipsilateral

and contralateral predicted mean saliva flow rates under normal conditions and between the

two parotid glands under stimulated conditions. Also note the positions of the means of the

latent variables relative to the positions of the observed means from the opposing parotid

gland under each stimulation condition. The latent means track the relative positions of the

observed means fairly closely. This is a consequence of borrowed strength across the glands,
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stimulation condition and time that was alluded to in section 4.

Figure 6 shows the median of the marginal population mean saliva flow rate posterior

distribution superimposed on the 12 month, stimulated data. This figure also displays the

baseline observations as well as the means of the latent and missing values that were drawn

from the estimated posterior predictive distribution. Again, the latent/missing predicted

observations mix nicely throughout the observed data, due to the strength borrowed from

the observed data. At damage levels larger than about 25, the latent contralateral predicted

observations are a bit higher than the observed ipsilateral observations. This is a consequence

of the larger predicted baseline population mean (0.51 for the contralateral side, 0.36 for the

ipsilateral side, both under stimulated conditions).

5.1 Goodness-of-Fit

We assessed model adequacy by a Bayesian χ2 goodness of fit statistic (Johnson, 2004). This

goodness of fit test is similar to the classical χ2 goodness of fit test except in the Bayesian

version, the bin probabilities pb are held fixed at their null values and the bin counts are

considered random.

Let θ̃ denote a sample from the posterior distribution and F the marginal sampling

distribution after integrating out the missing data and latent variables. For this goodness

of fit test we used 10 equally spaced bins such that the bin counts mb(θ̃) are determined

by counting the number of F (yijk` | θ̃) ∈ ((b − 1)/10, b/10] for b = 1, . . . , 10. When Yijk` |

θ̃ = 0, we use a randomization procedure to determine bin assignment. That is, we draw

z ∼ U(0, 1− πj`(dik)), then if F (z) ∈ ((b− 1)/10, b/10] we increment mb by one. Johnson’s

Bayesian χ2 statistic is then

RB(θ̃) =
10∑

b=1

[
mb(θ̃)− npb√

npb

]2

,
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where n is the sample size and pb is the theoretical probability of bin assignment, in our

case with 10 bins, pb = 0.1. Johnson suggests two summary measures of the distribution

of RB(θ̃). First is the proportion of times it exceeds the critical value of a χ2
9 distribution,

16.919. That is, the .95 quantile of a χ2 distribution with 9 degrees of freedom. Values much

larger than the nominal 0.05 suggest lack of fit. The second suggestion is the probability

that RB(θ̃) is greater than a χ2
9 random deviate. The nominal value of this probability is

0.5 and values much greater than this nominal value suggest lack of fit. For our model,

the proportion of times RB(θ̃) exceeds the critical value of a χ2
9 distribution is 0.052. The

probability that RB(θ̃) is greater than a χ2
9 random deviate is 0.51. Both of these summaries

suggest that our model fits the data adequately. Figure 7 depicts the quantile-quantile plot

of RB values calculated from 20,000 samples from the posterior distribution.

As Johnson points out, the Bayesian χ2 goodness-of-fit statistic is also a useful tool

for code verification. The distribution of RB tends to deviate remarkably from its null

distribution when the model is misspecified or there are coding errors. It is evident from

Figure 7 that RB does not deviate from its null distribution and thus we are confident that

we have coded our model correctly and that this is an adequate model for the data.

6 Discussion

We have developed and implemented a realistic, albeit complicated, model to analyze the

parotid data set outlined in section 2. The need to account for the numerous outcome

measures of zero and to account for within parotid gland correlation over time, correlation

between stimulation conditions and correlation between the two parotid glands within a sub-

ject requires such a complex model. In this model we used an empirical measure of damage,

namely the inverse cdf of the dose distribution and concentrated on modeling the damage-

injury relationship in the dose-damage-injury model. Further, our analysis shows that the

parotid gland recovers with time. A similar result was found by Scrimger et al. (2004).

Given that we now have a statistical model that fits the damage-injury relationship and
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takes into account the correlation inherent in the data (over time, across parotid glands and

stimulation conditions), our goal is to concentrate on the dose-damage relationship. Several

theoretical models have been proposed (see the Introduction) and we will pursue the use of

these as well as modified versions of each. Other empirical relationships will also be explored,

such as the generalized mean of the dose distribution. The challenge will be in comparing

models. Bayes factors are the traditional method of comparing models, however, except

for the simplest of models, they are computationally burdensome. Johnson’s goodness-of-fit

statistic, RB could be used to compare models. The model whose RB distribution is closest

to it null (in some objective sense) would be chosen as the better model for the data at hand.

Other summary measures of model adequacy will also be explored, such as the sum of the

logs of the conditional predictive ordinates (Gelfand, Dey, and Chang, 1992).
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Figure 1: Four examples of the dose volume histogram (DVH). These examples were chosen
to show the heterogeneity of the DVHs across patients.
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Figure 2: 20 random realizations of the unscaled prior mean function, µj`(dik)/γik` (equation
(2)), based on 20 random draws from the priors for α and β (priors (3) and (4)).
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Figure 3: The marginal, estimated posterior density of p. From this figure we see that the
marginal posterior distribution is fairly symmetric and not too variable.
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Figure 4: The probability of non-zero saliva flow rate as a function of damage at 1 year
post-radiation therapy. The solid black line is the median probability. The dashed lines are
the 95% Bayesian point-wise credible intervals. Observations are shown as dots at 0 on the
vertical axis (those with zero saliva flow and at 1 (those with positive saliva flow).
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Figure 5: The marginal population mean saliva flow rate at 1 year post-radiation therapy.
The solid black line is the median of the estimated marginal population mean saliva flow rate.
The dashed lines are the 95% Bayesian confidence bands. The solid dot at zero represents
the mean of the observed baseline data. The gray shaded region represents the range of
estimated damage, evaluated at p = 0.341, from observed data. The solid dots within the
gray regions are grouped observed mean saliva flow rates evaluated at the mean level of
damage within each group. Groups were formed by taking the lower, middle and upper 1/3
quantiles. The Xs represent the mean values of grouped mean latent saliva flow rates.
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Figure 6: The median of the estimated marginal population mean stimulated saliva flow rate
posterior distribution for both contraleral and ipsilateral parotid glands (gray and black lines
respectively) at 12 months. Baseline data are indicated by 4, observed data by ◦, missing
data (means) by O and latent variables (means) by ×. All baseline data are observed and
plotted at -1 to assist in visual clarity.
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Figure 7: Quantile-quantile plot of RB values for 20,000 draws from the posterior distribution
of our model. Observed values were sorted into 10 equally spaced bins. The expected order
statistics are from a χ2 distribution with 9 degrees of freedom.
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