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Mixture models for assessing differential
expression in complex tissues using
microarray data

Debashis Ghosh

Abstract

The use of DNA microarrays has become quite popular in many scientific and
medical disciplines, such as in cancer research. One common goal of these stud-
ies is to determine which genes are differentially expressed between cancer and
healthy tissue, or more generally, between two experimental conditions. A ma-
jor complication in the molecular profiling of tumors using gene expression data
is that the data represent a combination of tumor and normal cells. Much of the
methodology developed for assessing differential expression with microarray data
has assumed that tissue samples are homogeneous. In this article, we outline
a general framework for determining differential expression in the presence of
mixed cell populations. We consider study designs in which paired tissues and
unpaired tissues are available. A hierarchical mixture model is used for modelling
the data; a combination of methods of moments procedures and the expectation-
maximization (EM) algorithm are used to estimate the model parameters. Links
with the false discovery rate are discussed. The methods are applied to two mi-
croarray datasets from cancer studies as well as to simulated data.
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Abstract

Motivation: The use of DNA microarrays has become quite popular in many
scientific and medical disciplines, such as in cancer research. One common goal of
these studies is to determine which genes are differentially expressed between cancer
and healthy tissue, or more generally, between two experimental conditions. A major
complication in the molecular profiling of tumors using gene expression data is that
the data represent a combination of tumor and normal cells. Much of the methodology
developed for assessing differential expression with microarray data has assumed that
tissue samples are homogeneous.

Results: In this article, we outline a general framework for determining differential
expression in the presence of mixed cell populations. We consider study designs in
which paired tissues and unpaired tissues are available. A hierarchical mixture model is
used for modelling the data; a combination of methods of moments procedures and the
expectation-maximization (EM) algorithm are used to estimate the model parameters.
Links with the false discovery rate are discussed. The methods are applied to two
microarray datasets from cancer studies as well as to simulated data. R code for

analyzing the datasets can be downloaded from the following URL:
http://www.sph.umich.edu/~ghoshd/COMPBIO/COMPMIX/

Contact: ghoshd@umich.edu

Keywords: Bioinformatics, DNA Microarrays, Gene Expression, Mixed Cell Popula-

tions, Multiple Comparisons, Variable Selection.
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Introduction

With the advent of high-throughput gene assay technologies, scientists are now able
to measure genomewide mRNA expression levels in a variety of settings. One example
is DNA microarrays (Lipshutz et al., 1999; Schena, 2000). They have been utilized
tremendously in cancer profiling studies (Alizadeh et al., 2001; Khan et al., 2001;
Dhanasekaran et al., 2001). Goals there have included the development of molecular
classification systems based on the gene expression profile, discovery of cancer subtypes
using such data and elucidation of the genomic differences in the progression of disease.

One of the major statistical tasks in studies involving these technologies is to find
genes that are differentially expressed between two experimental conditions. The sim-
plest example is to find genes that are up- or down-regulated in cancerous tissue relative
to healthy tissue. In the setting of a single study, differential expression for microarray
data is a well-studied problem. A brief but inexhaustive list of the work in this area
includes the methods of Efron et al. (2001), Newton et al. (2001), Ideker et al. (2001),
Baggerly et al. (2001), Dudoit et al. (2002), Pan (2002), Ibrahim et al. (2002) and
Parmigiani et al. (2002).

A complication that has not been addressed as much in cancer profiling studies is
that the tumor specimen profiled using microarrays is typically a mixture of different
cell types. In normal tissues, proper differentiation and development of cells leads to
organs in which the component tissues are relatively homogeneous. Tissues interact
with neighboring cells by cell-contact, cytokines and the extracellular matrix. When
these signals become disrupted, abnormal cell growth and alterations in epithelial cells
may occur, leading to functional disorder (Bissell and Radisky, 2001). If there are
epithelial cells with tumorigenic potential located in this environment, then they can
start to proliferate. Thus, the tumor grows within the context of this microenviron-
ment, and the sample taken from the patient represents a mixture of tumor and normal
cells. This problem also relates to the ‘seed and soil’ hypothesis formulated by Paget
(1989). In a recent experiment, Creighton et al. (2003) attempted to address this

hypothesis using a mouse xenograft models, but they concluded their findings to be
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preliminary. The problem has also been noticed experimentally by Staal (2003); some
efforts to incorporate this into the analysis has been initiated by Venet et al. (2001).

In almost all analyses of microarray data, the tumor sample is treated as homoge-
neous. Consequently, in the analyses of the differential expression, there is a funda-
mental confounding with cell type. In the future, it may be possible to isolate pure
populations of tumor cells using laser capture microdissection techniques (Fend and
Raffeld, 2000); however, this technology is currently not in widespread use. None of
the methods listed in the previous paragraph accounts for this mixed cell type problem.

Our experience with this issue arises from a recent molecular profiling study in
prostate cancer (Dhanasekaran et al., 2001). Some of the microarray experiments there
used a normal adjacent prostate pool as the reference sample (i.e. the Cy3-labelled
sample), and the investigators thought that this tissue might be influenced by paracrine
effects mediated by PCA, and furthermore is exposed to the same environmental and
genetic factors as the adjacent PCA. Thus, in determining differential expression, it
would be important to “subtract” out these effects. In another example, a recent article
by Hampson and Hughes (2001) discussed the problem in the context of determining
differentially expressed genes in muscle when there are muscle-specific cells and non-
muscle specific cells.

What is typically available is an assessment by the pathologist as to the percentage
of the sample that is composed of tumor cells. We seek to utilize this information in
the determining which genes are over- and underexpressed. In this article, we develop
a general framework for assessing differential expression in complex tissues that incor-
porates sample heterogeneity. While we are primarily motivated by cancer studies, this
issue is applicable to a variety of biological areas in which it is not possible to generate
pure samples. It turns out that a natural tool in the probabilistic formulation of this
problem is mixture models (McLachlan and Peel, 2002). The structure of this paper is
as follows. In Systems and Methods, we describe the data structure and define two
general probabilistic models for gene expression depending on whether an unpaired or

paired study design is used. Estimation procedures for the models will be discussed
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here as well, along with comparisons with procedures based on the false discovery rate
(Benjamini and Hochberg, 1995). We illustrate the use of the proposed methodologies
to two cancer studies and simulated data in Results. We conclude with some brief

remarks in the Discussion.

Systems and Methods
Data Structures and Study Designs

We observe the random samples (X¢,...,X!) and (Y$,...,YS,), where X! is the
p-dimensional gene expression profile for the ith tumor sample, and Y7 is the corre-
sponding profile for the jth control sample, 2 =1,...,n, 7 =1,...,m. In addition, we
observe m = (my,...,m,), where 7; represents the proportion of the ith tumor sample
representing tumor cellsz = 1, ..., n. We will assume here that there are two cell types:
tumor and normal. Thus, (1 — ;) (¢ = 1,...,n) will represent the percentage of the
1th tumor sample that is normal tissue. Throughout the paper, we will assume that
the data have been appropriately preprocessed and normalized. Again, the methods
for assessing differential expression previously reported in the literature have implicitly
made the assumption that m; =1,1=1,...,n.

Before describing the model formulations, we briefly discuss the study designs ap-
propriate for analysis using this model. In some cancer studies, normal and tumor
samples come from separate patients. For these settings, we treat the cancerous and
healthy samples as statistically independent, and it will not necessarily be the case
that m = n. In other experiments, normal and cancerous tissues come from the same
patient. The normal tissue is taken from a region near the cancer; a consequence will
be that m = n. The analysis of these studies should take into account the pairing of

samples. In this manuscript, we will consider formulations for both types of studies.

Model for unpaired study design

In this section, the model for an unpaired study design is described. We start by

considering the gene expression profiles for the normal samples. Define Y7 to be the

5
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expression measurement for the gth gene using the ith control sample, g =1,...,G;i =

C

1,...,m. Equivalently, Y;? is the gth component of Yi. Then the model for gene

expression in control samples we are formulating is the following:

chgﬂ"'ayég ~ f;(y) (1)
Foly), - faly) X foy) 2)

In equation (1), we assume that the expression measurements from individual genes are
random samples from a gene-specific probability model, conditional on a gene-specific
effect, while the second stage of the model (2) states that the gene-specific densities are
random samples from a probability distribution. For the tumor samples, we formulate

the following model:

ng,...,ang ~ (1—7ri)f;($)+7rif;(m) (3)
fim) % pyfi(a) +pft(z) + (1 —po —py) () (4)

In the model for tumor expression, the measurements are no longer independent and
identically distributed at the first stage (3); we are incorporating heterogeneity of the
tumor specimens 74, ..., T,. In addition, we model the gene expression measurements
as mixtures of tumor and control gene expression densities. However, the tumor specific
densities of the GG genes are modelled as being a random sample at the second stage
of the model, in equation (4). The first component in the mixture on the right-hand
side of (4) represents the population of genes that are overexpressed in tumors relative
to the control samples. The second component is the corresponding density for those
genes that are underexpressed in tumors relative to controls. The proportion of genes
in these two populations are p, and p_, respectively. The remaining proportion of
genes, 1 —p, — p_, are from the usual control gene population, which represents the
population of expression measurements in healthy tissue.

We next give the appropriate probability model for paired study designs.

Model for Paired Study Design
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We now formulate the probability model for tumor and control samples in the case

of paired specimens. We have the following model:

( X;i) e~ [(1 — i) fq (%) + mifg() (5)

Yo Fe(y)
g(2)) fe(z)
( §($)> <p+fi(:r) +p_fi(z)+(1—p_—p) fc(x)) (6)
M1,y Un %j M (7)

This model takes into account the pairing of samples. In (5), we assume that the control
and tumor expression measurement for the gth gene from the 7th sample, conditional
on a gene effect, is a random sample from a bivariate distribution, where the first
component involves the tumor heterogeneity, and the second component is a gene-
specific density for control samples. The second stage of the model is given in (6) and
(7), where the densities are a random sample from a bivariate distribution. The density
for f; corresponds to that given in (4). Finally, we also need a model formulation for
the sample effects p,. .., p,; the distribution of these effects is given by M in (7).
While there is a multi-stage formulation in both models (1)-(4) and (5)-(7), the latter
model is fundamentally bivariate, while the former model models the distributions of
the gene expression profiles for control and tumor samples separately. Both models
(1)-(4) and (5)-(7) are examples of mixture models. It should also be noted that these
models imply that there is a dependence in gene expression measurements between
genes. This is because of the two-stage hierarchical formulation we have adopted and
is also implied by the models of Efron et al. (2001) and Ibrahim et al. (2002).

In thinking about probabilistic specifications for the models described previously,
we want to incorporate the fact that the number of samples (n, m) will be much smaller
than the number of genes (G) in gene expression studies. What this implies is that we
want to be parametric in the first stage and less parametric in the second stage of the
models. By utilizing the hierarchical specifications, this allows us to share information
across genes in a natural way. This approach was also incorporated by other authors,
such as Newton et al. (2001), Efron et al. (2001) and Parmigiani et al. (2002).

However, they were not dealing with the complex tissue scenario addressed here.

7
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The ultimate goal here is to calculate a quantity summarizing differential expression
of a gene in tumor tissue relative to healthy tissue. Because we have formulated the
problem using mixture models, a natural output in this procedure is the posterior
probability of differential expression given the observed data. Similar measures have
been developed quite extensively in the situation where m; = 1 for ¢ = 1,...,n, but
not in the more difficult complex tissue problem. We will later link this quantity to

the false discovery rate (Benjamini and Hochberg, 1995).
Model Specifications

We first start by considering the unpaired study design model (1)-(4). We specify
that f7 is the density function of a normal random variable with mean p,. and variance
ch in (1) and that f; is that from a normal distribution with mean p,, and variance
02, In the second stage of the model (equations (2) and (4)), o7, and o7, are assumed
to be from distributions with mean o? and 2. We will assume that the distribution of
tge (9 =1,...,G) at the second stage is from a normal distribution with mean y. and

variance o?. For the distribution of p4, we will formulate the following model:

figt ~ P+ N(ps, 07) +p-N(p—,0%) + (1 = ps = p-)N(pte, 0%). (8)

In (8), we state that the average gene expression level in tumors comes from a mixture
of three distributions. The first distribution on the right-hand side of (8) is for the
genes that are overexpressed in tumor relative to normal tissue. The second mixture
component corresponds to the population of genes that are underexpressed in tumor
cell populations relative to normal cell populations. The last mixture component in (8)
represents the genes that do not change between normal and tumor tissue. Notice that
we are examining and testing for differential expression using means. The proportion of
genes that fall into the three gene populations are given by p,,p_ and py = (1—p; —p_).

A natural constraint to impose is that p_ < p. < py. We can reformulate the general
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model in equations (1)-(4) in the following manner:

Ve~ Nlgeol) ©)
X;z' ~ WiN(:“gtaazt) +01- Wi)N(Ngc’Ugc) (10)
foe ™ Njte, 0?) (11)
pot ™ palN(ps,02) +p-N(pu_,0%) + (1 — ps — p-)N(pic, 0*) (12)
agc “ F, (13)
0§t ~ F, (14)
where F, and F; are the distribution functions corresponding to o7, and o7, respec-

tively, g =1,...,G.

We next consider the paired study design model (5)-(7). We will make similar
specifications as those for the unpaired design, while taking into account the pairing
of the samples. At the first stage of the model (corresponding to equation (5)), we

assume that (Y5

s Xg:) (9=1,...,G;i=1,...,n) has a bivariate normal distribution

with mean vector

( M + Hgc )
Wi + Tiflgt + (1 - 7Tz’)/vtgc

and variance-covariance matrix

(aﬁc Ot >

Otc 7Ti2‘7§t + (1 - 7Ti)2‘7§c .

For the models corresponding to (6), we assume that (i, p1e:) are iid observations
from a bivariate mixture normal distribution, which we state below in (17). Finally,
the subject effects p1, ..., i, are assumed to come from a distribution function M. We

will also assume that all variance and covariance parameters come from distributions
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that we leave unspecified. Thus, the model can be stated in the following manner:

2% + Hge

Yé
gt
/’1" ~
()
(i) *
,ugt
2
Me g, Oc—
() (e %

itd

Oget ™~ Fy
030 “ F,
th z’y’i E ,

i M

N
? [(Nz + Miftgr + (1 — ;) bge

2
He g Oct
N. N
b 2[<N+> (Uc+ Ui)]

) (2

Ugct

Ugct

15
7Tz'2‘7§t +(1- Wi)20§6>] (15)

(16)
17

18

(17)
(18)
(19)
(20)

20

In (15),we allow for the normal and tumor components to interact; this is summarized

by the covariance term o4 Having stated the semiparametric models that we are

fitting in the unpaired and paired design cases, respectively, we are now ready to de-

scribe the necessary estimation procedures. Our procedures will involve a combination

of methods of moment estimators and the EM algorithm.

Estimation Procedures

We consider the model for the unpaired study design first. We employ the following

multi-stage algorithm for estimation:

1. Estimate p14 and o7, in (9) by

ﬂgc = n_l Z

=1

and &7, = (n —

1)_1 Z;L:l(ytqc;' - :&‘90)27 g =

1

g .

ye

gt

.,G.

2. Estimate pg4 and agt in (10) by method of moments estimation, using the esti-

mates of i, and o7, from step 1.

3. Estimate (¢, pit, p—), (p—,p+) and (02,02,0%) by the EM algorithm where the

“data” are (figc, figr), 9 =1,...,G.

10
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4. Estimate F, and F; by the empirical distributions of the estimators of ogc and

o2, from steps 1 and 2, g =1,...,G.
For the paired study design (equations (15)-(20)), the following algorithm is used:

1. Estimate p; by
G
-1 Z Yc + Xt

subtract fi; from the gene expression measurements for the ith individual, 7 =

1,...,n.

2. Estimate pig and o7, in (15) by method of moments estimation, using the esti-

mates of g and pg from step 1.

3. Estimate (u¢, pit, —), (p—,p+) and (02,0%,0%) by the EM algorithm where the
“data” are (figc, flgt), 9 =1,...,G.

4. Estimate the distribution of the variance parameters in (17)-(19) by the empirical

distribution of the estimated variance components.

A general description of the EM algorithm in normal mixture models can be found
in Ghosh and Chinnaiyan (2002). The methods here have been implemented using the
R language (Ihaka and Gentleman, 1996). If we define the random variables D = 1,
2 and 3 and corresponding to the populations of underexpressed, overexpressed and
non-differentially expressed genes in tumor relative to healthy tissue, then for each gene
we will have a measure of the posterior probability that D = 1, D = 2 and D = 3,
conditional on the observed data. Genes with large posterior probabilities of D = 1 are
likely to be underregulated genes; similar interpretations hold with D =2 and D = 3.

A method for modelling cell type composition heterogeneity was proposed by Venet
et al. (2001). Unlike our method, they do no make any assumptions on the number
of component cell populations; they consider different numbers of components. Their
goal is to attempt to reconstruct the measurement for the component cell population.
In this article, we will be pursuing a different goal; finding differentially expressed genes

explicitly incorporating sample heterogeneity.

11
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False Discovery Rates: Analytical Comparisons

Before describing the application of the proposed methods to the real datasets, we
briefly discuss the relationship between the methods proposed here with differential ex-
pression methods that control the false discovery rate (FDR) (Benjamini and Hochberg,
1995). Let us return to case of m; = 1 for ¢ = 1,...,n. Many methods have been de-
veloped in which univariate testing is done (i.e., G tests are performed), and the false
discovery rate (Benjamini and Hochberg, 1995) is controlled. We now give a formal
definition. We consider the following 2 x 2 contingency table:

Thus, from Table 1, of the G hypotheses being tested, for gy of them, the null is
true. The definition of FDR as put forward by Benjamini and Hochberg (1995) is

FDREE[g\Q>O] P(@ > 0).

The conditioning on the event [@@ > 0] is needed because the fraction V/R is not
well-defined when @ = 0. Storey (2002) points out the problems with controlling this

quantity and suggests use of the positive false discovery rate (pFDR), defined as
1%
pFDR=F [@ |Q>O] .

Conditional on rejecting at least one hypothesis, the pFDR is defined to be the fraction
of rejected hypotheses that are in truth null hypotheses. In other words, the pFDR is
the rate at which discoveries are false.

Suppose we have independent test statistics 771, ...,7Tg for testing G hypotheses.
Define corresponding indicator variables Hi,..., Hg where H; = 0 if the null hypoth-
esis of no differential is true and H; = 1 if the alternative hypothesis of differential
expression is true, both for the ¢th gene. Note that H; = 1 corresponds to D; = 1 or
D; = 2 from the previous section. We assume that Hq,..., Hg are a random sample
from a Bernoulli distribution where for i = 1,..., G, P(H; = 0) = m;. We assume that
T;|H; =0 ~ fo and T;|H; = 1 ~ f; for densities fy and f; (i =1,...,G). Suppose we

use the same rejection region R for testing each of the G’ hypotheses. By a theorem

12
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from Storey (2002), we have that

pFDR(R) = P(H=0|T € R)
mP(T € R/H = 0)
P(T € R)

Thus, the interpretation of pFDR is as the posterior probability of no differential
expression, conditional on the test statistic being in the rejection region. By contrast,
we calculate P(D = 3), or equivalently, P(H = 0) given the full data. Thus, there
is a partial conditioning in the definition of pFDR as put forward by Storey, while
our posterior probability measure of differential expression is fully conditional on the
observed data. However, our measure of differential expression has an interpretation

similar to that of a false discovery rate.

Results

We now discuss the application of the proposed methodology to two datasets.
Colon cancer data

Our first example comes from a recently reported study by Alon et al. (1999),
in which Affymetrix HuGeneFL oligonucleotide microarrays were used to probe colon
adenocarcinoma samples. While the initial study reported on differential expression
between 40 cancerous and 22 normal samples, we focus on a subgroup of 18 patients
on which paired normal and cancer samples. The pairing was not taken into account
in the analysis performed by Alon et al. (1999). In addition, the samples involved
contamination with normal adjacent tissue. Based on the framework described in the
paper, this corresponds to m # 1; however, the samples were analyzed as if 7 = 1.

Before describing the analysis, we describe the data preprocessing steps that were
taken. There were 7471 genes in the original dataset, downloaded from the following
URL:

http://www.molbio.princeton.edu/oncology.

13
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Based on the data from there, genes with any missing values or with negative expression
were excluded from further consideration. This left a total of 2824 genes. Afterwards,
logarithms of base two were taken, which is the data we work with.

The first analysis consisted of assuming that 7 = 1 for all tumor samples and
performing a univariate analysis using p-values based on a t-distribution with a qg-
value calculation based on the FDR method of Storey (2002). A summary is provided
in Figure 1. We find that the under the null distribution, we would expect to find
approximately 18% of genes to be differentially expressed. A table listing numbers of
genes called significant at various g-values is found in Table 2. The numbers of genes
called significant can also be inferred using Figure 1.

A second analysis consisted of incorporating the tissue composition information

into the analysis using the following method:

1. Estimate p; by
G

fi = (2G) 1) (Y + Xg0);

g=1

subtract fi; from the gene expression measurements for the ¢th individual, 1 =

1,...,n.
2. pige, 05, and pue, 07, are estimated using methods of moments;

3. A test statistic
— ,agc - ﬂtc
BNCART ALY

g=1,...,G, is constructed.

4. The g-values are calculated based on (T7,...,7Tg) using the method of Storey
(2002).

By incorporating the tissue information in this way, we reduce the rate of non-differentially
expressed genes from 19% in Figure 1 to 10% in Figure 2. Based on Table 2, we also find
that the number of genes being counted as differentially expressed increases sharply

when we incorporate the tissue information based on the above algorithm.

14
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We now apply the method proposed in Section 3 to the data, taking into account the
paired nature of the data. Based on the fitting procedure, we find that 30% of the genes
are found to be non-differentially expressed. If we use a posterior probability of 95%
for determining differentially expressed genes, we find that 98 genes are underexpressed
in cancer relative to normal, while, 939 genes are correspondingly overexpressed. This
corresponds to using a false discovery rate of 5% in the framework of Storey (2002).

In comparing the proposed method to the other methods, there are genes that
are called differentially expressed by our method that are not being determined to be
differentially expressed by FDR methods. The comparisons with the first two analysis
methods are given graphically in Figures 4 and 5. It is clear that there are genes
that our method determines to be differentially expressed that have more conservative
g-values. For example, in comparison with the first method of analysis, where 7 is
assumed to be 1 for all tumor samples, there are 458 genes with a g-value bigger
than 0.05 that are determined to have greater than 95% posterior probability of being

differentially expressed.
Prostate cancer data

The second data example is from a recent prostate cancer study by Luo et al.
(2001). In their experiments, prostate cancer and 9 normal samples were profiled using
spotted cDNA microarrays. Note that this is an unpaired design. While there were
6500 original genes on the microarray in Luo et al. (2001), the gene data we are working
with is from the study of Rhodes et al. (2002). Details on preprocessing can be found
there. In addition, we excluded genes with missing values; this left a total of G = 5364.

Our first analysis involves treating cancer samples as being 7 = 1 and computing
5364 t-tests and estimating g-values by the method of Storey (2002). This analysis
found no differentially expressed genes. We will instead work with the unadjusted
p-value here. We apply the proposed method from Systems and Methods for the
unpaired design. Based on the data, 11.4% of genes are estimated to be differentially

overexpressed in tumor relative to normal, while 25% are determined to be underex-

15
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pressed. Looking at Figure 6, the p-values and posterior probabilities are giving much

different results as to which genes are differentially expressed.
Simulation studies

To assess the finite-sample properties of the proposed methodology, we conducted some
simulation studies. We compared the mixture model-oriented procedures with the t-
test analysis that ignores tumor heterogeneity. Both the paired and unpaired designs
were considered. Data were generated using the paired and unpaired models, equa-
tions (15-20) and (9)-(14), respectively. We took N = 100 and N = 60 for the un-
paired design; mq,..., Ty are a random sample from the uniform(0.3,1) distribution,
where M = N/2. We took all variance components to be 1. We set p, = 0 and
examined (p4, p_) = (1.2,—-1.2), (0.8, —0.8), and (0.4, —0.4). For proportion of differ-
entially expressed genes, we considered (py,p_) = (0.05,0.05); similar results held for
(p+,p-) = (0.2,0.2),(0.1,0.2) and (0.2,0.1) (data not shown). Finally, for the paired
design, we took M to be a normal distribution with mean 1.2 and variance 1. One
thousand simulation samples were considered for each setting.

Because we have three populations of genes (overexpressed, underexpressed and
no differential expression), we used sensitivity and specificity to assess the properties
of the proposed methods and the t-test approach. For the proposed methodology,
we defined sensitivity as posterior probability of differential expression greater than
0.9999999 among the differentially expressed genes and specificity as posterior proba-
bility of nondifferential expression greater than 0.9999999 among the non-differentially
expressed genes. For the t-test, we defined sensitivity as a magnitude of t-test greater
than 5 among differentially expressed genes and specificity a magnitude of t-test less
than 5 among nondifferentially expressed genes. The results are given in Tables 2 and
3. Based on the situations considered, we find that the proposed method performs

substantially better than the t-test analysis that ignores tissue heterogeneity.
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Discussion

In this article, we have proposed a general model-based framework for the analysis
of complex cell populations using microarray data. The methods in the paper are
primarily motivated by cancer studies, where mixture of cancer and normal adjacent
cells in the cancer samples are common. However, the proposed framework developed
in the paper could apply to other settings in which multiple types of cell populations
exist. While methods for assessing differentially expressed genes are becoming quite
commonplace in the microarray literature, the issue of adjusting for mixed cell types
is not as established. More generally, it is important to adjust for all important and
available covariates in determining differentially expressed genes so that differences in
gene expression will not be confounded.

There are several extensions to the method we have proposed here. One could
envision alternative probabilistic specifications for the mixture models. For example,
some authors have reported extreme outliers in microarray data. While we have sought
to remove outliers in our preprocessing, one could also use mixture models based on
the t-distribution (Lange et al., 1989). In this instance, one would also have to resort
to more complicated model fitting procedures based on extensions of the EM algorithm
(McLachlan and Krishnan, 2000). Another specification of the model is to incorporate
parametric distributions for the distributions of the mean and variance parameters. Our
estimation procedures were based on the EM algorithm, but one could also potentially
use Bayesian mixture modelling methods (Diebolt and Robert, 1994) for estimation.

In terms of dealing with mixtures of cell populations in samples, biologists often
speak of methods that ‘subtract’ out the effects of the contaminating mixture com-
ponents. The technique of laser capture microdissection (Fend and Raffeld, 2000) is
a lab-based method that does this. We have demonstrated that through the use of
statistical methods, it is possible to develop analysis procedures that also can subtract

out the effects of individual mixture components.
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Appendix
Ezpectation-Mazimization (EM) algorithm

Let yy,...,yn denote the observations, where y; is a p-dimensional vector (i = 1,...,n).
Assume that the observed data are independent and identically distributed realizations

from the density

n

Fa - ya) = [ D0 mefeyil e, Sw), (A1)

=1 k=1
where 7w, (k = 1,...,K) is the probability that an observation belongs to the kth

group, and

Fr (il e, Be) = 127557 exp{—(yi — ) "S5 (vi — 1)} (A2)

is a multivariate normal density with mean p; and covariance matrix 3. Thus in
(A1), we have formulated that the gene expression data arise from a mixture of K
multivariate normal populations.

The distributions of the K components are fully specified by pr and X, & =
1,...,K. Let Oy = (ux, Xx), k = 1,..., K. We apply the expectation-maximization
(EM) algorithm (Dempster, Laird and Rubin, 1977) for estimating 6y, ...,0x and
m,...,Trg- We begin by formulating the estimation problem as a missing data prob-
lem. For this setting, the complete data are x; = (y;,z;) (¢ = 1,...,n), where

zZ; = (Zﬂ, .4, zz’K) is defined by

1 if y; belongs to group &
ik = .
0 otherwise.
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The z; (i = 1,...,n) represent the cluster assignments. We assume that z;, i =
1,...,n, are iid realizations from a multinomial distribution with probabilities 7y, ..., 7

(Zszl 7 = 1) and that the density of y; given z; is

ka(Yi‘ek)zik-
i=1

Then it is easy to then derive the likelihood and log likelihood for the complete data:

n

LEP(0s,. .., 0k, m1, . TR, X H {mi fi(yilOk) },
=1 k=1
and
n K
1P O, O, 0,y R [X, o Xn) = Yz log{me fi(yilfk) }- (A3)
i=1 k=1
Given estimates 7, ..., T and /9\1, e, 51(, the E-step of the EM algorithm involves
estimating z; by E|z;|y;, 71, ..., Tk, 51, e, 51{] The estimator here has a simple form:
. 7 [ (vil 0 .
Zik = 7kak(}’z| k) (221,...,n;k:1,...,K).

S Aili(vilf)

The estimated z; (i = 1,...,n) are then plugged into (A3), and the complete data
log-likelihood is then maximized as a function of 8y and m, £ = 1,..., K. This is the
M-step of the EM algorithm. Estimates of 7y and 6y (k =1, ..., K) are output from the
M-step and are then input into the E-step. The two steps (E-step and M-step) are then
iterated until convergence is reached. Many authors have shown (Wu, 1983; Boyles,
1983) that under general regularity conditions, the solution from the EM algorithm
will converge to a local maximum. In practice, the results from fitting the algorithm
has proven to be acceptable. One of the potential problems with the EM algorithm is
its rate of convergence in practice. We used the k-means algorithm (MacQueen, 1967)

for determining initial values.
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Figure 1: Output of SAM analysis (Storey, 2002) for assessing differential expression
between paired normal and colon cancer tissue from Alon et al. (1999) study in which
tumor is assumed to be homogeneous.
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Figure 2: Output of SAM analysis (Storey, 2002) for assessing differential expression
between paired normal and colon cancer tissue from Alon et al. (1999) study in which
tumor is assumed to be nonhomogeneous.
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Figure 3: Comparison of unadjusted and adjusted p-values from paired colon cancer
data of Alon et al. (1999).
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Figure 4: Comparison of estimated gene-specific false discovery rate from method in
Figure 1 with posterior probability of differential expression using proposed method
for colon cancer data of Alon et al. (1999).
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Figure 5: Comparison of estimated gene-specific false discovery rate using false-
discovery rate method with posterior probability of differential expression using pro-
posed method for unpaired prostate cancer data of Luo et al. (2001).
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Table 1: Outcomes of G tests of hypotheses

Accept | Reject | Total
True Null U \Y 90
True Alternative T S g1
W Q G

~

Table 2: Number of genes called significant (k) for various values of ¢* based on Storey
(2002) procedure for paired normal and colon cancer data from Alon et al. (1999)

q* No adjustment Adjustment
0.2 2824 2824
0.1 2704 2809
0.05 2360 2604
0.02 1906 2375
0.01 1635 2210
0.005 1441 2061
0.001 966 1693

Table 3: Summary of simulation results for unpaired design. Proportion of differentially
expressed genes given by (p;,p_) = (0.05,0.05). All variances are set to one. T-test
method denotes t-test analysis treating tumor samples as homogeneous.

Proposed Method T-test method
N (u—,py) Under-sens. Over-sens. Spec. Under-sens. Over-sens. Spec.
60  (-0.4,0.4) 0.64 0.62 0.78 0.02 0.02 0.65
60  (-0.8,0.8) 0.67 0.69 0.80 0.04 0.04 0.67
60 (-1.2,1.2) 0.71 0.71 0.83 0.06 0.06 0.74
100 (-0.4,0.4) 0.82 0.81 0.95 0.50 0.50 0.62
100 (-0.8,0.8) 0.88 0.89 0.98 0.55 0.56 0.67
100 (-1.2,1.2) 0.97 0.97 0.99 0.59 0.59 0.70
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Table 4: Summary of simulation results for paired design. Proportion of differentially
expressed genes given by (p;,p_) = (0.05,0.05). All variances are set to one. T-test
method denotes t-test analysis treating tumor samples as homogeneous.

Proposed Method T-test method
N (p—,ps) Under-sens. Over-sens. Spec. Under-sens. Over-sens. Spec.
60  (-0.4,0.4) 0.54 0.52 0.68 0.12 0.11 0.65
60 (-0.8,0.8) 0.67 0.69 0.73 0.14 0.04 0.67
60 (-1.2,1.2) 0.72 0.71 0.78 0.16 0.16 0.74
100 (-0.4,0.4) 0.74 0.73 0.51 0.19 0.18 0.71
100 (-0.8,0.8) 0.77 0.79 0.55 0.26 0.24 0.77
100 (-1.2,1.2) 0.82 0.82 0.58 0.32 0.33 0.81
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